Informatik II: Algorithmen und Datenstrukturen SS 2013

Vorlesung 2a, Dienstag, 23. April 2013 (Laufzeitanalyse MinSort und QuickSort)

Prof. Dr. Hannah Bast Lehrstuhl für Algorithmen und Datenstrukturen Institut für Informatik Universität Freiburg

Blick über die Vorlesung heute

Organisatorisches

- Ihre Erfahrungen mit dem Ü1 (Drumherum + Sortieren)
- Alle non-code Abgaben bitte ausschließlich als PDF
 Außer natürlich die erfahrungen.txt!

Laufzeitanalyse

- MinSort ... "quadratische" Laufzeit
- QuickSort ... meistens besser, aber auch nicht ganz "linear"
- Beweistechnik Vollständige Induktion
- Rechnen mit dem Logarithmus

Erfahrungen mit dem Ü1 (Sortieren)

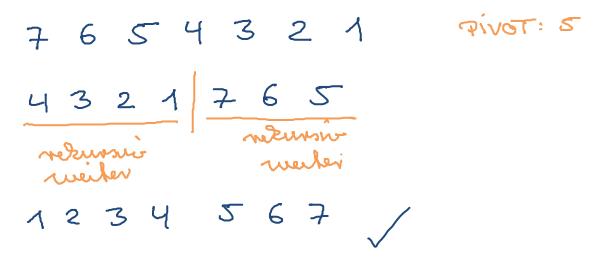
- Zusammenfassung / Auszüge Stand 23. April 15:36
 - Viel Zeit für das Einrichten gebraucht: Programmierumgebung, SVN, Linux, C++, ... normal beim ersten Mal!
 - Sinn von quickSortDivide manchen nicht klar geworden
 Manche meinten sogar, braucht man nicht ... siehe spätere Folie
 - Beispielhafte Erklärung war nicht gut ... zumindest suboptimal
 - Bei Pivot Methode 1, Laufzeit sehr groß ... stimmt genau
 - Checkstyle war das größte Ärgernis an der Aufgabe
 - Freue mich, einige Vim-Tricks lernen zu können
 - Vorgabe führt zu umständlichen Programmen
 Sie müssen sich nicht dran halten, auch wenn ich es sehr empfehle

Erfahrungen mit dem Ü1 (Sortieren)

- Zusammenfassung / Auszüge ... Fortsetzung
 - Details zur Bedienung in den Video-Aufzeichnungen nachgucken ist recht umständlich
 Guter Punkt, Verbesserungsvorschläge (machbar) willkommen
 - Tempo beim Tippen verringern, sonst muss man die Aufzeichnungen in niedrigerer Geschwindigkeit angucken
 - Meine Prokrastination bringt mich noch ins Grab
 Keine Sorge, ich lebe auch noch
 - Die "10 Stunden pro Übungsblatt" sind ein Witz, oder?
 Eigentlich nicht ... das ist bei ≈ 30 ECTS pro Semester etwa eine 45-Stunden-Woche; Vorlesungsnachbereitung inklusive
 - In ant compile ein mkdir –p ./bin einbauen ... gute Idee

Die Methode quickSortDivide

- Braucht man sehr wohl!
 - Auch wenn die Eingabe gerade falsch herum sortiert ist



Laufzeitanalyse allgemein 1/4

- Wie lange läuft unsere bisherigen Programme?
 - Für MinSort und QuickSort hatten wir dazu bisher zwei Schaubilder und Folgendes beobachtet
 - MinSort: Laufzeit wird "unproportional" langsamer, je mehr Zahlen sortiert werden
 - QuickSort: bei schlecht gewähltem Pivot-Element passiert dasselbe, wenn gut gewählt aber nicht
 - Wie können wir präziser fassen, was da passiert?

Laufzeitanalyse allgemein 2/4

- Wie analysieren wir die Laufzeit?
 - Idealerweise h\u00e4tten wir gerne eine Formel, die uns f\u00fcr eine bestimme Eingabe sagt, wie lange das Programm dann l\u00e4uft
 - Problem: Laufzeit hängt auch noch von vielen anderen Umständen ab, insbesondere
 - auf was für einem Rechner wir den Code ausführen
 - was sonst gerade noch auf dem Rechner läuft
 - welchen Compiler wir benutzt haben
 - Jahreszeit, Mondphase, Aszendent, ...
 - Abstraktion 1: Deshalb analysieren wir nicht die Laufzeit, sondern die Anzahl der (Grund-)Operationen

Laufzeitanalyse allgemein 3/4

- Was sind unsere Grundoperationen
 - Eine arithmetische Operation, z.B. a + b
 - Variablenzuweisung, z.B. x = y
 - Funktionsaufruf, z.B. Sorter.minSort(array)
 Natürlich zählt nur der Sprung zu der Funktion als Grundoperation
 - Intuitiv: eine Zeile Code
 - Genauer wäre: eine Zeile Maschinencode
 - Noch genauer wäre: ein Prozessorzyklus
 - Wir sehen später noch, dass es nicht so wichtig ist, wie genau wir die Grundoperationen definieren

Wichtig ist für uns hier erst mal, dass die Anzahl Operationen ungefähr **proportional** zur tatsächlichen Laufzeit ist

Laufzeitanalyse allgemein 4/4

UNI FREIBURG

- Abschätzung der Anzahl Grundoperationen
 - Abstraktion 2: Wir z\u00e4hlen die Operationen nicht genau, sondern berechnen obere (und selten auch untere) Schranken
 Grund: das erleichtert die Sache und wir haben ja eh abstrahiert von exakter Laufzeit zu Anzahl Operationen
 - Sei n die Größe der Eingabe (= des Eingabearrays)
 - Beobachtung: Die Anzahl Operationen hängt nur von n ab,
 nicht davon, welche n Zahlen das sind ... das ist häufig so !
 - Entsprechend untersuchen wir T(n) := die Anzahl der Operationen bei Eingabegröße n

Laufzeitanalyse MinSort 1/2

- Wir zeigen zuerst, dass gilt: $T(n) \le C_1 \cdot n^2$
 - − ... für irgendeine Konstante C₁

MiniSort dat eine außere Solleife und eine more Solleife Iteration 1: $\angle A \cdot m + B$ für ingendmelde Iteration 2: $\angle A \cdot (m-1) + B$ Konstanten A mod B

Iteration 3: $\leq A \cdot (m-2) + B$

und so weiter ...

=>
$$T(m) \leq A \cdot (\underbrace{m + m - 1 + m - 2 + \dots + 1}_{\leq i}) + m \cdot B$$

$$\leq A \cdot m^2 + B \cdot m \leq (A+B) \cdot m^2$$

$$\leq m^2 \qquad =: C_1$$

Laufzeitanalyse MinSort 2/2

■ Wir zeigen, dass auch gilt: $T(n) \ge C_2 \cdot n^2$

```
- ... für irgendeine (andere) Konstante C<sub>2</sub> < C<sub>1</sub>
Iteration 1: \geq A' \cdot m + B', A' \in A, B' \in B
Iteration 2: \geq A' \cdot (m-1) + B' ingendeuelde Kanstante
Ihratian 3: > A'. (m-2)+B'
Mors.
=) T(m) \ge A' \cdot (m+m-1+m-2+\cdots+1) + B' \cdot m
                                = 1/2 (m+1) = 1/3. m2
             2A_{2}^{\prime} \cdot m^{2} + B_{1}^{\prime} m \geq A_{2}^{\prime} \cdot m^{2}
= C_{1}
```

Quadratische Laufzeit

FREIBURG

Definition

- Die Laufzeit T hängt von der Eingabegröße n ab
- Es gibt Konstanten C_1 und C_2 mit $C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$
- Betrachtungen dazu

- Doppelt so große Eingabe → viermal so große Laufzeit
- Unabhängig von den Konstanten wird das schnell sehr teuer
 - C = 1 ns (1 einfache Anweisung $\approx 1 \text{ Nanosekunde}$)
 - $n = 10^6$ (1 Millionen Zahlen = 4 MB) [bei 4 Bytes/Zahl]

•
$$C \cdot n^2 = 10^{-9} \cdot 10^{12} = 10^3 \text{ s} = 16.7 \text{ Minuten}$$

• $n = 10^9$ (1 Milliarde Zahlen = 4 GB)

•
$$C \cdot n^2 = 10^{-9} \cdot 10^{18} = 10^9 \text{ s} = 31.7 \text{ Jahre}$$

Quadr. Laufzeit = "große" Probleme unlösbar

Beweis über vollständige Induktion 1/2

Prinzip

- Man möchte beweisen, dass eine Aussage für alle natürlichen Zahlen gilt, also: A(n) gilt für alle $n \in \mathbb{N}$
- Dann hat ein Induktionsbeweis zwei Schritte
- Induktionsanfang: Wir zeigen, dass A(1), ..., A(k) gelten Meistens reicht k = 1, aber für's Ü2 braucht man k = 2
- Induktionsschritt: Wir nehmen für ein beliebiges n > k an, dass A(1), ..., A(n-1) gelten, und zeigen: dann gilt auch A(n)
 Meistens braucht man dazu nur A(n-1), für's Ü2 auch A(n-2)
- Wenn wir die beiden Sachen gezeigt haben, haben wir nach dem Prinzip der vollständigen Induktion gezeigt, dass A(n) für alle natürlichen Zahlen n gilt

Beweis über vollständige Induktion 2/2

Beispiel

– Wir haben gerade benutzt: $\Sigma_{i=1..n} i = \frac{1}{2} \cdot n \cdot (n+1)$

Industrians an jong: $m = 1 : \quad \stackrel{?}{\leq} c = 1 ; \stackrel{?}{\leq} m(m+1) = 1$ Inductions odnitt: $m \rightarrow m+1$: $\sum_{i=1}^{m+1} i$ soll sein $\frac{1}{2}(m+1)(m+2)$ i=1 dorf dabei benutzen $\sum_{i=1}^{m} i = \frac{1}{2}m(m+1)$ M+1 M voroussetking) $\sum_{i=1}^{N} i = \sum_{i=1}^{N} i + M+1 = \frac{1}{2} M(M+1) + M+1$ i=1 $= (\frac{1}{2}m+1)(m+1) = \frac{1}{2}(m+2)(m+1) = \frac{1}{2}(m+2)(m+1)$

Laufzeitanalyse QuickSort 1/6

- Schlechtester Fall (engl. "worst case")
 - Im schlechtesten Fall teilt das Pivot-Element jedes Feld der Größe m in zwei Teilfelder der Größen 1 und m – 1
 - Dann gibt es eine Konstante A > 0 so dass gilt:

Für
$$n \ge 2$$
: $T(n) \ge T(n-1) + A \cdot n$

Für
$$n = 1 : T(1) \ge A$$

- Daraus folgt: $T(n) \ge A \cdot (1 + 2 + ... + n) \ge A/2 \cdot n^2$

d.h. im schlechtesten Fall ist auch QuickSort quadratisch!

$$T(m) \ge T(m-1) + A \cdot M$$

$$\ge T(m-2) + A \cdot (m-1)$$

$$\ge T(m-3) + A \cdot (m-2)$$
uson.

FREIBURG

Laufzeitanalyse QuickSort 2/6

- - Im besten Fall ist n eine Zweierpotenz, und jedes Pivot-Element teilt das entsprechende Feld genau in der Mitte:

```
Rekursionstiefe 1: 2 Teilfelder der Größe n/2 = 2^{\frac{9}{2}-7}
```

Rekursionstiefe 2: 4 Teilfelder der Größe
$$n/4 = 2^{2}$$

Rekursionstiefe 3: 8 Teilfelder der Größe
$$n/8 = 2^{\frac{9}{2}-3}$$

Und so weiter ...

- Dann gibt es eine Konstante A > 0 so dass gilt:

Für
$$n \ge 2$$
: $T(n) \le T(n/2) + T(n/2) + A \cdot n$
Für $n = 1$: $T(1) \le A$

Daraus folgt: T(n) ≤ A · n · (1 + log₂ n)
 Beweis auf der nächsten Folie

Laufzeitanalyse QuickSort 3/6

■ Beweis von $T(n) \le A \cdot n \cdot (1 + \log_2 n)$

$$T(m) \leq T(m/2) + T(m/2) + A \cdot m$$

 $= 2 \cdot T(m/2) + A \cdot m$
 $= 2 \cdot T(m/4) + A \cdot m/2$
 $\leq U \cdot T(m/4) + A \cdot m + A \cdot m$
 $= 2 \cdot A \cdot m$
 $\leq 2 \cdot T(m/8) + A \cdot m/4$

≤8.T(m/8)+3.A.M

$$u_{N}$$
 $\leq 2^{2} \cdot T(n/2^{2}) + 2 \cdot A \cdot M$

$$92 = log_2 m = m \cdot T(1) + log_2 m \cdot A \cdot m$$

$$\leq A$$

gin n = 2: = 2. log = m

M 21

mad Amodrme sind m/2, m/4, m/8, ... alles gomes Zallen.

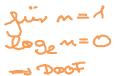
2 = M => l= log2 M (niele madde Folie)

FREIBURG

Laufzeit proportional zu n · log n

- Schauen wir uns wieder Zahlenbeispiele an
 - Nehmen wir also an, es gibt Konstanten C_1 und C_2 mit

$$C_1 \cdot n \cdot \log_2 n \le T(n) \le C_2 \cdot n \cdot \log_2 n$$
 für $n \ge 2$



- Dann dauert es bei doppelt so großer Eingabe nur geringfügig mehr als doppelt so lange
- -C = 1 ns (1 einfache Anweisung ≈ 1 Nanosekunde)
- $-n = 2^{20}$ (≈ 1 Millionen Zahlen = 4 MB) [bei 4 Bytes/Zahl]

•
$$C \cdot n \cdot \log_2 n = 10^{-9} \cdot 2^{20} \cdot 20 s = 21$$
 Millisekunden

 $-n = 2^{30}$ (≈ 1 Milliarde Zahlen = 4 GB)

•
$$C \cdot n \cdot \log_2 n = 10^{-9} \cdot 2^{30} \cdot 30 \text{ s} = 32 \text{ Sekunden}$$

Laufzeit n · log n ist also fast so gut wie linear!

Der Logarithmus (≠ Algorithmus)

Definition Logarithmus

 Der "Logarithmus zur Basis b" ist gerade die inverse Funktion zu "b hoch"

Formal: $\log_b n = x \Leftrightarrow b^x = n$

Beispiel: $\log_2 1024 = 10 \Leftrightarrow 2^{10} = 1024$

Rechenenregeln ergeben sich dann

- ... aus den bekannten Rechenregeln für das Potenzieren

- Beispiel: $\log_b(x \cdot y) = (\log_b x) + (\log_b y)$... siehe unten

- Beispiel : $\log_b x^y = y \cdot \log_b x \dots \ddot{U}^2$, Aufgabe 2

- Beispiel:
$$\log_b x^y = y \cdot \log_b x \dots U2$$
, Aufgabe 2

 $2 := \log_b (x \cdot y) \implies b^2 = x \cdot y \qquad b^2 = x \cdot y = b^2 \cdot b^2 = b^2$
 $2_x := \log_b x \qquad \implies b^{2_x} = x \qquad \implies 2 = 2_x + 2_2 \qquad \implies 2_2 := \log_b y \qquad \implies b^{2_2} = y$

Literatur / Links

- Weiterführende Literatur (bei Interesse)
 - Analyse für zufällig gewähltes Pivot-Element:
 Cormen / Leiserson / Rivest: II.8.4 Analysis of Quicksort
 http://en.wikipedia.org/wiki/Quicksort#Formal analysis
 - Prokrastination

https://en.wikipedia.org/wiki/Procrastination