Informatik II: Algorithmen und Datenstrukturen SS 2013

Vorlesung 5a, Dienstag, 14. Mai 2013 (Hashtabellen, Universelles Hashing)

Prof. Dr. Hannah Bast
Lehrstuhl für Algorithmen und Datenstrukturen
Institut für Informatik
Universität Freiburg

Blick über die Vorlesung heute

UNI FREIBURG

Organisatorisches

- Ihre Erfahrungen mit dem Ü4 (FreeBase, MapCountingSort)
- Treffen mit Ihrem Tutor / Ihrer Tutorin

Hashtabellen

- Eine mögliche Realisierung von einer Map
- Dabei zentral: universelles Hashing
- Beispiele für universelle Klassen von Hashfunktionen
- Ü5, Aufgabe 1: Mittels eines Programms nachprüfen, ob eine Klasse von Hashfunktionen universell ist
 - Ü5, Aufgabe 2: Cuckoo Hashing ... kommt morgen dran

Erfahrungen mit dem Ü4 (FreeBase / MapSort)

UNI FREIBURG

- Zusammenfassung / Auszüge Stand 14. Mai 16:00
 - Wieder zeitaufwändiger ... besonders RTL2 schauen
 - Problem: "unkatholischer" Aufbau der Datei married-to.tsv
 - Wusste nicht, dass Queen mit Salman Rushdie verheiratet
 - MapCountingSort nur für kleine m schneller, wenn überhaupt
 - Array von Map.entrySet() ist schon sortiert ... ist mir neu
 - Tests stören mehr als dass sie nützen … Übungssache!
 - Weniger Fummelarbeit in den Übungen bitte
 - SVN fehlerfeindlich / add arbeitet nicht sauber … hmm?
 - Schlimmste Blatt bisher, keine gute Hilfe / Anleitung
 Es gibt das Forum + bei größeren Problemen Treffen mit Tutor

Erfahrungen mit dem Ü4

- Fortsetzung ...
 - Vorlesung setzt zu viel Programmierkenntnisse bzw. erfahrung voraus

Das sollte eigentlich nicht so sein

Bitte erklären, wo genau das Problem liegt, zumal:

- 1. Ich mache in der Vorlesung viel vor + stelle den Code dann auf den Wiki
- 2. Wenn man Ideen braucht um weiter zu kommen, gibt es auf dem Forum immer schnell Antwort dazu

Grund

- Wir wollen Sie alle mal kennen lernen
- Die meisten fanden das in der Vergangenheit gut
- Gelegenheit für Fragen, die man sonst nicht stellt
- Wir wollen auch schauen, dass es Sie wirklich gibt und Sie die Übungsblätter im Wesentlichen selber machen

Vorgehen

- Sie werden von Ihrem Tutor / Ihrer Tutorin angeschrieben
- Treffen dauert ca. 30 Minuten
- Ein Treffen pro Semester ist Pflicht, für alle!

Tipp für Windows-Benutzer

Cygwin

- Download unter <u>www.cygwin.com</u>
- Dann haben Sie in Ihrer normalen DOS shell auch alle bekannten Unix/Linux Befehle
- Insbesondere: cut, head, tail, less, more, sort, uniq, ...

Wie baut man eine Map?

vigendrias sind in der VL Tente micht-fortlaußende Zahlen.

Zur Erinnerung

 Ein assoziatives Array ist wie ein normales Array, nur dass die Indizes nicht 0, 1, 2, ... sind, sondern irgendwas

Problem

- Schnell ein Element mit einem bestimmten Schlüssel finden
- Naive Lösung: Paare von Schlüsseln und Werten in einem normalen Feld (Java: ArrayList, C++: vector) speichern Array<KeyValuePair>
- Bei n Schlüsseln kostet die Suche dann bis zu Θ(n) Zeit
- Mit einer Hash Map geht es im günstigsten Fall in Zeit $\Theta(1)$ … und zwar egal wie viele Elemente schon in der Map sind!

Keys 17,3,27
Values
$$V_1$$
 V_2 V_3

HashMap — Grundidee

Grundidee

 Abbildung der Schlüssel auf die Indizes von einem normalen Feld, mit Hilfe einer sogenannten Hashfunktion

Ein einfaches Beispiel

- Schlüsselmenge { 312692, 3904433, 5148949 }
- Hashfunktion $h(x) = x \mod 5$, also Wertebereich [0..4]
 - h(312692) = 2, h(3904433) = 3, h(5148949) = 4
- Ein gewöhnliches Feld T der Größe 5 (die Hashtabelle)
- Wir speichern das Element mit Schlüssel x in T[h(x)]
- In unseren Beispiel jetzt Zugriff in $\Theta(1)$ Zeit
- Problem: zwei Schlüssel mit $x \neq y$ aber h(x) = h(y)
- Das nennt man Kollision

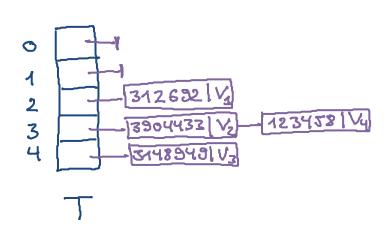
HashMap — Kollisionen

Sr(x)=x mod 5

Einfache Lösung

Jeder Eintrag der Hashtabelle kann nicht nur ein key-value
 Paar speichern, sondern eine Menge davon

Array<Array<KeyValuePair>> hashTable;



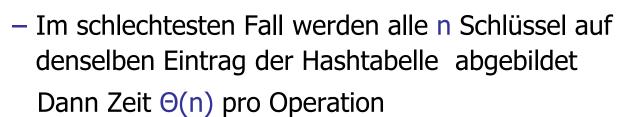
insent (312692, V1) Ja (312692) = 2 maent (3904433, V₂) L (3904433) = 3 mant (5/48949, Vz) h(5148949)=4 Rookun (3904433)= ? J2(3904433)=3 . -> V2 mount (123458, V4) Je (123458)=3 lookup (854123)=?

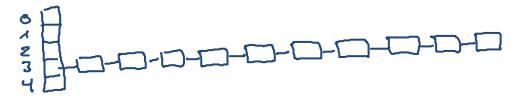
HashMap — Kollisionen

UNI

m = 10

- Laufzeit für die Schlüsselsuche
 - Im besten Fall werden die Schlüssel gleichmäßig auf das Feld verteilt
 Das sind ≈ n/m Schlüssel pro Eintrag
 n = #Schlüssel, m = Größe Hashtabelle
 Entsprechend Zeit Θ(n/m) pro Operation





Wahl der Hashfunktion 1/3

UNI FREIBU

Zufällige Schlüssel

- Dann ist das einfache $h(x) = x \mod m$ schon perfekt!
- Denn für zwei zufällige Schlüssel x und y sind auch
 x mod m und y mod m beide zufällig aus {0, ..., m-1}
- Falls $x \neq y$ ist dann also Pr(h(x) = h(y)) = 1/m

$$P_{r}(\Omega(x) = \Omega(y)) = \sum_{i=0}^{m-1} P_{r}(\Omega(x) = i) \wedge \Omega(y) = i)$$

$$= \sum_{i=0}^{m-1} P_{r}(\Omega(x) = i) \cdot P_{r}(\Omega(y) = i)$$

$$= \sum_{i=0}^{m-1} P_{r}(\Omega(x) = i) \cdot P_{r}(\Omega(y) = i)$$

$$= \sum_{i=0}^{m-1} P_{r}(\Omega(x) = i) \cdot P_{r}(\Omega(y) = i)$$

$$= \sum_{i=0}^{m-1} P_{r}(\Omega(y) = i) \cdot P_{r}(\Omega(y) = i)$$

$$= \sum_{i=0}^{m-1} P_{r}(\Omega(y) = i) \cdot P_{r}(\Omega(y) = i)$$

$$= \sum_{i=0}^{m-1} P_{r}(\Omega(y) = i) \cdot P_{r}(\Omega(y) = i)$$

Wahl der Hashfunktion 2/3

Nicht-zufällige Schlüssel

- Dann kann $h(x) = x \mod m$ beliebig schlecht sein
- Beispiel: m = 10 und 0, 10, 20, 30, 40, 50, 60, 70
- Für alle x aus dieser Menge ist $h(x) = x \mod 10 = 0$
- Welche Hashfunktion soll man dann nehmen?
- Für die Menge oben wäre $h(x) = x \mod 9$ perfekt Aber für die Hashfunktion wäre 0, 9, 18, 27, ... schlecht
- Gibt es eine Hashfunktion, die für alle Schlüsselmengen gut ist?

Wahl der Hashfunktion 3/3

- Es kann nicht die eine Hashfunktion geben ...
 - ... die für **alle** Schlüsselmengen gut ist!
 - Einfach weil jede Hashfunktion mit Wertebereich {0,...,m-1}
 unendlich viele Zahlen auf dasselbe abbilden muss
 - Umgekehrt gibt es aber für jede Schlüsselmenge viele Funktionen, die gut sind
 - Deshalb arbeitet man bei nicht-zufälligen Schlüsselmengen mit einer Klasse von Hashfunktionen, aus der man dann eine zufällig auswählt
 - Das nennt man universelles Hashing

Universelles Hashing 1/3

Definition

- Sei U die Menge der möglichen Schlüssel (Universum) und sei m die Größe der Hashtabelle
- Sei H eine Menge von Hashfunktionen $U \rightarrow \{0, ..., m-1\}$
- H ist c-universell wenn für alle x, y \in U mit x \neq y gilt:

$$|\{h \in H : h(x) = h(y)\}| \leq c \cdot |H| / m$$

Mit anderen Worten, wenn h ∈ H zufällig gewählt, dann

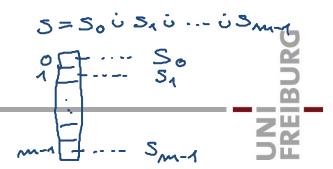
Prob(
$$h(x) = h(y)$$
) $\leq c \cdot 1 / m$

Prob(h(x) = h(y)) $\leq c \cdot 1 / m$ (siete: subthise sortime) ober structing

 Bemerkung: wenn man x und y jede zufällig in eine der m "slots" der Hashtabelle schmeißt, dann

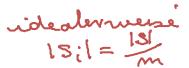
siere vorrenige Folie

Universelles Hashing 2/3



Satz

- Sei H eine c-universelle Klasse von Hashfunktionen
- Sei S eine Menge von Schlüsseln und h ∈ H zufällig gewählt
- Sei S_i die Menge der Schlüssel x mit h(x) = i



- Dann ist $E(|S_i|) \le 1 + c \cdot |S| / m$ für alle i
- Insbesondere: Falls $m = \Omega(|S|)$ gilt $E(|S_i|) = O(1)$

Bevor wir das beweisen, ein kleiner Auffrischbzw. Crash- Kurs in Wahrscheinl.keitsrechnung

Joleal more donne
$$|S_c| = \frac{100}{10} = 10$$

$$E(SJ) \leq 1 + 2 \cdot \frac{100}{10}$$

Beignel dafin:

$$m = 100$$
, $m = 1Sl = 100$
 $Jdeal: 1Sil = 100/100 = 1$
Nacz Satz: $E(1Sil) \le 1 + 2 \cdot \frac{100}{100} = 3$
 $mit c=2$

Einschub: Wahrscheinlichkeitsrechnung 1/3

Wahrscheinlichkeitsraum / Ereignisse

- Wir beschränken uns hier auf den diskreten Fall
- Wahrscheinlichkeitsraum Ω von sog. Elementarereignissen
- Die haben Wahrscheinlichkeiten … Bedingung $\Sigma_{e \in \Omega}$ Pr(e) = 1
- Ereignis E = Teilmenge von Ω , Wahrsch. $Pr(E) = \sum_{e \in E} Pr(e)$
- Zum Beispiel: zweimal würfeln, dann $\Omega = \{1,...,6\}^2$ (6)

 Jedes e aus Ω hat dann Wahrscheinlichkeit Pr(e) = 1/36

E = beide Augenzahlen sind gerade, dann $Pr(E) = \frac{1}{36} = \frac{1}{4}$

Einschub: Wahrscheinlichkeitsrechnung 2/3

Zufallsvariable

- ... weist einem Ausgang des Zufallsexperiments eine Zahl zu
- Zum Beispiel: X = Summe Augenzahlen bei zweimal Würfeln
- Sowas wie X = 12 oder $X \ge 7$ sind dann einfach Ereignisse
- Beispiel 1: $Prob(X = 2) = \frac{1}{36}$ weil : (1,1)- Beispiel 2: $Prob(X = 4) = \frac{3}{36} = \frac{1}{12}$ weil : (2,2)
- **Erwartungswert** ist definiert als $\mathbf{E}(X) = \Sigma k \cdot Pr(X = k)$

Intuitiv: gewichtetes Mittel der möglichen Werte von X, wobei die Gewichte die Wahrscheinlichkeiten der entspr. Werte sind

$$fin X = Summe den Augenzallen:$$

$$E(X) = 2 \cdot P_{r}(X=2) + 3 \cdot P_{r}(X=3) + \cdots + 12 \cdot P_{r}(X=12)$$

$$\frac{1}{36}$$

$$\frac{1}{36}$$

Einschub: Wahrscheinlichkeitsrechnung

- Summe von Erwartungswerten
 - Für beliebige (diskrete) Zufallsvariablen X₁, ..., X_n gilt

$$\mathbf{E}(X_1 + \dots + X_n) = \mathbf{E}(X_1) + \dots + \mathbf{E}(X_n)$$

$$\mathbf{E}(X_2) = 3.5$$
Vorollary Poi sinom Zufallsovnoriment triff das Freignis E mit

- Korollar: Bei einem Zufallsexperiment tritt das Ereignis E mit Wahrscheinlichkeit p auf. Sei X die Anzahl der Auftreten von E bei n Ausführungen dieses Experimentes, dann ist $E(X) = n \cdot p$
- Beispiel: E(Anzahl Sechser bei 60 mal Würfeln) = 10
- Beweis Korollar: , genou dann wenn $\times_{1/-1}\times_{60}$ m=60 $\times := 1$ gdw. bei der i-ten dusführung hittle E em $\times := 0$ somet $\times :$ Inpikatokvariable $\times := \text{Anzoll Sechen} = \underbrace{S}_{S}\times :$ Indikatokvariable $E(x) = E(\underbrace{S}_{S=1}\times :) = \underbrace{S}_{S}E(x:) = \underbrace{S}_{S=1}(0.\Re(x:=0)+1.\Re(x:=1))$

$$E(x) = E(\underbrace{\hat{S}}_{i=1}^{n} X_{i}) = \underbrace{\hat{S}}_{i=1}^{n} E(X_{i}) = \underbrace{\hat{S}}_{i=1}^{n} \left(0 \cdot \underbrace{R_{i}(X_{i}=0)}_{1-p} + 1 \cdot \underbrace{R_{i}(X_{i}=1)}_{p}\right)$$

$$= M \cdot P = 18$$

Universelles Hashing 3/3

in Sies

■ Beweis von $E(|S_i|) \le 1 + c \cdot |S| / m$ für alle i

Solaven ums en l'estimates l' € 30, ..., m-13 an

Fall 1: Si= \$ = 1 Sil=0 prima = 15,1 < 1+ c. 151/m

Full 2: Si + \$\phi = 3 \(\frac{1}{2} \) \(\frac{1}{2} \). \(\frac{1}{2} \) \(\frac{1}{2} \). \(\frac{1}{2} \). \(\frac{1}{2} \).

Fin alle yes\{\ge} definire Iy= 1 goln. \(\geq (y) = c'\)

wegn xesc Iy = 0 somet

Dann 1501 = 1 + & Iy yes/{x}

Also E(15:1) = E(1 + & Iy) = 1 + & E(Iy)
yes\?x\}

yes\?x\}

 \[
 \left(\frac{1}{2} = 0 \frac{1}{2} \right) = 0 \frac{1}{2} \right) \frac{1}{2} \]
 \[
 \left(\frac{1}{2} = 0 \frac{1}{2} \right) \frac{1}{2} \]
 \[
 \left(\frac{1}{2} = 0 \frac{1}{2} \right) \frac{1}{2} \]

 \[
 \left(\frac{1}{2} = 0 \frac{1}{2} \right) \frac{1}{2} \]

 \[
 \left(\frac{1}{2} = 0 \frac{1}{2} \right) \frac{1}{2} \]

 \[
 \left(\frac{1}{2} = 0 \frac{1}{2} \right) \frac{1}{2} \]

 \[
 \left(\frac{1}{2} = 0 \frac{1}{2} \right) \frac{1}{2} \frac{1}{2} \frac{1}{2} \right) \frac{1}{2} \frace $\leq 1 + C.$ [S] = $P_{x}(I_{y}=1)$ = $P_{x}(I_{y}=1)$ = Pr (De(x) = De(y))

< c.1 megen C-miversell19

FREIBURG

Klassen von Hashfunktionen 1/5

Negativbeispiel 1

- Die Menge aller h mit h(x) = a · x + b mod mfür a, b ∈ U
 - Das heißt: um eine zufällige solche Hashfunktion zu wählen, wählt man einfach zufällig a und b aus U
- Das sind $|U|^2$ mögliche Hashfunktionen, also viele
- Aber trotzdem nicht universell

Klassen von Hashfunktionen 2/5

UNI FREIBURG

Negativbeispiel 2

- Die Menge aller Funktionen von U → $\{1,...,m\}$
- Ist 1-universell
- Aber als Klasse von Hashfunktionen ungeeignet

Klassen von Hashfunktionen 3/5

FREIBURG

Positivbeispiel 1

- Sei p eine Primzahl mit p > m und p ≥ u, $U = \{0, ..., u 1\}$
- Sei H die Menge aller h mit $h(x) = (a \cdot x + b) \mod p \mod m$ wobei $a, b \in U$
- Die ist ≈1-universell
 Siehe Exercise 4.11 in Mehlhorn/Sanders

UNI FREIBURG

Klassen von Hashfunktionen 4/5

Positivbeispiel 2

- Die Menge aller h mit $h(x) = a \cdot x \mod m$, für ein $a \in U$
 - Schreibe $a = \sum_{i=0..k-1} a_i \cdot m^i$, wobei $k = \text{ceil}(\log_m |U|)$
 - Entsprechend $x = \sum_{i=0..k-1} x_i \cdot m^i$
 - Dann a $x := \sum_{i=0..k-1} a_i \cdot x_i$
 - Intuitiv: das "Skalarprodukt" der Darstellung zur Basis m
- Die ist 1-universell, siehe Theorem 4.4 in Mehlhorn/Sanders

JNI FREIBURG

Klassen von Hashfunktionen 5/5

Positivbeispiel 3

- Die Menge aller h mit h(x) = a · x mod 2^k div 2^{k-ℓ} für a ∈ U
 ... wobei |U| = 2^k, m = 2^ℓ ... in der Regel k >> ℓ
 Das · ist hier wieder das normale Produkt
 Das heißt a · x gibt eine Zahl aus 0..|U|²
 Die lässt sich also in Binärdarstellung mit 2k Bits darstellen
 Eine Position in der Hashtabelle lässt sich mit ℓ Bits darstellen
 h(x) ist dann einfach der Wert der Bits k-l..k-1 von a · x
- Diese Menge von Hashfunktionen ist 2-universell
 Siehe Exercise 4.14 in Mehlhorn / Sanders

Histogramme 1/2

- Brauchen Sie für das Ü5, Aufgabe 1
 - Für jede der drei Klassen dort, berechnen Sie eine Liste von geschätzten Kollisions-Wahrscheinlichkeiten

Und zwar
$$u \cdot (u - 1) = 65280$$
 viele

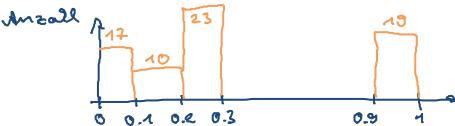
Die visualisiert man am besten mit einem Histogramm:

Werte
$$x_1$$
, x_2 , x_3 , x_4 , ... Wertebereich hier $[0,1]$

Unterteile Wertebereich in n disjunkte Teil-Intervalle

In unserem Fall hier kann man die gleich groß wählen

Zähle für jedes Teil-Intervall I die Anzahl aller $x_i \in I$



Histogramme 2/2

- Wie malt man so ein Histogramm?
 - Anzahlen pro Bereich zeilenbasiert in eine Datei ausgeben

```
0.0 3450.1 470.2 1234
```

Dann z.B. einfach mit gnuplot

```
set term png
set output "histogram.png"
plot "data.txt" using 1:2 with boxes
```

- Geht aber auch mit R, S, Mathematica, Excel, ...

-;

Literatur / Links

- Universelles Hashing
 - In Mehlhorn / Sanders:
 - 4 Hash Tables and Associative Arrays
 - In Cormen / Leiserson / Rivest
 - 12 Hash Tables
 - In Wikipedia

http://en.wikipedia.org/wiki/Universal hashing