Informatik II: Algorithmen und Datenstrukturen SS 2013

Vorlesung 3, Dienstag, 30. April 2013 (O-Notation, Groß-O, Omega, Theta, usw.)

Prof. Dr. Hannah Bast
Lehrstuhl für Algorithmen und Datenstrukturen
Institut für Informatik
Universität Freiburg

Blick über die Vorlesung heute

UNI FREIBURG

Organisatorisches

- Ihre Erfahrungen mit dem Ü2 (Induktion + Laufzeit QuickSort)
- Morgen (Mittwoch) ist Feiertag = keine Vorlesung

O-Notation

- Motivation
- Klassische Definition mit C und n₀
- Einfachere Bestimmung über den lim_{n→∞}
- -f = O(g) heißt nicht immer f ist besser
- Übungsblatt 3: ein paar Beweise / Rechenaufgaben dazu
 So was in der Art kommt meistens auch in der Klausur!

Erfahrungen mit dem Ü2 (Induktion)

- Zusammenfassung / Auszüge Stand 30. April 15:00
 - Aufgaben 1 und 2 waren machbar, wenn auch knifflig
 - Aufgabe 3 für manche gut machbar mit Vorlage aus der VL andere hätten sich mehr Hilfestellung zu der Aufgabe gewünscht!
 - Die Mathe StudentInnen haben sich gefreut über das Blatt
 - Das Blatt war einfach nur Scheiße
 - Immer noch nicht einverstanden mit 10 h / Übungsblatt
 "Die Kultusministerkonferenz berechnet für eine 30-ECTS-Woche übrigens 32 39 Stunden."

Das ist aber, wenn man 46 Wochen / Jahr so arbeitet!

Tatsächlich gibt es nur ca. 25 Übungsblätter pro Jahr

Kompromissvorschlag: 9 Stunden / Übungsblatt

Arbeitsaufwand / ECTS

Zweiter Versuch ...

```
Vorlesung: 32/Wode im Semester
Mungen: 92/Wode "
         122/ Worde " "
1.52/ECTS um Semester
230 ECTS = 45h / Worke ii. S.
25.452 + 21.302
               = 382 ( Worle
```

O-Notation — Motivation

UNI FREIBURG

- Primär interessiert uns oft
 - das "Wachstum" einer Funktion, z.B. einer Laufzeit T(n)
 - Die Werte der Konstanten (z.B. A) sind dabei oft sekundär
 - Und auch, wenn die Schranken erst ab $n \ge ...$ gelten
 - Zum Beispiel war beim Sortieren interessant, dass
 - die Laufzeit von MinSort "wächst wie" n²
 - aber die Laufzeit von QuickSort "wächst wie" n · log n
 - Das wollen wir jetzt formaler machen, damit wir in Zukunft etwas schreiben bzw. sagen können wie:
 - Die Laufzeit des Algorithmus ist O(n) "O von n"
 - Die Laufzeit des Algorithmus ist $\Omega(n)$ "Omega von n"
 - Die Laufzeit des Algorithmus ist ⊖(n) "Theta von n"

O-Notation — Definition 1/7

UNI FREIBURG

Vorweg

- Wir betrachten Funktionen f : N → R
 - N = die natürlichen Zahlen ... typisch: Eingabegröße
 - R = die reellen Zahlen ... typisch: Laufzeit
- Zum Beispiel
 - $f(n) = 3 \cdot n + 3$
 - $f(n) = 2 \cdot n \cdot (\log_2 n 5)$
 - $f(n) = n^2 / 10$
 - $f(n) = n^2 + 3 \cdot n \cdot \log_2 n 4 \cdot n$

BURG

O-Notation — Definition 2/7

- Groß-O, Definition
 - Seien g und f zwei Funktionen N → R
 - Intuitiv: Man sagt g ist Groß-O von f ... s(n) > 8(n) >
 - Informal: Man schreibt g = O(f) ... wenn ab irgendeinem Wert n_0 für all $n \ge n_0$ $g(n) \le C \cdot f(n)$ für irgendeine Konstante C
 - Formal: für eine Funktion f : N → R ist ...

```
O(f) = { g : \mathbb{N} \to \mathbb{R} \mid \exists n_0 \in \mathbb{N} \exists C>0 \forall n \geq n_0 g(n) \leq C \cdot f(n) }
dabei heißt \exists = "es existiert ..." und \forall = "für alle ..."
```

O-Notation — Definition 3/7

- Groß-O, Beispiel $g \in O(8)$ and the derivative of the series of the

 - Dann ist g = O(f) bzw. man schreibt $5 \cdot n + 7 = O(n)$
 - Intuitiv: 5 · n + 7 wächst höchstens "linear"
 - Beweis unter Verwendung der Definition von O :

g(m) = 5·m+7 = 5·m+m=6·m

O-Notation — Definition 4/7 = 12(8) dur 3 < 3

mi O, mur Dur 2 statt =

- Groß-Omega, Definition + Beispiel
 - Intuitiv: Man sagt g ist Groß-Omega von f wenn g "mindestens so stark wächst wie" f Also wie Groß-O, nur mit "mindestens" statt "höchstens"
 - Formal: Für eine Funktion $f : N \rightarrow R$ ist $\Omega(f) = \{ g : N \to R \mid \exists n_0 \in N \exists C > 0 \forall n \geq n_0 g(n) \geq C \cdot f(n) \}$
 - Zum Beispiel $5 \cdot n + 7 = \Omega(n)$
 - Beweis unter Verwendung der Definition von Ω :

BURG

20m sowoll

- Groß-Theta, Definition + Beispiel
 - Intuitiv: Man sagt g ist Theta von f ... (odv and weder noch)
 - ... wenn g "genauso so stark wächst wie" f
 - Formal: Für eine Funktion f : N → R ist Θ(f) = O(f) ∩ Ω(f) = die Schnittmenge von O(f) und Ω(f)
 - Zum Beispiel $5 \cdot n + 7 = \Theta(n)$
 - Beweis unter Verwendung der Definition von ⊖ :

$$5 \cdot m + 7 \in O(m)$$
 Folie 8
 $5 \cdot m + 7 \in SZ(m)$ Folie 9
=> $5 \cdot m + 7 \in O(m) \land JZ(m) = G(m)$
Functioner in $G(m) \ge B$:
 $3 \cdot m - 2$, $4 \cdot m + 7$, $5 \cdot m - 14$, ...

O-Notation — Definition 6/7

- **E**s gibt auch noch ο (Klein-O) und ω (Klein-Omega)
 - Die braucht man nicht ganz so oft
 - Hier kurz die Definitionen für f : N → R

```
o(f) = \{ g : \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \ g(n) < \epsilon \cdot f(n) \}
\omega(f) = \{ g : \forall C > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \ g(n) > C \cdot f(n) \}
```

– Intuitiv:

O-Notation — Definition 7/7

Intuitive Zusammenfassung

– Die Operatoren O, Ω , Θ , o, ω sind auf Funktionen, was die Operatoren \leq , \geq , =, <, > auf Zahlen sind:

```
O entspricht ≤
```

$$\Omega$$
 entspricht \geq

Viele Eigenschaften übertragen sich auch

```
z.B. Transitivität: f = o(g) \land g = O(h) \Rightarrow f = o(h)
```

z.B. Additivität:
$$f_1 = O(g_1) \wedge f_2 = O(g_2) \Rightarrow f_1+f_2 = O(g_1+g_2)$$

O-Notation — Grenzwerte 1/4

UNI FREIBURG

- In den bisherigen Beispielen ...
 - ... haben wir die Zugehörigkeit zu O(...) etc.
 gewissermaßen "zu Fuß" bewiesen, indem wir explizit das n₀ und das C bestimmt haben
 - Die Definitionen erinnern aber sehr an den Grenzwertbegriff aus der Analysis
 - **Definition**: Eine unendliche Folge f_1 , f_2 , f_3 , ... hat einen Grenzwert L, wenn für alle $\epsilon > 0$ ein $n_0 \in \mathbb{N}$ existiert so dass für alle $n \geq n_0$ gilt dass $|f_n L| \leq \epsilon$
 - In Symbolen schreibt man dann $\lim_{n\to\infty} f_n = L$
 - Eine Funktion f : N → R kann man genauso gut als Folge f(1), f(2), f(3), ... auffassen und schreibt $\lim_{n\to\infty} f(n) = L$

O-Notation — Grenzwerte 2/4

UNI FREIBURG

 Beispiel für einen Beweis von einem Grenzwert (sollten Sie eigentlich in Mathe 1 schon mal gesehen haben)

2u beweisen:
$$\lim_{M\to\infty} \frac{1}{M} = 0$$
 migenionsmößig

 $L := 0$; $E > 0$ beliebig (9lein)

 $\left|\frac{1}{M} - 0\right| = \frac{1}{M}$
 $\leq \frac{1}{M_0}$
 $\leq \frac{1}{1/E}$
 $= E$
 $\forall M \ge M_0$

O-Notation — Grenzwerte 3/4

FREIBUR

Satz

- Seien f, g : N → R und der Grenzwert $\lim_{n\to\infty} f(n)/g(n)$ existiert (evtl. ist er ∞)
- Dann gelten
 - (1) $f = O(g) \Leftrightarrow \lim_{n \to \infty} f(n)/g(n) < \infty$
 - (2) $f = \Omega(g) \Leftrightarrow \lim_{n \to \infty} f(n)/g(n) > 0$
 - (3) $f = \Theta(g) \Leftrightarrow \lim_{n \to \infty} f(n)/g(n) > 0 \text{ und } < \infty$
 - (4) $f = o(g) \Leftrightarrow \lim_{n\to\infty} f(n)/g(n) = 0$
 - (5) $f = \omega(g) \Leftrightarrow \lim_{n \to \infty} f(n)/g(n) = \infty$

O-Notation — Grenzwerte 4/4 ⇒ × ≤ D

■ Beweis von (1) ... die anderen Beweise gehen analog

$$=>": g = o(g) \Rightarrow \exists C>o \exists m_o \forall m \geq m_o g(m) \leq C \cdot g(m)$$

$$a = a = 1$$
 | $a = 1$ |

Rechnen mit Grenzwerten 1/2

matinhide Logouthmus U = loge

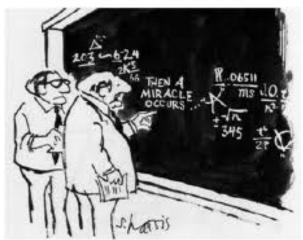
- Variante 1: "zu Fuß"
 - Dafür hatten wir gerade das Beispiel $\lim_{n\to\infty} 1/n = 0$
- Variante 2: Regel von L'Hôpital
 - Seien f, $g : N \rightarrow R$ wie gehabt

g(n) = m $\lim_{m \to \infty} g(m) = \lim_{m \to \infty} g(m) = \infty$ $\lim_{m \to \infty} \frac{g(m)}{g(m)} = \frac{2}{\infty} = \frac{2}{3}$ $g'(m) = \frac{1}{m}$, g'(m) = 1 $g'(m) = \frac{1}{m}$ g'(m) = 0

– Es existieren die ersten Ableitungen f' und g', sowie der Grenzwert $\lim_{n\to\infty} f'(n)/g'(n)$... dann gilt

 $\lim_{n\to\infty} f(n)/g(n) = \lim_{n\to\infty} f'(n)/g'(n)$

- Variante 3: göttliche Inspiration
 - Erst mit Promotion erlaubt ...



"I think you should be more explicit here in step two."

FREIBURG

Rechnen mit Grenzwerten 2/2

- Was darf man ohne Beweis annehmen?
 - Gute Frage!
 - Da gibt es keine klare Regel
 - Im Zweifelsfall immer mehr beweisen als weniger!
 - Beispiel 1: $\lim_{n\to\infty} 1/n = 0$ Brauchen Sie nicht mehr weiter zu beweisen
 - Beispiel 2: $\lim_{n\to\infty} 1/n^2 = 0$ Einfach auf so was wie Beispiel 1 zurückführen
 - Beispiel 3: $\lim_{n\to\infty} (\log n)/n = 0$ Hier ist ein Argument angebracht, z.B. mit L'Hôpital

O-Notation — Diskussion 1/2

Sprechweise

- Die O-Notation schaut sich das Verhalten der Funktionen an, wenn n → ∞ geht (es interessieren nur die n \ge n₀)
- Wenn man Laufzeiten o.ä. als O(...), $\Omega(...)$, $\Theta(...)$, O(...) oder O(...) ausdrückt, spricht man daher von

asymptotischer Analyse

Vorsicht

- Asymptotische Analyse sagt nichts über das Laufzeitverhalten bei "kleinen" Eingabegrößen ($n < n_0$) aus
- Für n < 2 oder n < 10 ist das egal, da wird schon nichts Schlimmes passieren
- Aber das n₀ ist nicht immer so klein ... nächste Folie

ONI FREIBURG

O-Notation — Diskussion 2/2

Beispiel

- Algorithmus A hat Laufzeit $f(n) = 80 \cdot n$
- Algorithmus B hat Laufzeit $g(n) = 2 \cdot n \cdot \log_2 n$
- Dann ist f = O(g) aber **nicht** f = O(g)
- Das heißt, A ist asymptotisch schneller als B
 d.h. ab irgendeinem n₀ ist für alle n ≥ n₀ f(n) ≤ g(n)
- Allerdings:

$$m_0 = 2^{40} \approx 1000^4 = 10^{12} = 1$$
 Bulliamen (Tera)

=> $\forall m \geq m_0 : g(m) = 2 \cdot m \cdot log_2 m$
=> $2^{40} \sin m^2 2^{40}$
=> $2^{40} \sin m^2 2^{40}$
=> $2^{40} \sin m^2 2^{40}$

- med sogar f = o(g)weil lim f = 0

UNI FREIBURG

Literatur / Links

- \blacksquare O-Notation / Ω -Notation / Θ -Notation
 - In Mehlhorn/Sanders:
 - 2.1 Asymptotic Notation
 - In Cormen/Leiserson/Rivest
 - I 2.1 Asymptotic Notation
 - In Wikipedia

http://en.wikipedia.org/wiki/Big O notation

http://de.wikipedia.org/wiki/Landau-Symbole