Informatik II: Algorithmen und Datenstrukturen SS 2013

Vorlesung 6b, Mittwoch, 29. Mai 2013 (Dynamische Felder: amortisierte Analyse)

Prof. Dr. Hannah Bast
Lehrstuhl für Algorithmen und Datenstrukturen
Institut für Informatik
Universität Freiburg

Blick über die Vorlesung heute

UNI FREIBURG

- Musterlösung für das Ü5
 - Besprechung der Histogramme / Erklärung dazu
- Dynamische Felder
 - Gestern: Implementierung + erste Analyse
 - Heute: vollständige Laufzeitanalyse
 - Neue Technik: amortisierte Analyse
 - Übungsblatt 6: Erweiterung des Codes aus der Vorlesung und Laufzeitanalyse dazu (nach dem Vorbild aus der Vorlesung)

Dynamische Felder 5/5

- Was machen wir wenn Elemente entfernt werden
 - Analog zum Vergrößern, könnten wir das Feld auf die Hälfte verkleinern wenn es nur noch halbvoll ist
 - **Aber Achtung:** wenn man danach ein append macht muss man es gleich wieder vergrößern
 - **Außerdem:** wenn wir nach einer Vergrößerung ein removeLast machen, muss man gleich wieder verkleinern
 - Deswegen machen wir es (erst mal) so:
 wenn ganz voll, Vergrößerung auf doppelte Größe
 wenn ein Viertel voll, Verkleinerung auf halbe Größe
 Für das Ü6 sollen Sie das verallgemeinern!

FREIBURG

Laufzeitanalyse 1/7

Jetzt wird es schwierig

- Wir können jetzt beliebige Folgen von append und remove Operationen haben
- Dann können wir nicht mehr so leicht vorhersagen, wann realloziert werden muss
- Und das einfache Argument bei nur append (Vergrößerung bei 1, 2, 4, 8, ...) funktioniert nicht mehr

Laufzeitanalyse 2/7

UNI FREIBURG

Notation

- Gegeben n Operationen O₁, ..., O_n
 eine beliebige Abfolge von append und removeLast
- Sei s_i die Größe des Feldes **nach** Operation O_i $(s_0 := 0)$
- Sei c_i die Kapazität des Feldes **nach** Operation O_i ($c_0 := 0$)

size = # Elemente.

Sei wie vorher T_i die Zeit für Operation O_i

T_i ≤ A falls keine Reallokation nötig

 $T_i \le A + B \cdot s_i$ falls Reallokation nötig

für irgendwelche Konstanten A und B unabhängig von n

- Wir analysieren folgende Implementierungsversion
 - Falls Operation O_i ein append ist: Reallokation genau dann wenn $s_{i-1} = c_{i-1}$ Vergrößerung so, dass danach $c_i = 2 \cdot s_i$
 - Falls Operation O_i ein removeLast ist: Reallokation genau dann wenn $4 \cdot s_{i-1} \le c_{i-1}$ Verkleinerung so, dass danach $c_i = 2 \cdot s_i$
 - In beiden Fällen ist also direkt nach der Reallokation $c_i = 2 \cdot s_i$ also das interne Feld doppelt so groß
 - Mit der Version hat man jederzeit $s_i \le c_i \le 4 \cdot s_i$ **Ü6:** Verallgemeinern auf $s_i \le c_i \le (1 + \epsilon) \cdot s_i$

Laufzeitanalyse 4/7

UNI FREIBURG

Beweisidee

- Teuer sind nur die Operationen, wo realloziert werden muss
- Wenn gerade realloziert wurde, dauert es eine Weile, bis wieder realloziert werden muss
- Anders gesagt: nach einer teuren Operation kommt eine ganze Reihe billiger Operationen
- Genauer: wenn nach einer Operation die X gekostet hat
 X Operationen kommen die alle nur 1 kosten, sind die
 Gesamtkosten bei n Operationen höchstens 2 · n
- **Allgemeiner:** wenn nach einer Operation mit Kosten $c_1 \cdot X$ X Operationen kommen mit Kosten c_2 , dann sind die Gesamtkosten bei n Operationen höchstens $(c_1 + c_2) \cdot n$

FREIBURG

Laufzeitanalyse 5/7

Formal beweisen wir jetzt Folgendes

- Lemma: Wenn bei O_i eine Reallokation, dann findet für die nächsten sign / 2 Operationen keine Reallokation mehr statt
- Korollar: Seien die Kosten einer Operation O_i ohne Reallokation $T_i \le A$ und mit Reallokation $T_i \le A + B \cdot s_i$

Dann ist
$$T_1 + T_2 + ... + T_n \le (A + 3B) \cdot n$$

also divides divided when $\angle A + 3 \cdot B = O(1)$

10

Laufzeitanalyse 6/7

Beweis des Lemmas

[Wenn bei O_i eine Reallokation stattfindet dann die nächsten s_i / 2 Operationen nicht mehr]

Egal ab Oi append oder removeLast war, ist damace c:= 2.5:

DANACH:

bis zu nädsten Vergräßerung ZS: Operationen (jede Op. madt Simm Lødstens 1 grøßer) bis zur nädsten Verdeinerung z [Si/2] Operationen (jede Op. madt sjum Dørdstems 1 2 leiner) 3

Beweis des Korollars

[
$$T_1 + T_2 + ... + T_n \le (A + 3B) \cdot n$$
]

Seven $O_{i,j} ..., O_{i,e}$ die Operationen, bei demen die Reallosationen passeren. $i_1 < i_2 < ... < i_e$

Dann $\underbrace{ST_i} \le A \cdot m + \underbrace{SB \cdot S_{i,j}}_{=B}$
 $= \underbrace{B \cdot (S_{i,j} + S_{i,2} + ... + S_{i,e})}_{=B})$

Zemma => $i_2 > i_1 + \underbrace{LS_{i,j}}_{=2} = i_2 > i_1 + \underbrace{S_{i,j}}_{=2} = S_{i,j} \le 2 \cdot (i_2 - i_1)$

allgemein $S_{i,j} \le 2 \cdot (i_2 - i_1)$
 $S_{i,j} + S_{i,j} + ... + S_{i,e} \le 2 \cdot (i_2 - i_1) + 2 \cdot (i_3 - i_2) + 2 \cdot (i_4 - i_3)$
 $+ ... + 2 \cdot (i_e - i_{e-1}) + \underbrace{S_{i,e}}_{=B} \le 3 \cdot m$
 $= 2 \cdot (i_e - i_1) + \underbrace{S_{i,e}}_{=B} \le 3 \cdot m$

Beweis mit Potenzialfunktion 1/5

Variante des Beweises

- Der Beweis auf den vorherigen Folien hat die Kosten für eine Folge von Operationen quasi "zu Fuß" analysiert
- Man kann solche Beweise auch mit Hilfe einer sogenannten Potenzialfunktion führen
- Intuitiv misst die Potenzialfunktion misst, wie robust die aktuelle Datenstruktur gegen teure Operationen ist:
 Teure Operationen (wie unser reallocate) sollen die Potenzialfunktion entsprechend erhöhen, und zwar um Ω(X), wenn die Kosten der Operation X waren Billige Operationen sollen die Potenzialfunktion um höchstens Θ(1), also eine Konstante, erniedrigen

Beweis mit Potenzialfunktion 2/5

Potenzialfunktionen, Mastertheorem

- Gegeben eine Folge von n Operationen O₁, ..., O_n auf einer beliebigen Datenstruktur
- Sei Φ eine Potenzialfunktion, wobei Φ_i = der Wert der Potenzialfunktion **nach** O_i und Φ_0 = Wert am Anfang ≥ 0
- Sei T_i die Laufzeit für O_i mit $T_i \le A + B \cdot (\Phi_i \Phi_{i-1})$
- Dann ist die Gesamtlaufzeit $\Sigma T_i = O(n + \Phi_n)$

Beweis:

$$\tilde{Z}T_{i} \leq \tilde{Z} (A + B \cdot (\phi_{i} - \phi_{i-1}))$$

$$= A \cdot M + B \cdot ((\phi_{1} - \phi_{0}) + (\phi_{2} - \phi_{1}) + \cdots + (\phi_{m} - \phi_{m-1}))$$

$$= \Phi_{m} - \Phi_{0}$$

$$= \Phi_{m} - \Phi_{0}$$

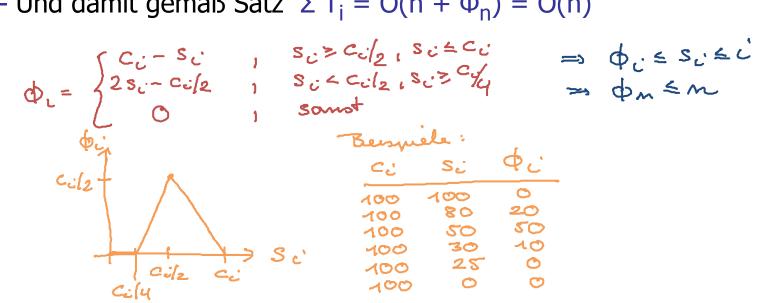
Beweis mit Potenzialfunktion

S = 0 C = 5

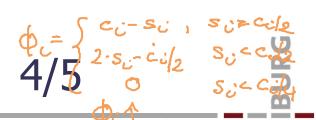
- Anwendung des Satzes für dynamische Felder
 - Wie vorher s_i = Größe und c_i = Kapazität **nach** O_i
 - Definiere $\Phi_i :=$ siehe unten

Intuitiv: die Anzahl noch freier Plätze, aber nicht zu viele

- Dann gilt $T_i \le A + B \cdot (\Phi_i \Phi_{i-1})$... Beweis nächste Folie
- Und damit gemäß Satz $\Sigma T_i = O(n + \Phi_n) = O(n)$



Beweis mit Potenzialfunktion 4/5 2.5.2.2.3. Succession



■ Beweis, dass $T_i \le A + B \cdot (\Phi_i - \Phi_{i-1})$

Fall 1: Oi interm compand,
$$Sin = Cin, Ci = 2.Si$$

 $\phi_{in1} = 0$, $\phi_i = Si \implies \phi_{in} - \phi_{in1} = Si$
 $Ti \le A + B.Si = A + B.(\phi_i - \phi_{in1})$

Fall 2: Oi not en remove Last 4.50-1 = cin, ci= 2.5; φ:-= 0, φ:= s: => φ:-φ:- = s: Ti .-- genou 00 V

Fall 3: Oi dene Reallosation dann | \$i - \$in | \le 2 = \$\\ \epsilon - \\\ \epsilon \| \epsilon \| \epsilon \\ \epsilon \| \epsilon Ti=A = A+2-2=A+2+(&:- &:-1)

Beweis mit Potenzialfunktion 5/5

UNI FREIBURG

Vergleich der beiden Beweise

- Für die dynamischen Felder, war der "zu Fuß" Beweis einfacher
- Der Beweis über die Potenzialmethode ist aber trotzdem etwas intuitiver, weil man das Potenzial intuitiv gut verstehen kann "wie gut ist der Zustand des Feldes gerade"
- Wir werden in einer späteren Vorlesung eine Analyse sehen, wo der Beweis über eine Potenzialfunktion einfacher und intuitiver ist

FREIBURG

Literatur / Links

- Dynamische Felder: Laufzeitanalyse
 - In Mehlhorn/Sanders:
 - 3.2 Unbounded Arrays
 - In Cormen/Leiserson/Rivest18.4 Dynamic Tables
 - In Wikipediahttp://en.wikipedia.org/wiki/Dynamic_array
 - Potenzial vs. Potentialhttp://www.duden.de/rechtschreibung/potenzial