Informatik II: Algorithmen und Datenstrukturen SS 2013

Vorlesung 13b, Mittwoch, 17. Juli 2013 (Evaluationsergebnisse, Klausur, Vorstellung Lehrstuhl)

Prof. Dr. Hannah Bast
Lehrstuhl für Algorithmen und Datenstrukturen
Institut für Informatik
Universität Freiburg

Blick über die Vorlesung heute

Evaluation

- Zusammenfassung der Ergebnisse
- Diskussion darüber falsch gewünscht

Klausur

- Wiederholung Benotungsschema
- Art der Aufgaben + Beispiele aus alten Klausuren

Vorstellung Lehrstuhl

- Unsere Art zu arbeiten
- Aktuelle Projekte / Demos dazu
- Vorlesungen im WS 13/14 und im SS 2014

Ergebnis der Evaluation 1/7

UNI FREIBURG

■ Teilnehmer / Rücklauf

- Aktive Teilnehmer/innen der Vorlesung: ca. 50
- Anmeldungen zur Klausur bisher: 49 ... nicht vergessen!
- An der Evaluation teilgenommen: 44 ... danke !
- Davon 35 x Informatik, 2 x ESE, 1 x LA, 2 x NF, 4 x Sonstige
- Davon 37 x 2. Semester, 6 x höher, 1 x 1. Semester
- Anzahl Lehrpreisnominierungen: 38 ... DANKE !
- Es folgt eine Zusammenfassung Ihrer Rückmeldungen
- Alle Details dazu (wie immer) auf dem Wiki

Ergebnis der Evaluation 2/7

UNI FREIBURG

Vorlesungsstil

- Viel gelernt: 28 x stimme voll zu, 16 x stimme zu
- Niveau der Vorlesung: 27 x angemessen, 16 x hoch, 1 x tief
- Gut erklärt: 33 x stimme voll zu, 9 x stimme zu, 2 x teils
- Geht auf Fragen ein: 33 x stimme voll zu, 10 x stimme zu, 1 x nee
- Gute Atmosphäre, amüsant, humorvoll, geduldig, ...
- Gute und intuitive Erklärungen, Live Coding / Malen / Beweisen
- Guter Mix aus Theorie und Praxis, motivierend
- Alles sehr gut organisiert, sehr guter Kontakt zu Studierenden
 "Es scheint sie zu interessieren, ob wir mitkommen oder nicht"

Ergebnis der Evaluation 3/7

Übungsblätter

- Schwierigkeit: 20 x angemessen, 20 x schwierig, 4 x leicht
- Sinnvolle Ergänzung: 27 x stimme voll zu, 14 x stimme zu
- Aufwand: 23 x 9-12 Stunden, 15 x weniger, 6 x mehr
- Übungsblätter kreativ gestaltet, gute Verbindung zur VL
- Bearbeitung hat meistens Spaß gemacht
- Mischung aus Programmier- und Beweisaufgaben gut
- Am Anfang Übungsblätter zu lang, dann ging's aber
- Die meisten Tutoren (sehr) hilfreich und (sehr) freundlich,
 bei ein/zwei unzureich. Erläuterungen + langsame Korrektur

Materialien / Online Support

- Materialien hilfreich: 29 x stimme voll zu, 14 x stimme zu
- Folien gut + hilfreich für die Ü-Blätter
- Code-Vorlagen sehr gut und nützlich
- Forum hilfreich + schnelle Antwortzeiten ... wurde diesmal allerdings deutlich weniger benutzt als sonst (Wetter, usw.)
- Daphne besser als die anderen "E-Learning" Portale
- VL-Konsum: 20 x Anwesenheit, 10 x Aufzeichnung, 14 x beides
- Videoaufzeichnung super + immer schnell verfügbar !
- Herzlichen Dank an Axel Lehmann (Assistenz), Frank Dal-Ri (Technik), Dennis Weggemann (Videoschnitt)

Ergebnis der Evaluation 5/7

Mecker

- Manche Algorithmen wurden nur als Beispiel erklärt
- Malen / Schreiben / Coden teilweise zu lange gedauert
- Der große Überblick blieb aus
- Alles nur auf Java
- SVN austauschen weil "verbuggt", kein Checkstyle
- Recap der Stochastik hätte ausführlicher sein können
- Ein Tutorat pro Woche wo man hingehen kann
- Pause machen, damit man nicht so abschweift
- 16 Uhr ist keine schöne Zeit

Ergebnis der Evaluation 6/7

Kontroverses

- Hohes Niveau / Stoff teilweise sehr schwer
- Stellenweise langweilig, zu leicht, zu lange auf triviale
 Dinge eingegangen, Niveau immer weiter abgesunken
- Theorieteil ist zu kurz gekommen, lieber mehr Mathe
- Nicht auf die Leute h\u00f6ren, die mehr Mathe wollen
- Lustig, witzig, charmant, ironisch, ...
- Die flachen Witze kann man auch ruhig weglassen / "manchem mag ihr Humor vielleicht nicht gefallen"
- Großartige Farbauswahl, vor allem das Orange
- Orange lieber mit etwas mehr gelb

Ergebnis der Evaluation 7/7

Diverses

- "Vorlesungszeit kollidiert mit Abgabefristen von Übungsblättern und mit Müdigkeit"
- "Angenehmer zuhause ausgeschlafen die VL zu hören als verschlafen an der Uni rumzuhocken"
- "Sie hat mich zu Linux, C++, Vim bekehrt ... dafür bin ich ihr sehr dankbar"

Klausur 1/5

withwork

UNI FREIBURG

- Termin + Punkte
 - Am 28. August 2013 von 14 17 Uhr im Kinohörsaal
 - 6 Aufgaben a 20 Punkte, wir zählen die besten 5
 - Also maximal 100 Punkte

Endnote

Ergibt sich linear aus der Punktzahl in der Klausur

```
50 - 54: 4.0; 55 - 59: 3.7; 60 - 64: 3.3
65 - 69: 3.0; 70 - 74: 2.7; 75 - 79: 2.3
80 - 84: 2.0; 85 - 89: 1.7; 90 - 94: 1.3
95 - 100: 1.0
```

Klausur 2/5

Modus

 Die Klausur ist open book : sie dürfen Bücher, Papier, usw. in beliebiger Menge mitbringen

Aber bitte sparsam beim Ausdrucken der Folien sein!

- Elektronische Geräte jeder Art sind nicht gestattet
- Außerdem bitte mitbringen: Studierendenausweis,
 Buntstifte, Gehirn

- Drei Typen von Aufgaben
 - Typ 1: Einen Algorithmus, oder eine Variante davon, an einem Beispiel nachvollziehen ... siehe Buntstifte
 - Typ 2: Kleineres Programm schreiben, oder gegebenes
 Programm verstehen
 - Typ 3: Kleinere Rechenaufgaben oder Beweise,
 insbesondere Induktionsbeweise ... siehe Gehirn
 - Auf den nächsten beiden Folien ein paar Beispiele ...

ins (1) WS 10/11 , Sufgale 3.1 ms(6) 2(x) = (2·x) mod 5 mo(2)

WS 10111, Aufgalie 3.3 2(x)= (2·x) mod 5 x,y zufallig

=> 2(x), 2(y) zufällig aus [0,1,2,3,4]

=>
$$2(x)$$
, $2(y)$ 2 ufalling aris $[0,1(2,1)]$
=> $2(x)$, $2(y)$ 2 ufalling aris $[0,1(2,1)]$ = $[0,1(2,1)]$

WS 10/11, Jufgale 3.4

 $S = \{ m \text{ Schlimel} \}$, $S_c = \{ x \in S : 2(x) = c \}$ i fixe $e \geq 0, ..., 4 \}$ $T_x = \begin{cases} 1 & 2(x) = i \end{cases}$ $P_x(T_x = 1) = \frac{1}{5} \Rightarrow E(T_x) = \frac{1}{5}$

$$E(|S_{c}|) = E(S_{X}) = S_{c}E(I_{x}) = \frac{|S|}{5}$$

ms (4)

remove (1)

insul (21)

2(4)

WS 12113, Aufgale 3.1

M=5

WS 12/13, Aufgale 3.2 + 3.3 (allgemenis m) dist $(1,i) = \begin{cases} 0 & i=1 \\ 1 & i=n+1 \\ 2 & sanst \end{cases}$

Iferation 1: 1 gesettled, mit dist = 0

Iteration 2: n+1 genettled, mit dist = 1

dist van i = 2,..., n auf 2 gesetet

Iteration 3... Ende: envi vom du Knoten C= 2,..., m mit dist= 2 nurd gesettled dist-Weste dr Nadrbonn andem sich melv.

Vorstellung Lehrstuhl 1/4

Unsere Arbeitsweise

- 1/3 Theorie (neue Algorithmen, Laufzeitanalyse, etc.)
 Es gibt nichts praktischeres als gute Theorie, haben Sie ja jetzt in der Vorlesung hoffentlich ein bisschen gelernt
- 1/3 Algorithm Engineering (gute Implementierungen)
 Aber man muss die Praxis verstehen, um gute Theorie machen zu können, siehe Vorlesungen 7b und 13a
 Auch Thema in allen meinen Spezialvorlesungen
- 1/3 Praxis (funktionierende Prototypen, Service)
 Zum Beispiel: DBLP Suche, Daphne, Icecite, ...

Vorstellung Lehrstuhl 2/4

- Aktuelle Projekte
 - Multi-modale Routenplanung
 Beliebige Kombination von Auto, ÖPNV, Flugzeug, ...
 Modelle dafür, effiziente Algorithmen, lauffähiges System
 - Semantische Suche
 Suche mit Verständnis der Sprache
 Beispiele mit Broccoli: http://broccoli.informatik.uni-freiburg.de
 - Automatische Analyse von Bewegungsdaten
 Erkennen von Mustern, Zusammenhängen
 Zuordnung zu Krankheitssymptomen / Neurodaten

Vorstellung Lehrstuhl 3/4

- Vorlesungen im WS 13/14
 - Information Retrieval (Spezialvorlesung)

Alles was man braucht um eine Suchmaschine gemäß dem Stand der Kunst zu bauen

Potpourri aus vielen Techniken und Gebieten: Algorithmen, Kodierungstheorie, Web Apps, Masch. Lernen, Algebra, Statistik, ...

Information Extraction (Seminar)

Extraktion von Wissen aus Texten in natürlicher Sprache

Viele Techniken und die ganze Sprachverarbeitung (Natural Language Processing = NLP), die man dazu braucht

Einführungsvorlesungen + dann tolle Vorträge von Ihnen

Vorstellung Lehrstuhl 4/4

■ Vorlesungen im SS 2014

Programmieren in C++

Das Gleiche wie "Programmieren in Java" nur in C++ und ganz anders

In Zukunft in den geraden Jahren immer "Programmieren in C++" und in den ungeraden Jahren "Programmieren in Java"

- Efficient Route Planning

Alles was man braucht um einen Routenplaner gemäß dem Stand der Kunst zu bauen

Viele Algorithmen / Heuristiken und Ihre Implementierung

Ist aber noch nicht sicher, vielleicht gibt's da auch was anderes