
.

Semantic Interoperability of
Ambient Intelligent Medical Devices

and e-Health Systems

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Safdar Ali

Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
Fraunhofer Institut für Biomedizinische Technik (FhG-IBMT)

Max-Planck Institut für Informatik (MPII)

.

Saarbrücken
2010

Dekan der Naturwissenschaftlich- Prof. Dr.-Ing. Joachim Weickert
Technischen Fakultät I

Vorsitzender der Prüfungskommission Prof. Dr.-Ing. Hans-Peter Lenhof
Wiss. Betreuer Prof. Dr. rer. nat. Günter R. Fuhr
Wiss. Betreuer Prof. Dr.-Ing. Gerhard Weikum
Wiss. Begleiter PD. Dr. rer. nat. Matthias Klusch
Wiss. Begleiter Dipl.-Inform Stephan Kiefer

Tag des Promotionskolloquiums 16.02.2010

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus an-
deren Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe der
Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher
Form in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, den 16.02.2010

(Unterschrift)

Dedicated to the land of the pure, Pakistan

Kurzfassung

Hochmoderne mobile medizinische Geräte stellen wichtige therapeutische Funktionen mit
wertvollen Informationen über Behandlungsmuster zur patientennahen Versorgung zur
Verfügung. Solche Geräte bleiben zumeist unabhängige Informationsinseln, die nicht in
der Lage sind, die Daten, die sie sammeln, mit anderen medizinischen Geräten, Kranken-
hausinformationssystemen oder Laborinformationssystemen in Echtzeit auszutauschen.
Organisationen zum Entwickeln von Standards wie IEEE haben in den letzten Jahrzehn-
ten zahlreiche Versuche unternommen, das Interoperabilitätsproblem von medizinischen
Geräten mit einzelnen Kommunikationsstandards wie IEEE 1073 zu lösen, die alle mit
mäßigem Erfolg endeten.

Während der letzten Jahre haben das Semantic Web und Web-Service-Technologien
große Aufmerksamkeit zur Schaffung von Lösungen gewonnen, die semantische Inter-
operabilität zwischen Informationssystemen und intelligenten Geräten in verschiedenen
Domänen bereitstellen, z.B. in der Fertigungsautomatisierung und im Tourismus. Die
vorliegende Arbeit nutzt die Vorteile solcher Technologien und präsentiert eine dezen-
tralisierte, semantische Middleware-Infrastruktur für medizinische Geräte, die Semantic
Medical Device Space (SMDS) genannt wird. Das SMDS-Framework gewährleistet die In-
teroperabilität sowohl zwischen medizinischen Geräten als auch mit e-Health-Systemen.
Es verhilft den aktuellen medizinischen Geräten, sich zur nächsten Generation von am-
bienten intelligenten medizinischen Geräten zu entwickeln, die nicht nur andere medizi-
nische Geräte und Services in einer Gesundheitsversorgungsumgebung erkennen können,
sondern auch fähig sind, ihre Messergebnisse durch semantische Web Services in kontext-
bewussten medizinischen Anwendungen auszutauschen.

I

Abstract

State-of-the-art mobile medical devices provide important therapeutic functions with
valuable information of treatment patterns at the point-of-care. However, such devices
mostly remain independent islands of information being unable to share the medical
data they gather with other medical devices, hospital information system or laboratory
information system on a real-time basis. Standards organizations such as IEEE have
made various attempts to resolve the medical devices’ interoperability problem using
single communication standard, such as IEEE 1073, but ended with moderate success.

During the last years, the Semantic Web and Web Service technologies have gained
enormous attention for building solutions to provide semantic interoperability between
information systems and smart devices in various domains, such as tourism and factory
automation. This thesis takes advantage of these technologies and presents a decentral-
ized semantic middleware infrastructure for medical devices, named Semantic Medical
Devices Space (SMDS) to provide interoperability among medical devices as well as with
e-Health systems. The SMDS framework leverages the current medical devices towards
the next generation of Ambient Intelligent Medical Devices, which are not only aware
of other medical devices and their services present in healthcare environments, but also
able to share their measurement results through Semantic Web Services in context-aware
healthcare applications.

III

Zusammenfassung

Aktuelle mobile medizinische Geräte kommunizieren mit Krankenhausinformationssyste-
men und/oder Laborinformationssystemen bestimmter Anbieter zumeist über proprietäre
Protokolle. Die meisten von Ihnen können aber nicht mit anderen medizinischen Geräten
kommunizieren, selbst wenn sie vom selben Hersteller entwickelt wurden, obwohl dies in
vielen Szenarien benötigt wird. Standardisierungsorganisationen haben auch einige me-
dizinische Geräte kommunikationsstandards entwickelt, wie etwa IEEE 1073 und seine
Nachfolger ISO/IEEE 11073, die jedoch weitgehend nicht von der Industrie aufgenom-
men wurden. Es gibt nur einige wenige Implementierungen dieser Standards. Anderseits
eröffnet die Untersuchung fortschrittlicher pervasiver Computing-Szenarien in verschie-
denen Lebensbereichen, vor allem in der pervasiven Gesundheitsversorgung. Objekte wie
medizinische Geräte, Sensoren, Krankenhausinformationssysteme und Laborinformati-
onssysteme, die in einem intelligenten Umgebungsumfeld agieren, haben unterschiedliche
Ziele, Erfahrungen, Fähigkeiten und Kommunikationsschnittstellen, und aufgrund des
sehr dynamischen und offenen Charakters der Umgebung, die sie wahllos betreten und
verlassen, ist es a priori nicht möglich, zu wissen, welche weiteren Objekte zu Einrich-
tungen in einem bestimmten Zeitraum in der Umgebung agieren.

Diese Doktorarbeit präsentiert eine innovative dezentralisierte semantische Middlewa-
re Infrastruktur, Semantic Medical Device Space (SMDS) genannt, für medizinische oder
mobile Geräte mit eingeschränkten Ressourcen, die weitgehend auf den Grundlagen von
Semantic Web und Web Services-Technologien basiert. SMDS wurde als ein Framework
entwickelt und designt, das es medizinischen Geräteherstellern erleichtert, ihre stummen
Geräte in ambiente intelligente medizinischen Geräte der nächster Generation umzuwan-
deln, deren Fähigkeiten und Messungen durch eine Semantic Web Services Schnittstelle
bereitgestellt werden, um plattformunabhängigen und direkten Zugang zu diesen me-
dizinischen Geräten zu ermöglichen. Als integrale Bestandteile des SMDS-Frameworks
wurde ein leichtgewichtiges semantisches Discovery-Protokoll, genannt Semantic Medi-
cal Device Discovery Protocol (SMDDP), und ein kleines aber leistungsfähiges System
für Wissenabfragen des Fachwissens und Schlussfolgern, nämlich Micro OWL Description
Logic Reasoner (µOR) entwickelt. SMDDP verhilft ambienten intelligenten medizinischen
Geräten in einer pervasiven Gesundheitsumgebung gewünschte andere medizinischen Ge-
räte entsprechend ihrer physikalischen Eigenschaften (z.B. Hersteller, Gruppe/Typ, usw.)
und/oder ihrer funktionellen Eigenschaften (z.B. welche Methoden ein Semantischer Web
Service anbietet und die semantische Beschreibungen dieser Methoden usw.) semantisch
zu erkennen. µOR wurde entwickelt, um die medizinischen oder mobilen Geräte mit der
Fähigkeit auszustatten, integriertes Wissen abzufragen, das abgefragt werden kann und
daraus durch OWL Beschreibungslogik und Regeln zu schlussfolgern, was zum Verglei-
chen mit den gesuchten medizinischen oder Mobilen Geräten während des semantischen
Discovery-Prozesses verwendet wird.

V

Summary

State-of-the-art medical devices communicate with hospital information systems and/or
laboratory information systems using vendor specific or proprietary protocols only, and
most of them can not communicate with other medical devices, even if developed by the
same manufacturer, if required in some scenarios. Standards developing organizations
have developed few medical device communication standards, e.g. IEEE 1073 and its
successor ISO/IEEE 11073, but their adoption by industrial stakeholders is very limited
because of the complexity of these protocol stacks and/or missing support for the preva-
lent technologies like Ethernet or TCP/IP. On the other hand, the study of advanced
pervasive computing scenarios in different fields, and particularly in pervasive healthcare,
has introduced new research challenges, which focus on the provision of healthcare to
anyone, at anytime, and anywhere by removing restraints of time and location while
increasing both the coverage and the quality of healthcare. The entities, i.e., medical
devices, sensors, hospital information systems and laboratory information systems that
operate in an ambient environment are expected to have different goals, capabilities, and
communication interfaces. Due to the highly dynamic and open nature of the environ-
ment where various entities join and leave the environment in an unpredictable way, it
is not possible to have a priori knowledge about all other entities that are present in the
environment at a particular time interval.

This thesis presents an innovative decentralized semantic middleware infrastructure
for resource-constrained medical devices, or mobile devices in general, namely Semantic
Medical Devices Space (SMDS), based on Semantic Web and Web Services technologies.
SMDS is designed and developed as a framework to facilitate the device manufacturers
to turn their ”dumb” medical devices into the next generation of Ambient Intelligent de-
vices, whose capabilities and measurements are exposed through Semantic Web Service
interface in order to allow platform-independent and direct access to these medical de-
vices. As integral parts of SMDS framework, a small but powerful knowledge querying
and reasoning system, namely Micro OWL Description Logic Querying and Reasoning
System (µOR), and a lightweight semantic discovery protocol, namely Semantic Medical
Device Discovery Protocol (SMDDP) have been developed.

µOR is developed to enrich the medical devices with the capabilities of integrated
Description Logic and Rules based knowledge querying and reasoning on the local de-
vice knowledge base. µOR plays a key role during the semantic discovery of medical
devices based on their physical characteristics (such as device vendor, device group/-
type etc.) and/or functional characteristics (such as methods produced by Web Service
and their semantic descriptions etc.). We have developed two small ontologies, namely
Medical Device Ontology (MeDO) and SMDS Ontology (SmdsOnto) in order to express
the physical and functional characteristics, respectively. Also, we have developed a sim-
ple language, namely Semantic Device Language for N-Triples (SCENT) to express the

VII

semantic queries over the device knowledge base, as well as the SCENT Resolution Algo-
rithm (SCENTRA) which is used not only to resolve the SCENT queries, but to generate
inferences as well.

SMDDP, which is backed by µOR, is developed to support the discovery of desired
medical devices in a pervasive healthcare environment, which match with the desired
SCENT query conditions. It is an HTTP/UDP based protocol, where the request mes-
sage, embedded with the SCENT query, is sent (broadcast) over the local network of
medical devices, where every device processes this query against its own local knowledge
base, and if it is matched, the results are sent back (unicast), embedded in the response
message, to the requesting medical device.

The complete SMDS framework has been evaluated and tested using different types
of medical and mobile devices, particularly within the context of FP6 European Com-
mission funded Integrated Project SmartHEALTH in which we have developed the next
generation of cancer bio-diagnostic devices. Also, SMDS framework has been successfully
exhibited in the international fare, Medica1 Media 2008 (Düsseldorf, Germany) as well
as demonstrated in the review2 of the project in 2009.

1http://www.medica.de/
2http://www.smarthealthip.com/output.aspx

http://www.medica.de/
http://www.smarthealthip.com/output.aspx

Acknowledgement

I am gratified to Prof. Dr. Günter R. Fuhr (Chair for Biotechnology and Medical
Engineering, Director of Fraunhofer-Insitut für Biomedizinische Technik) and Prof. Dr.
Gerhard Weikum (Chair for Databases and Information Systems, Scientific Director at
Max Planck Institute for Computer Science) for accepting me as a Ph.D student at their
chairs and providing me the opportunity to carryout this research work at the department
of Intelligent Health Systems in Fraunhofer-Institut für Biomedizinische Technik (IBMT),
St. Ingbert, Germany.

I am highly obliged to the whole group, especially my advisor Dipl.-Inform. Stephan
Kiefer (Head) for providing me not only a family environment in his group, but also
the input from the e-Health domain with protracted flourishing discussions in order to
finish this research work. Additionally, I am thankful to my co-advisor PD. Dr. Matthias
Klusch (Co-Head of the Multiagent Systems group at German Research Center for Artifi-
cial Intelligence (DFKI)) for his scientific support during the course of this research work.
I am also thankful to Jörg Kruse and Harald Niederländer for their immense network
support required to carry out the experiments of this research work.

Finally, I am deeply indebted to my families for their continuous support during my
studies. In spite of the distance, they were an incessant source of encouragement. My
gratitude for my parents, siblings, and especially my beloved wife is beyond the words.

IX

Contents

1 Introduction 1
1.1 Problem Statement . 3
1.2 Main Contributions . 5
1.3 Selected Publications . 6
1.4 Thesis Outline . 7

2 Background 9
2.1 Web Services . 9

2.1.1 Key Benefits of Web Services . 10
2.1.2 Roles in the Web Services Architecture 10
2.1.3 Functional Standards of Web Services 11

2.2 Devices Profile for Web Services . 13
2.2.1 The Underlying Protocols of DPWS 13

2.3 Semantic Web . 15
2.4 Semantic Web Services . 16

2.4.1 Why Semantic Web Services? . 17
2.4.2 Semantic Web Services Description Frameworks 20

2.5 General Device Communication Protocols 23
2.5.1 Universal Plug and Play . 23
2.5.2 Jini . 24
2.5.3 SLP . 25
2.5.4 Bluetooth SDP . 26

2.6 Medical Device Communication Protocols 26
2.6.1 HL7 Standards . 27
2.6.2 DICOM . 28
2.6.3 ASTM . 29
2.6.4 ANSI/IEEE 1073 . 30
2.6.5 CEN/ISO/IEEE 11073 . 30
2.6.6 IHE . 31
2.6.7 EDI . 32

2.7 ICT Infrastructure in the Hospitals and Clinical Environments 32
2.8 e-Health . 33

2.8.1 Use of multiple technologies . 35
2.8.2 Multiple modes of interaction . 35
2.8.3 Examples of e-Health Applications 36
2.8.4 What is e-Healthcare . 37
2.8.5 e-Health Challenges . 38

XI

3 Related Work 41
3.1 Evaluation Criteria . 41
3.2 HYDRA . 43

3.2.1 Software Architecture of HYDRA 44
3.2.2 Healthcare Scenario of HYDRA . 46
3.2.3 Conclusion . 46

3.3 SODA . 47
3.3.1 The SODA Ecosystem . 48
3.3.2 Conclusion . 48

3.4 Task Computing . 50
3.4.1 Task Computing Architecture . 51
3.4.2 Conclusion . 52

3.5 Gaia . 53
3.5.1 Gaia Architecture . 53
3.5.2 Conclusion . 55

3.6 SCALLOPS . 56
3.6.1 Vision of SCALLOPS . 57
3.6.2 Healthcare Scenario of SCALLOPS 57
3.6.3 Conclusion . 58

3.7 Comparative Analysis . 59

4 Semantic Medical Devices Space 61
4.1 Philosophy of SMDS . 61
4.2 Overall Architecture of SMDS . 62

4.2.1 Storage Layer . 62
4.2.2 Middleware Layer . 65
4.2.3 Implementation Layer . 68

5 Micro OWL Querying and Reasoning System 71
5.1 SCENT - Semantic Device Language for N-Triples 71

5.1.1 EBNF Syntax of SCENT Query Language 72
5.1.2 Semantics of SCENT Query Language 73
5.1.3 Comparison between SCENT and SPARQL Expressiveness 74

5.2 SCENTRA - The SCENT Resolution Algorithm 75
5.2.1 Example . 76

5.3 µOR - A Micro OWL Querying and Reasoning System 78
5.3.1 Semantics of µOR Expressiveness 78
5.3.2 Description of the OWL-Lite− Axioms 80

5.4 Architectural Details of µOR . 82
5.4.1 The Query Processor . 82
5.4.2 The Inference Engine . 83

5.5 Comparative Analysis of µOR . 85
5.6 Scalability Issues of µOR . 87

6 Semantic Medical Device Discovery Protocol 89
6.1 Requirements for Semantic Discovery Protocol 89

6.1.1 Advantages of using URIs . 90
6.2 Overall Workflow of SMDDP Protocol . 91
6.3 SMDDP Request Message Format . 92
6.4 SMDDP Response Message Format . 94

6.4.1 SMIDDEL: A Schema for SMDDP Response Messages 95
6.5 Overall Analysis of SMDPP . 96

6.5.1 Performance Evaluation . 96
6.5.2 Comparative Analysis . 98

7 Implementation 99
7.1 Programming Languages . 99

7.1.1 Java (J2SE 1.5) . 99
7.1.2 Microsoft Visual C#.NET . 100

7.2 Hardware Platforms . 100
7.2.1 Gumstix . 100
7.2.2 Viliv Promotion Pack S5 Net-Tablet PC 101
7.2.3 Vodafone VPA-4 . 102

7.3 Runtime Environments . 102
7.3.1 JamVM . 102
7.3.2 Mysaifu JVM . 103
7.3.3 GNU Classpath . 103
7.3.4 CSOAP Web Services Server . 104
7.3.5 Jetty Web Server . 104
7.3.6 HyperSQL Database . 104

7.4 Software Libraries . 104
7.4.1 SAWSDL4J API . 104
7.4.2 Bouncy Castle Cryptography API 105
7.4.3 Piccolo XML Parser . 105
7.4.4 RDF Filter for SAX2 . 105
7.4.5 RXTX - A Communication Library 105

7.5 Software Tools/IDEs . 106
7.5.1 Microsoft Visual Studio 2005 . 106
7.5.2 Eclipse IDE . 106
7.5.3 Protégé . 106
7.5.4 Radiant . 106

8 Experimental Evaluation 107
8.1 Testbed Medical Devices . 107

8.1.1 Blood Cancer Markers Analyzer - SmartHEALTH Device 107
8.1.2 Pulse Oximeter - Masimo Rainbow 107
8.1.3 Urine Analyzer - Urisys 1100 . 109
8.1.4 Blood Coagulation Meter - CoaguChek S 109
8.1.5 Vital Signs Monitor - VITALMAX 4000 CL 110
8.1.6 Weight Scale - SOEHNLE-Professional 7700 110
8.1.7 Digital Blood Pressure Monitor - A&D Medical UA-767PC 111

8.2 Testbed Health Information Systems . 111
8.2.1 Laboratory Information System . 111
8.2.2 Hospital Information System . 111
8.2.3 SmartHEALTH Information System 111

8.3 Testbed Pervasive Healthcare Scenarios 112
8.3.1 Cancer Diagnosis - Laboratory Scenario 112
8.3.2 Cancer Treatment - Hospital Scenario 114
8.3.3 Cancer Follow-up and Monitoring - Home-care Scenario 114

8.4 Conclusions . 117

9 Conclusion and Outlook 119

List of Figures 124

List of Tables 125

A UML Class Diagrams of SMDS Software Framework 127

B List of Test Queries 135

C SCENT Rules Definition 137

D Graphical Gateway Application 139

Bibliography 143

Chapter 1

Introduction

Interoperability is defined as ”the ability of two ore more systems or components to ex-
change the information and to use the information that has been exchanged” [1]. In order
to achieve true interoperability, the systems must be able to not only exchange the in-
formation using shared communication architectures, methods and frameworks, but also
interpret and use it correctly using shared data types, terminologies/ontologies and cod-
ing schemes. Such classification is generally known as functional interoperability and
semantic interoperability, respectively. Most state-of-the-art medical devices use only
vendor specific or proprietary protocols in order to have functional interoperability with
hospital information systems or laboratory information systems and they are not directly
interoperable with other medical devices if required in some scenarios, even provided by
the same vendor. However, some vendors do provide customized software or hardware
solutions to get the updated measurement values from the medical devices and use them
in further medical applications, e.g. Fig. 1.11 and Fig. 1.22 illustrate browser-based
solutions from Roche Diagnostics to gather the data from point-of-care medical devices
and laboratory analyzers respectively, and using them further for meticulous diagnosis.

Figure 1.1: Cobas IT 1000 solution for point-of-care medical devices

1Cobas IT 1000; https://www.cobas-roche.co.uk/site/pointofcare.aspx
2Cobas IT 3000; https://www.cobas-roche.co.uk/site/labsystems.aspx

1

https://www.cobas-roche.co.uk/site/pointofcare.aspx
https://www.cobas-roche.co.uk/site/labsystems.aspx

2 1. Introduction

Figure 1.2: Cobas IT 3000 solution for laboratory analyzers

Alongside, the standards developing organizations like ISO/IEEE have developed ma-
ture communication standards, e.g. ISO/IEEE 11073, the successor of IEEE 1073 [2] for
the functional interoperability of point-of-care medical devices, but their adoption by
industrial stakeholders is very limited because of the complexity of lower layers of this
protocol stack and missing support of the current technologies like Ethernet or TCP/IP
[3]. Other initiatives, e.g. MD PnP3 or IHE PCD4 have addressed the interoperability
issues and highlighted the advantages of having functional interoperability among medi-
cal devices, ranging from less development time for data-driven clinical decision support
algorithms or medical device safety interlocks to improved patient safety.

Towards enabling semantic interoperability among medical devices, few initiatives also
have been taken by the standards developing organizations, e.g. NIST5 has developed
an XSchema (XML Schema) with ICSGenerator (Implementation Conformance State-
ments Generator) tool [4], based on ISO/IEEE 11073 standard, which facilitates the
manufacturers with a systematic approach to unambiguously define the specialization of
a medical device and disclose its features as data sheet. Another example is Continua
Health Alliance6, a non-profit open industry alliance of more than 133 finest healthcare
and technology companies, is developing interoperability guidelines and an eco-system of
interoperable personal health systems to improve the quality of personal healthcare by us-
ing a comprehensive set of industry standards. Continua is targeting different dimensions
of healthcare (remote) monitoring, including Health and Wellness (e.g. weight, glucose,
cholesterol, activity level etc.), Disease Management (e.g. post-operation patient moni-
toring, diabetes, hypertension etc.) and Aging Independently (e.g. bed pressure (sleep),
bathroom sensor, gas/water sensor, emergency sensor etc.). Fig. 1.3 illustrates the list
of first version of transport independent device connectivity protocols which Continua
health alliance has developed or used so far.

On the other hand, with the advent of Semantic Web and Web Service technolo-
gies, the vision of semantic interoperability is becoming reality in various embedded

3Medical Device Plug-n-Play Interoperability Program; http://mdpnp.org
4Integrating Health Enterprise, Patient Care Device Domain; http://www.ihe.net/pcd/
5National Institute of Standards and Technology, USA; http://www.nist.gov
6Continua Health Alliance; http://www.continuaalliance.org/

http://mdpnp.org
http://www.ihe.net/pcd/
http://www.nist.gov
http://www.continuaalliance.org/

1.1 Problem Statement 3

Figure 1.3: Continua health alliance - first version of device connectivity standards

fields, for example, in-vitro healthcare monitoring, industrial automation, home enter-
tainment etc., in synergy with ubiquitous computing or more recently ambient intelligent
technologies, where a large number of devices and software components semantically in-
teroperate to provide people with services in an unobtrusive fashion. Various research
initiatives have addressed these issues, e.g. SAPHIRE [5], SCALLOPS [6] and CAALYX
[7] in the field of healthcare monitoring ; Amigo [8], WSAMI [9] and InHome [10] in the
field of home entertainment ; IMPRONTA [11][12], SOCRADES [13] and SAMIA [14]
in the field of industrial or factory automation. Most recently, research and industry in
above-mentioned domains have shown great interest in an emerging paradigm, namely
Internet of Things and Services (IoTS) which addresses the issues related to the seman-
tic identification and discovery of thousands of small physical devices and their semantic
interoperability through the Web Services they offer. Not only EU Research projects,
e.g. SOCRADES [13], SODA [15], MORE [16], and HYDRA [17] have addressed the
goals of IoTS paradigm, but also some national projects, e.g. SemProM [18] are moving
in this direction as well.

1.1 Problem Statement

Pervasive healthcare is a conceptual system of providing healthcare to anyone, at any-
time, and anywhere by using mobile and wireless technologies, and removing restraints
of time and location while increasing both the coverage and the quality of healthcare
[19]. Its applications include pervasive health monitoring, intelligent emergency man-
agement system, pervasive healthcare data access, and ubiquitous mobile telemedicine.
The Healthcare Information and Management Systems Society [20] recently conducted a
survey, where the respondents identified the ”cross enterprise sharing of patient care med-

4 1. Introduction

ical device data” as one of their highest priorities, which requires establishing different
goals, including shortening the decision time, increasing productivity, minimizing tran-
scription errors, and developing ways to correctly define and interpret the medical data
being exchanged. In order to meet these goals, semantic interoperability among medical
devices and health information systems in a platform independent fashion is necessary,
as medical devices (e.g. infusion pumps) are often the primary source or destination of
important patient care information, including therapeutic functions with treatment pat-
terns. However, such devices mostly remain independent islands of information, being
unable to share the medical data they gather with other medical devices, hospital infor-
mation system or laboratory information system on a real-time basis due to the software
or hardware heterogeneity. On the other hand, as described earlier, the standards devel-
oping organizations have made various attempts in the last decades to resolve the medical
device interoperability problem using a single communications standard, e.g. IEEE 1073
[2] and more recently its successor ISO/IEEE 11073, but ended with minimal success due
to the limited adoption by the medical device manufacturers because of the complexity
of protocol stack and missing support for Ethernet and TCP/IP.

In SmartHEALTH Project [21], a new generation of intelligent lab-on-chip bio-
diagnostic devices for point-of-care applications is being developed that incorporates
advanced capabilities for context awareness, data interpretation through soft computing
tools, e.g. Neural Networks, ubiquitous communication in pervasive healthcare envi-
ronments, and the provision of e-Health services. SmartHEALTH devices are intended
to operate in all point-of-care driven environments such as hospitals, physicians’ of-
fices and ultimately patient self-testing at home or while moving. It is envisioned that
SmartHEALTH bio-diagnostic devices at the point-of-care will be able to communicate
seamlessly and transparently with the local or remote health information system(s) while
respecting the privacy of patients’ medical data. Also, most importantly, these devices
will operate autonomously with respect to semantic contents processing, which means
that without using any external proxy system, they are enriched with integrated knowl-
edge processing, querying, and reasoning capabilities, which will facilitate them to adopt
according to the requirements of context-aware pervasive healthcare application(s).

In connection with the goals of SmartHEALTH Project and the capabilities envi-
sioned for intelligent SmartHEALTH devices, the overall goal of this thesis is to develop
an innovative decentralized middleware infrastructure for the semantic interoperability
of resource-constrained medical devices (or mobile devices in general), based on Seman-
tic Web and Web Service technologies, to which the underlying communication layer
is transparent. This service oriented architecture (SOA) based middleware will be de-
ployable on both new and existing networks of distributed wireless and wired medical
or mobile devices, which operate with limited resources in terms of computing power
and memory usage. The second objective of this thesis is to provide this middleware
as a framework or a software development kit, which will facilitate the medical device
manufacturers to turn their plain medical devices into the next generation of ambient
intelligent medical devices, whose physical capabilities are described using ontologies,
while functional capabilities are exposed in addition through Semantic Web Services.
This framework will include support for the secure transmission of patient’s medical data
from device-to-device and device-to-information system in different pervasive healthcare
applications.

Fig. 1.4 illustrates one of the pervasive healthcare scenarios of SmartHEALTH Project
where we apply our work, namely post-operation breast cancer home-care monitoring,
where a SmartHEALTH device, besides being a blood cancer markers analyzer, also
acts as an active or passive gateway for other medical devices (e.g. blood pressure,

1.2 Main Contributions 5

Figure 1.4: Post-operation Home-care Monitoring - A SmartHEALTH Project Scenario

blood coagulation, weight scale etc.) and offers its services as Semantic Web Services.
As an active gateway device, the SmartHEALTH device semantically discovers other
medical devices in the environment, as per the requirements of the healthcare application,
collects the measurement values of a patient from these medical devices, makes a collective
intelligent interpretation of all the measurement values using soft computing tools, and
then forwards these measurement values with their interpretation to the remote hospital
information system and/or doctor’s clinical information system. As a passive gateway
device, the SmartHEALTH device only acts as a data forwarding device for other medical
devices in the environment. Whenever a medical device finishes its measurement, it
semantically discovers the SmartHEALTH device as a gateway device, and uses its service
to forward the measurement results to the respective information system(s). Finally, the
patient’s family doctor or health professional in the hospital analyzes the results of blood
cancer markers, the measurement values of other medical devices, and their intelligent
interpretation in terms of disease status (e.g. cancer’s progression or regression) in order
to discuss further steps with the patient.

1.2 Main Contributions

With this thesis, we make the following contributions to the area of semantic interoper-
ability of ambient intelligent medical or mobile devices with e-Health systems.

• We present a lightweight but powerful knowledge querying and reasoning system,
namely Micro OWL Description Logic Reasoner (µOR), which can be integrated
easily on resource-constrained medical or mobile devices, and can be used not only
for querying the device knowledge base, but also performs OWL description logic
and/or forward chaining based rules reasoning.

6 1. Introduction

– We present a simple query language, namely Semantic Device Language for
N-Triples (SCENT), which is an extension of the N-Triples specification and
used to encode semantic queries with desired conditions and patterns.

– We present a simple unification and resolution algorithm, namely SCENT Res-
olution Algorithm (SCENTRA), which is used not only to resolve the SCENT
queries and return the results for the variables of conditions/patterns, but also
used by µOR to generate inferences from the device knowledge base. How-
ever, one of the main goals of SCENTRA algorithm is to support matchmaking
process of desired medical or mobile device(s) during the discovery phase.

• We present a lightweight HTTP-based semantic discovery protocol, namely Seman-
tic Medical Device Discovery Protocol (SMDDP) to support the semantic discovery
among medical or mobile devices, based on their physical characteristics (i.e. de-
vice vendor, device group/type) and/or functional characteristics (i.e. what services
does a medical or mobile device offer).

• We have developed small ontologies, namely MeDO (Medical Device Ontology)
and SmdsOnto (Semantic Medical Device Space Ontology) in order to express the
physical and/or functional characteristics of a medical or mobile device receptively,
as well as to encode the knowledge used in SmartHEALTH pervasive healthcare
scenarios. However, it was not desired or attempted to develop these ontologies as
standard ontologies, but only prototypes for our work.

• Encapsulating all the above-mentioned contributions, we present a SOA based
decentralized middleware infrastructure, namely Semantic Medical Devices Space
(SMDS) to provide a platform for the semantic coordination of medical or mobile
devices. SMDS provides a mechanism to expose the functionalities of medical or
mobile devices as Semantic Web Services and enables them to semantically discover
and match the desired device(s), and invoke its/their Web Service method(s) as per
the requirements a pervasive healthcare application.

1.3 Selected Publications

Various aspects of this thesis have been published in [22], [23], [24], [25], [26], [27], [28],
[29], [30]. The most important publications are the following:

Semantic Medical Devices Space (SMDS)

In [22], we have presented the initial results of our SOA based decentralized middleware
infrastructure, which encapsulates the SMDDP and µOR as integral components, and
provides a platform for the semantic interoperability of medical or mobile devices (cf.
Chapter 4).

• Safdar Ali, S. Kiefer. Semantic Medical Devices Space: An Infrastructure for the
Interoperability of Ambient Intelligent Medical Devices, In Proc. of International
IEEE/EMBS Conference on Information Technology in Biomedicine, Greece, 2006

Micro OWL DL and Rules based Querying and Reasoning System (µOR)

In [23], we have presented the architectural details of the first version of a lightweight
but powerful Description Logics based querying and reasoning system, namely µOR for

1.4 Thesis Outline 7

the resource-constrained medical or mobile devices (cf. Chapter 5). µOR makes use of
SCENTRA algorithm, which is used to resolve the semantic queries as well as to generate
inferences from the existing device knowledge base.

• Safdar Ali, Stephan Kiefer. µOR - A Micro OWL DL Reasoner for Ambient Intelli-
gent Devices, In Proc. of 4th International IEEE Conference on Grid and Pervasive
Computing, Geneva, Switzerland, LNCS 5529, pp 305-316, 2009

In the final version, in addition to the OWL DL reasoning, µOR was enhanced with rules
based reasoning with forward-chaining mode only.

Semantic Medical Device Discovery Protocol (SMDDP)

In [24], we have presented a lightweight HTTP-based semantic discovery protocol with
its application in the field of pervasive healthcare applications (cf. Chapter 6). SMDDP
helps the resource-constrained medical or mobile devices to semantically discover the
desired devices or even information systems based on their physical and/or functional
characteristics in a pervasive healthcare environment.

• Safdar Ali, S. Kiefer. Semantic Coordination of Ambient Intelligent Medical Devices
- A Case Study, In Proc. of ACM SIGCHI, IEEE, EMB International Conference
on Pervasive Computing Technologies for Healthcare, London, U.K, 2009

As one of the best selected papers, an extended version of this paper has been published
in [25] .

• Safdar Ali, Stephan Kiefer, Semantic Coordination of Ambient Intelligent Medical
Devices in Future Laboratories, MASAUM Journal of Basic and Applied Sciences
(MJBAS), Volume 1 Issue 2, September 2009

1.4 Thesis Outline

This thesis is organized as follows: Chapter 2 presents the background information about
the theoretical concepts, tools and technologies used in this thesis. Chapter 3 gives an
overview of the most relevant existing work regarding the use of semantic and SOA tech-
nologies in the field of ambient intelligence. Chapters 4 through 6 present the innovative
contributions of this thesis. Chapter 4 presents the architectural details of Semantic Med-
ical Devices Space, which provides a decentralized SOA based semantic platform for the
interoperability of medical or mobile devices. Chapter 5 presents the architectural details
of µOR, a lightweight but powerful description logics and forward-chaining rules based
querying and reasoning system for the resource-constrained medical or mobile devices.
This chapter also outlines the details of a simple query language, named SCENT that we
have developed to express the semantic queries, as well as a unification and resolution
algorithm, named SCENTRA that we have developed to resolve the SCENT queries and
to generate the inferences. Chapter 6 outlines the details of a lightweight HTTP-based
semantic discovery protocol, named Semantic Medical Device Discovery Protocol for the
resource-constrained medical or mobile devices. Chapter 7 describes the implementation
details by giving a quick overview of the used programming language(s), APIs and the
development tools. Chapter 8 describes the experimental details of the scenarios where
we have applied our research results, while Chapter 9 presents the conclusions and an
outlook to the future work. At the end, Appendix A describes the UML class diagrams

8 1. Introduction

of software implementation, Appendix B describes the SCENT queries used for the per-
formance analysis of µOR, while Appendix C describes the way to define SCENT rules
for µOR with an example.

Chapter 2

Background

This chapter introduces some background and state-of-the-art work used for the research
and development of this thesis. Section 2.1 gives a detailed overview of Web Services
technology, its advantages and functional standards. Section 2.2 gives an overview of
the Web Services based specification that is designed for resource-constrained devices,
namely Device Profile for Web Services. Sections 2.3 and 2.4 explains the emerging Se-
mantic Web and Semantic Web Services standards, their applications and development
approaches. Section 2.5 gives introduction to the widely adopted communication proto-
cols for general devices (non-medical). Section 2.6 gives introduction to most important
medical healthcare communication standards, while Section 2.7 elaborates how these
medical communication standards are used in the ICT infrastructures of hospitals and
clinical environments. The last Section 2.8 explains in detail about the e-Health domain
and its related issues.

2.1 Web Services

In recent years, distributed programming paradigms have been emerged that allow generic
software components to be developed and shared. Although ideal for some enterprise
integration and e-Commerce, it has only been with the adoption of XML as a common
data syntax that the underlying principles have gained wide scale adoption, through the
definition of Web Service standards. According to the definition of W3C, ”A Web Service
is a software application identified by a URI, whose interfaces and bindings are capable
of being defined, described, and discovered as XML artifacts” [31].

Web Services are well defined, reusable, software components that perform specific,
encapsulated tasks via standardized Web-oriented mechanisms. They can be discovered,
invoked, and the composition of several services can be choreographed, using well defined
workflow modeling frameworks. A Web Service supports direct interactions with other
software applications (i.e. agents) using XML based messages exchanged via internet-
based protocols1. The Web Services concept aims to adopt the principles of the WWW
for its vision of seamless Application-to-Application (A2A) integration, regardless of dif-
ferences in programming languages and platforms, featuring the same level of openness
between loosely coupled systems. The key for the broad acceptance of the WWW is that
is based on open standards and consequently, Web Services are also founded on the basis
of such standards.

1W3C Web Services Activity, http://www.w3.org/2002/ws/

9

http://www.w3.org/2002/ws/

10 2. Background

2.1.1 Key Benefits of Web Services

In this section, we discuss the key benefits of the Web Services to enlighten the reasons
of their wide adoption in the industry [32].

Loosely Coupled

Unlike traditional application designs, which depend upon a tight interconnection of all
program elements, Web Services are loosely coupled. Loose-coupling means that each
service exists independently of the other services that make up the application. This
allows individual pieces of the application to be modified without impacting unrelated
areas. As a critical requirement for Service Oriented Architecture (SOA) design, loose-
coupling is to be provided by Web Services through established standards that define
services and how they interoperate.

Enables Service-Oriented Architectures

Web Services represent the convergence between the service-based development of appli-
cations and the Web. In the SOA model, the business processes that make up an appli-
cation are separated into independent, easily distributed components known as services.
These services interoperate across processes and machines to create a complete solution
for a business problem. This loose-coupling allows for easy changes to the application
by inserting new and revised services into the application without having modifying the
unrelated services.

Ease of Integration

Unlike other methods of integration, Web Services are becoming widely adopted across
the entire software industry. This broad industry adoption helps alleviate companies
fears of proprietary technologies that may lock them in for the future. The standards
surrounding Web Services are human-readable and publicly available, allowing a devel-
oper to view exactly what is happening in the system. Most often, integration between
business partners is as easy as agreeing to a standard format for exchange of information
defined in XML and WSDL.

Easily Accessible

Finally, Web Services are distributed over the Internet. Web Services make use of existing
ubiquitous transport protocols like HTTP, leveraging existing infrastructure and allowing
information to be requested and received in real time. Current IT infrastructure for
addressing, security and performance can also be applied to Web Services applications.

2.1.2 Roles in the Web Services Architecture

The artifacts in the Web Services model are the objects that are produced and dealt
within the context of Web Services. These objects include Service, Service Description
and Client Application and the interaction among these object is shown in Fig. 2.1. A
short description of these objects is given below:

2.1 Web Services 11

Figure 2.1: The SOA architecture with SOAP, WSDL, and UDDI

Service

The service is an implementation of a software module deployed on a network accessible
platform provided by the service provider to be invoked by a service requester.

Service Description

The service description contains the details of the interface and implementation of the
service. The service interface description comprises information about the operations
and their signatures provided by a service; along with the protocol used for communica-
tion with the Web Service. The service implementation description contains information
about the location where the service is exposed, i.e. the endpoint address of the service.
The service provider publishes the complete service description to a service registry to
make the service accessible to the service requestors. It includes the data types, opera-
tions, binding information and network location of the service, as provided by the service
interface and implementation descriptions.

Client Application

This is the software application implemented by the service requestor to use the func-
tionality of the Web Service by invoking its operations at runtime.

2.1.3 Functional Standards of Web Services

In the most Internet middleware configurations, the three core functional components,
transport, description, and discovery in the Web Services architecture are implemented
using SOAP, WSDL, and UDDI, respectively. A short description of each of the functional
component is given below.

12 2. Background

Simple Object Access Protocol (SOAP)

SOAP [33] is a standard that represents a lightweight envelope containing the message
payload as it moves between service producers and consumers. It is an XML-based
standard that describes the contents of a message and how to process it, and offers
a transport binding for exchanging messages. Adjuncts to the envelope and binding
framework include a set of encoding rules for expressing instances of application-defined
data types and a convention for representing remote procedure calls and responses:

• SOAP Envelope: Describes the contents of a message and how to process it, and
contains extra details such as security information or the final destination of the
message.

• SOAP Transport Binding Framework: An abstract framework for exchanging SOAP
envelops using an underlying protocol, including HTTP or other transports.

• SOAP Serialization Framework: A set of encoding rules for expressing instances of
application-defined data types such as numbers and text.

• SOAP RPC Representation: A convention for representing remote procedure calls
and responses.

Web Service Description Language (WSDL)

WSDL [34] is an XML format for describing network services as a set of endpoints operat-
ing on messages containing either document-oriented or procedure-oriented information.
The operations and messages are described abstractly, and then bound to a concrete
network protocol and message format to define an endpoint. Most often, these messages
are bound to the SOAP protocol and the HTTP transport, but these are not the only
set of bindings supported. The abstract nature of WSDL for describing services makes it
very flexible for describing complex Web Services applications. A WSDL document uses
the following elements in the definition of network services:

• Types: A container for data type definitions using some type system (such as XML
Schema Definition, XSD).

• Message: An abstract, typed definition of the data being communicated.

• Operation: An abstract description of an action supported by the service.

• Port Type: An abstract set of operations supported by one or more endpoints.

• Binding: A concrete protocol and data format specification for a particular port
type.

• Port: A single endpoint defined as a combination of a binding and a network address.

• Service: A collection of related endpoints.

Universal Description, Discovery and Integration (UDDI)

UDDI [35] represents a set of protocols and a public directory for the registration and
real-time lookup of Web Services and other business processes. In many ways, UDDI
models as White Pages, providing a listing of services available within a network. The
primary benefit of a UDDI server is to provide a single point of reference to all available
services within an enterprise. The UDDI server allows organizations to:

2.2 Devices Profile for Web Services 13

• Host multiple versions of a service

• Create aliases to services

• Limit access to specific services

While UDDI is a ratified standard, it is still gaining adoption and has been changing fre-
quently. There are many other commercial products, known as Web Service Management
tools, which perform many of the same tasks as UDDI while providing added benefits
such as metering and inspection of the services. UDDI and Web Service Management
tools help keeping the loose-coupled connection between services.

2.2 Devices Profile for Web Services

The Devices Profile for Web Services (DPWS) [36] was developed to enable secure Web
Service capabilities on resource-constraint devices. It allows sending secure messages to
and from Web Services, dynamically discovering a Web Service, describing a Web Ser-
vice, subscribing to, and receiving events from a Web Service. DPWS can be used for
machine-to-machine communication whereas a specific client uses a specific service hosted
on a device. DPWS is not the first SOA that targets device-to-device communication.
The technologies such as OSGi2 (Open Service Gateway Initiative), HAVi3(Home Au-
dio/Video Interoperability), JINI4 (Java Intelligent Network Infrastructure) and UPnP5

(Universal Plug and Play) are similar approaches. The big advantage of DPWS com-
pared to all other mentioned SOAs is the reliance on Web Service which implies high
acceptance among developers and platform as well as programming language indepen-
dence. Microsoft has included DPWS in their latest operating system called Windows
Vista.

2.2.1 The Underlying Protocols of DPWS

DPWS is partially based on the Web Services architecture and uses further standards
and draft specifications from the Web Services protocol family, as shown in Fig. 2.2 [37].
SOAP, WSDL and XML-Schema have already been explained in the previous sections
and thus will not be further explained here. A brief description of other protocols is given
below, but a detailed description can be found in [36].

WS-Policy

WS-Policy provides a framework for expressing different capabilities, requirements and
characteristics for different service implementations. If a Web Service offers policies,
service users have to comply with the declarations found in the policy document. The
service users have to choose one of the offered policy alternatives which consist of several
policy assertions from the policy document. The policies mostly define QoS (Quality
of Service) characteristics and security considerations which are necessary for service
communication.

2OSGi; www.osgi.org/
3HAVi; http://www.havi.org/
4JINI; www.jini.org/
5UPnP; www.upnp.org

www.osgi.org/
http://www.havi.org/
www.jini.org/
www.upnp.org

14 2. Background

Figure 2.2: Devices Profile for Web Services as protocol stack

WS-Addressing

The main objective of WS-Addressing is to provide an addressing mechanism for Web
Services as well as messages in a transport-neutral matter. By introducing both concepts
endpoint references and message information headers, WS-Addressing overcomes the lack
of SOAP’s independence of underlying transport protocols (in most cases HTTP) and
secondly support of asynchronous message exchange. Both limitations are historically
caused by the default SOAP to HTTP binding.

SOAP-over-UDP

The main objective of SOAP-over-UDP is to decouple SOAP from its underlying binding
protocol, and define a binding for SOAP envelopes to UDP. In contrast to TCP the
delivery of UDP packets can not be guaranteed. SOAP-over-UDP uses WS-Addressing
to support the same message exchange patterns as SOAP-over-HTTP. Unicast as well as
multicast transmission is supported. Since UDP’s unreliability message retransmission
is encouraged, and for efficiency reasons a retransmission algorithm is provided which
considers delayed repetitions of the same message.

MTOM

The idea of SOAP Message Transmission Optimization Mechanism (MTOM) is to pro-
vide an abstract feature for optimizing the transmission of SOAP messages. With MTOM
parts of the envelope can be encoded outside of the envelope while still keeping the en-
velope intact. MTOM defines its feature in an abstract matter which means it has to be
adapted to the protocols used beneath. The second part of this specification provides a
binding for HTTP based on XML-binary Optimize Packaging convention.

2.3 Semantic Web 15

WS-Discovery

The WS-Discovery is a discovery protocol based on IP multicast for enabling services to
be discovered automatically. Discovery introduces three different endpoint types: target
service, client and discovery proxy. Target Services are Web Services offering themselves
to the network, Clients may search for target services and discover them dynamically
and Discovery Proxy is an endpoint enabling discovery in spanned networks since simple
discovery is limited to a multicast group and hence to local managed networks only.

WS-MetadataExchange / WS-Transfer

WS-MetadataExchange is a specification that defines data types and operations to re-
trieve metadata associated with an endpoint. This metadata describes what other end-
points need to know to interact with the described endpoint, and defines the Meta-
dataSection that divides the metadata into separate units of metadata with a dialect
specifying its type. WS-Transfer is used to retrieve the metadata, which is structured
as specified in WS-MetadataExchange. There is a slight functional difference in WS-
MetadataExchange and WS-Transfer for retrieval of metadata. WS-MetadataExchange
defines operations to retrieve all or parts of the metadata of an endpoint. WS-Transfer
only can be used to retrieve all metadata of an endpoint. WS-Transfer is very similar
to HTTP since it defines Create, Get, Put and Delete operations which have almost the
same semantics as HTTP request methods.

WS-Eventing

WS-Eventing defines a protocol for managing subscriptions for a Web Services based
eventing mechanism. This protocol defines three endpoints: subscriber, event source
and subscription manager. Subscribers request subscriptions on behalf of event sinks to
receive events from event sources. Subscription requests contain an event delivery mode
and event filter mechanism to negotiate an event source with an event sink. Subscription
Managers are responsible of holding subscriptions of event sources. Subscriptions must
be requested and can expire over time. The subscription manager can be asked to renew
or end a subscription, or to get the status of a subscription. There are no limitations or
restrictions in supporting other or user-defined event delivery and filter mechanisms.

WS-Security

WS-Security specification provides mechanisms for message integrity and confidentiality
to SOAP messaging. These mechanisms are independent of the used technology. The
specification defines the structures security header and security token to allow signing
full or parts of SOAP messages or encryption of SOAP messages.

While the WS-* specifications define abstract mechanisms, WS profiles define specific
constraints and limitations. So the DPWS describes how some specific WS specifications
can be used on embedded devices.

2.3 Semantic Web

The Semantic Web [38] is a vision of a Web of meaningful contents and services, which
can be interpreted by computer programs. It can also be seen as a vast source of in-
formation, which can be modeled with the purpose of sharing and reusing knowledge.

16 2. Background

Figure 2.3: General stack of Semantic Web enabling standards

The Semantic Web users will be able to do more accurate searches of the information
and the services they need from the tools provided. The Semantic Web provides the
necessary infrastructure for publishing and resolving ontological descriptions of terms
and concepts. In addition, it provides the necessary techniques for reasoning about these
concepts, as well as resolving and mapping between ontologies, thus enabling semantic
interoperability of Web Services through the identification and mapping of semantically
similar concepts. Fig. 2.3 shows the general stack of Semantic Web enabling standards.
Ontologies have been developed within the Semantic Web research community in order to
facilitate knowledge sharing and reuse. They provide greater expressiveness when mod-
eling domain knowledge and can be used to communicate this knowledge between people
and heterogeneous and distributed application systems. As with Web Services, Semantic
Web enabling standards fit into a set of layered specifications built on the foundation of
URIs and XML Schema. The current components included in the Semantic Web frame-
work are RDF [39], RDF Schema (RDF-S) [40] and the Web Ontology Language (OWL)
[41]. These standards build up a rich set of constructs for describing the semantics of
online information sources.

RDF is an XML-based standard from W3C for describing resources on the Web. RDF
introduces a little semantics to XML data by allowing the representation of objects and
their relations through properties. RDF-Schema is a simple type system, which provides
information (metadata) for the interpretation of the statements given in RDF data. The
OWL facilitates greater machine interpretability of Web contents than RDF and RDF
Schema by providing a much richer set of constructs for specifying classes and relations.
OWL has evolved from existing ontologies languages and specifically from DAML+OIL
[42]. OWL comes in several variants, that are OWL-Full, OWL-DL and OWLLite, where
each variant corresponds to a description logic of different expressivity and complexity.
OWL-Lite and OWL-DL are an abstract syntactic form of the description logic SHIF(D)
and SHOIN (D), respectively, whereas OWL-Full corresponds to the description logic
SHOIQ(D)∗. For syntax and model-theoretic semantics of these description logics, we
refer to [43].

2.4 Semantic Web Services

Whilst promising to revolutionize e-Commerce and enterprise-wide integration, current
standard technologies for Web Services, i.e. WSDL provide only syntactic-level descrip-

2.4 Semantic Web Services 17

tions of their functionalities, without any formal definition to what the syntactic defini-
tions might mean. In many cases, Web Services offer little more than a formally defined
invocation interface, with some human oriented meta-data that describes what the ser-
vice does, and which organization developed it, i.e. through UDDI [35] descriptions.
The software applications may invoke Web Services using a common, extendible commu-
nication framework, i.e. SOAP [33]. However, the lack of machine-readable semantics
necessitates human intervention for automated service discovery and composition within
open systems, thus hampering their usage in complex business contexts.

Semantic Web Services (SWS) [44] relax this restriction by augmenting Web Services
with rich formal descriptions of their capabilities, thus facilitating automated composi-
tion, discovery, dynamic binding, and invocation of services within an open environment.
A prerequisite to this, however, is the emergence and evolution of the Semantic Web
[38], which provides the infrastructure for the semantic interoperability of Web Services.
Web Services will be augmented with rich formal descriptions of their capabilities, such
that they can be utilized by software applications or other services without (or less) hu-
man assistance or highly constrained agreements on interfaces or protocols. Thus, SWSs
have the potential to change the way knowledge and business services are consumed and
provided on the current Web.

2.4.1 Why Semantic Web Services?

Semantic descriptions of Web Services are necessary in order to enable their automatic
discovery, composition and execution across heterogeneous users and domains. Present
technologies for Web Services provide descriptions only at the syntactic level, which
makes it difficult for the requesters and providers to interpret or represent nontrivial
statements, i.e. the meaning of inputs and outputs or applicable constraints. This
limitation may be relaxed by providing a rich set of semantic annotations that augment
the service description. A Semantic Web Service is defined through a service ontology,
which enables machine interpret-ability of its capabilities as well as integration with
domain knowledge. The deployment of Semantic Web Services will rely on the further
development and combination of Web Services and Semantic Web enabling technologies.
Several initiatives have been started in the industry and academia, e.g. DIP [45], SWSI
[46] which are investigating solutions for the main issues regarding the infrastructure for
SWS. Fig. 2.4 shows the following three orthogonal dimensions as characterization of
Semantic Web Service infrastructure:

• Usage activities define the functional requirements, which a framework for Semantic
Web Services ought to support.

• Architecture of SWSs describes the components needed for accomplishing the ac-
tivities defined for SWS.

• Service ontology aggregates all concept models related to the description of a Se-
mantic Web Service and constitutes the knowledge-level model of the information
describing and supporting the usage of the service.

Usage Activities

From the usage activities perspective, SWS are seen as objects within a business appli-
cation execution scenario. The activities required for running an application using SWS

18 2. Background

Figure 2.4: Semantic Web Services Infrastructure Dimensions

include: publishing, discovery, selection, composition, invocation, deployment and ontol-
ogy management, as described next. The publishing or advertisement of SWS will allow
agents or applications to discover services based on its goals and capabilities. A semantic
registry is used for registering instances of the service ontology for individual services.
The service ontology distinguishes between information which is used for matching during
the discovery and that is used during service invocation. In addition, domain knowledge
should also be published or linked to the service ontology. The discovery of services
consists of a semantic matching between the description of a service request and the
description of published service. The queries involving the service name, input, output,
preconditions and other attributes can be constructed and used for searching the seman-
tic registry. The matching can also be done at the level of tasks or goals to be achieved,
followed by a selection of services which solves the task. The degree of matching can be
based on some criteria, such as the inheritance relationship of types. For example, an
input of type Infusion Pump of a provided service can be said to match an input of
type Medical Device of a requested service.

A selection of services is required if there is more than one service matching the
request. Non-functional attributes such as cost or quality can be used for choosing one
service. In a more specialized or agent-based type of interaction a negotiation process
can be started between a requester and a provider, but that requires that the services
themselves be knowledge-based. In general, a broker would check that the preconditions

2.4 Semantic Web Services 19

of tasks and services are satisfied and prove that the services post-conditions and effects
imply goal accomplishment. An explanation of the decision making process should also be
provided. The Composition or choreography allows SWS to be defined in terms of other
simpler services. A workflow expressing the composition of atomic services can be defined
in the service ontology by using appropriate control constructs. This description would
be grounded on a syntactic description such as BEPL4WS [47]. Dynamic composition is
also being considered as an approach during service request in which the atomic services
required to solve a request are located and composed on the fly. That requires an invoker
which matches the outputs of atomic services against the input of the requested service.

The invocation of SWS involves a number of steps, once the required inputs have been
provided by the service requester. First, the service and domain ontologies associated
with the service must be instantiated. Second, the inputs must be validated against the
ontology types. Finally the service can be invoked or a workflow executed through the
grounding provided. It is also important to monitor the status of the decomposition pro-
cess and notify the requester in case of exceptions. The deployment of a Web Service by a
provider is independent of the publishing of its semantic descriptions since the same Web
Service can serve multiple purposes. Also, the SWS infrastructure can provide a facility
for the instant deployment of code for a given semantic description. The management
of service ontologies is a cornerstone activity for SWS since it will guarantee that the
semantic service descriptions are created, accessed and reused within the Semantic Web.

Architecture

From the architecture perspective, as shown in Fig. 2.4, SWSs are defined by a set
of components which realize the activities above, with underlying security and trust
mechanisms. The components gathered from the discussion above include: a register, a
reasoner, a matchmaker, a decomposer and an invoker. The reasoner is used during all
activities and provides the reasoning support for interpreting the semantic descriptions
and queries. The register provides the mechanisms for publishing and locating services in
a semantic registry as well as functionalities for creating and editing service descriptions.
The matchmaker mediates between the requester and the register during the discovery
and selection of services. The decomposer is the component required for executing the
composition model of composed services. The invoker mediates between requester and
provider or decomposer and provider when invoking services. These components are
illustrative of the required roles in the SWS architecture for the discussion here as they
can have different names and a complexity of their own in different approaches.

Service Ontology

The service ontology is another dimension under which we can define the SWS, for it
represents the capabilities of a service itself and the restrictions applied to its use. The
service ontology essentially integrates at the knowledge-level the information which has
been defined by Web Services standards, such as UDDI and WSDL with related domain
knowledge. This would include: functional capabilities such as inputs, output, pre-
conditions and post-conditions; and non-functional capabilities such as category, cost
and quality of service; provider related information, such as company name and address;
task or goal-related information; and domain knowledge defining, for instance, the type
of the inputs of the service. This information can, in fact be divided in several ontologies.
However, the service ontology used for describing SWS will rely on the expressivity and
inference power of the underlying ontology language supported by the Semantic Web.

20 2. Background

2.4.2 Semantic Web Services Description Frameworks

Although there exist several approaches for the description of Semantic Web Services,
the leading frameworks used for the description of Semantic Web Services (SWS) are
the standard SAWSDL [48], OWL-S [49] and WSML [50]. In the following sections, we
briefly describe these approaches by taking the text snippets from [43], and refer the
reader to this for detailed description.

SAWSDL

The standard language WSDL for Web Services operates at the mere syntactic level as it
lacks any declarative semantics needed to meaningfully represent and reason upon them
by means of logical inferencing. In a first response to this problem, the W3C Working
Group on Semantic Annotations for WSDL and XML Schema (SAWSDL) [48] developed
mechanisms with which semantic annotations can be added to WSDL components.

Unlike OWL or WSML, SAWSDL does not specify a language for representing for-
mal ontologies but provides mechanisms by which ontological concepts that are defined
outside WSDL service documents can be referenced to semantically annotate WSDL de-
scription elements. Based on its predecessor and W3C member submission WSDL-S [51]
in 2005, the key design principles for SAWSDL are that (a) the specification enables
semantic annotations of Web Services using and building on the existing extensibility
framework of WSDL; (b) it is agnostic to semantic (ontology) representation languages;
and (c) it enables semantic annotations for Web Services not only for discovering Web
Services but also for invoking them (their grounding).

Based on these design principles, SAWSDL defines the following three new extensi-
bility attributes to WSDL 2.0 elements for their semantic annotation:

• An extension attribute, named modelReference, to specify the association be-
tween a WSDL component and a concept in some semantic (domain) model. This
modelReference attribute is used to annotate XML Schema complex type defini-
tions, simple type definitions, element declarations, and attribute declarations as
well as WSDL interfaces, operations, and faults.

• Two extension attributes, named liftingSchemaMapping and loweringSchema-
Mapping, that are added to XML Schema element declarations, complex type
definitions and simple type definitions for specifying mappings between semantic
data in the domain referenced by modelReference and XML. These mappings can
be used during service invocation.

One problem with SAWSDL is that it comes as a mere syntactic extension of WSDL,
without any formal semantics. In opposite to OWL-S and (in part) WSML, there is
no defined formal grounding of neither the XML-based WSDL service components nor
the referenced external metadata sources (via modelReference). Another problem with
SAWSDL today is its very limited software support. Notable exceptions are the imple-
mented SAWSDL service discovery and composition planning means of the METEOR-S
framework [52]. However, the recent announcement of SAWSDL as a W3C recommenda-
tion not only supports a standardized evolution of the W3C Web Service framework in
principle (rather than a revolutionary technology switch to far more advanced technolo-
gies like OWL-S or WSML) but will push software development in support of SAWSDL
and reinforce research on refactoring these frameworks with respect to SAWSDL.

2.4 Semantic Web Services 21

OWL-S

OWL-S [49] is an upper ontology used to describe the semantics of services based on
the W3C standard ontology OWL and is grounded in WSDL. Its approach originated
from an Artificial Intelligence background and has previously been used to describe agent
functionality within several multi-agent systems as well as with a variety of planners to
solve higher level goals. It consists of three main upper ontologies: the Profile, Process
Model and Grounding.

The Profile is used to describe services for the purposes of discovery; service descrip-
tions and queries are constructed from a description of functional properties (i.e. inputs,
outputs, preconditions, and effects - IOPEs), and non-functional properties (human ori-
ented properties such as service name, etc, and parameters for defining additional meta
data about the service itself, such as concept type or quality of service). In addition, the
profile class can be sub-classed and specialized, thus supporting the creation of profile
taxonomies which subsequently describe different classes of services.

The Process Models describe the composition or orchestration of one or more ser-
vices in terms of their constituent processes. This is used both for reasoning about
possible compositions (such as validating a possible composition, determining if a model
is executable given a specific context, etc) and controlling the enactment/invocation of
a service. Three process classes have been defined: the composite, simple and atomic
process. The atomic process is a single, black-box process description with exposed
IOPEs. Inputs and Outputs relate to data channels, where data flows between pro-
cesses. The preconditions specify facts of the world that must be asserted in order
for an agent to execute a service. Effects characterize the facts that become asserted
given a successful execution of the service, such as the physical side-effects that the
execution the service has on the physical world. The simple process provides a means
of describing service or process abstractions, which means that such elements have no
specific binding to a physical service, and thus have to be realized by an atomic pro-
cess (e.g. through service discovery and dynamic binding at run-time), or expanded
into a composite process. The composite processes are hierarchically defined work-
flows, consisting of atomic, simple and other composite processes. These process work-
flows are constructed using a number of different composition constructs, including:
Sequence,Unordered,Choice, If − then− else, Iterate,Repeat− until,Repeat− while,Split,
and Split + join. The profile and process models provide semantic frameworks whereby
services can be discovered and invoked, based upon conceptual descriptions defined
within Semantic Web (i.e. OWL) ontologies.

The Grounding provides a pragmatic binding between this concept space and the
physical data/machine/port space, thus facilitating service execution. The process model
is mapped to a WSDL description of the service, through a thin grounding. Each atomic
process is mapped to a WSDL operation, and the OWL-S properties used to represent
inputs and outputs are grounded in terms of XML data types. Additional properties
pertaining to the binding of the service are also provided (i.e. the IP address of the
machine hosting the service, and the ports used to expose the service).

WSML

The Web Service Modeling Framework (WSMF) [50] provides a conceptual model and a
formal language WSML (Web Service Modeling Language) for the semantic markup of
Web Services together with a reference implementation WSMX (Web Service Execution
Environment). Its main goal is to fully enable e-Commerce by applying Semantic Web

22 2. Background

technology to Web Services. WSMF is the product of research on modeling of reusable
knowledge components. WSMF is centered on two complementary principles: a strong
de-coupling of the various components that realize an e-commerce application; and a
strong mediation service enabling Web Services to communicate in a scalable manner.
The mediation is applied at several levels: mediation of data structures; mediation of
business logics; mediation of message exchange protocols; and mediation of dynamic
service invocation. WSMF consists of four main elements: ontologies that provide the
terminology used by other elements; goal repositories that define the problems that should
be solved by Web Services; Web Services descriptions that define various aspects of a
Web Service; and mediators which bypass interoperability problems.

WSMF implementation has been assigned to two main projects: Semantic Web en-
abled Web Services (SWWS) [53], and Web Service Modeling Ontology (WSMO) [54].
SWWS provides a description framework, a discovery framework and a mediation plat-
form for Web Services, according to a conceptual architecture. WSMO refines the Web
Services Modeling Framework and develops a formal service ontology and language for
SWS. WSMO Service Ontology includes definitions for goals, mediators and Web Ser-
vices. The underlying representation language for WSMO is F-logic because it is a full
first order logic language that provides second order syntax while staying in the first order
logic semantics, and has a minimal model semantics. The main characterizing feature
of the WSMO architecture is that the goal, Web Service and ontology components are
linked by four types of mediators as follows:

• OO mediators link ontologies to ontologies

• WW mediators link Web Services to Web Services

• WG mediators link Web Services to goals

• GG mediators link goals to goals.

WSML allows to describe a SWS in terms of its functionality (service capability),
imported ontologies, and the interface through which it can be accessed for orchestration
and choreography. The syntax of WSML is mainly derived from F-Logic extended with
more verbose keywords (e.g., ”hasValue” for ->, ”p memberOf T” for p:T etc.), and has
a normative human-readable syntax, as well as an XML and RDF syntax for exchange
between machines. WSML comes in five variants with respect to the logical expressions
allowed to describe the semantics of service and goal description elements, namely WSML-
Core, WSML-DL, WSML-Flight, WSML-Rule and WSML-Full.

Though WSML has a special focus on annotating Semantic Web Services like OWL-
S, it tries to cover more representational aspects from knowledge representation and
reasoning under both classical FOL and nonmononotic LP semantics. For example,
WSML-DL is a decidable variant of F-Logic(FO) with expressivity close to the de-
scription logic SHOIN (D), that is the variant OWL-DL of the standard ontology Web
language OWL. WSML-Flight is a decidable Datalog variant of F-Logic(LP) (function-
free, non-recursive and DL-safe Datalog rules) with (nonmonotonic) default negation
under perfect model semantics of locally stratified F-Logic programs with ground en-
tailment. WSML-Rule is a fully-fledged logic programming language with function
symbols, arbitrary rules with inequality and nonmontonic negation, and meta-modeling
elements such as treating concepts as instances, but does not feature existentials, strict
(monotonic) negation, and equality reasoning. The semantics of WSML-Rule is defined
through a mapping to undecidable (nonmonotonic, recursive) F-Logic(LP) variant with
inequality and default negation under well-founded semantics [368]. WSML-Full shall

2.5 General Device Communication Protocols 23

unify the DL and LP paradigms as a superset of FOL with non-monotonic extensions
to support nonmonotonic negation of WSML-Rule via Default Logic, Circumscription or
Autoepistemic Logic. However, neither syntax nor semantics of WSML-Full have been
completely defined yet.

2.5 General Device Communication Protocols

This section gives a comparative overview to the protocols or standards that are used for
the communication of resource-constrained general (non-medical) devices [55].

2.5.1 Universal Plug and Play

Universal Plug and Play (UPnP) [56] is an industry initiative by Mirosoft to provide
simple, robust, peer-to-peer connectivity among devices and PCs. Plug and Play (PnP)
made it easier to setup, configure, and add peripherals to a PC, while the purpose of
UPnP is to extend this simplicity throughout the network, enabling discovery and control
of devices. Its target is zero configuration, invisible networking, as well as automatic
discovery for the devices of many vendors. UPnP encompasses many existing, as well as
new scenarios, such as home automation, printing, audio/video entertainment, kitchen
appliances, etc., and is independent of operating systems, programming languages, or
physical media.

The basic components of a UPnP network are: devices, services, and control points. A
UPnP device contains services and nested devices. An XML device description document
is hosted by each device; this document lists the set of services and properties of the
device. A service is the smallest unit of control in UPnP. It is described in the XML
document of the device, which also contains a pointer to the service description. A service
consists of a state table, a control server, and an event server. The state table controls
the state of the service through state variables. The control server updates the state
according to action requests. The event server notifies interested subscribers when the
service state changes. A controller is capable of discovering and controlling other devices.
For true peer-to-peer functionality, devices should incorporate control point functionality.
There is no central registry in UPnP, at least not necessarily.

UPnP uses many existing, standard protocols, so that UPnP devices can fit seamlessly
and without effort into the existing networks. TCP/IP is the base on which the UPnP
protocols are built, as well as many protocols that go with it, such as UDP, ARP, DHCP
and DNS. HTTP is a core part of UPnP and its aspects are based on HTTP or its
variants. The Simple Service Discovery Protocol (SSDP) defines how to find network
services. It is both for control points to locate services on the network, as well as for
devices to announce their availability. A UPnP control point, when booting up, can send
a search request to discover devices and services. UPnP devices, on the other hand, listen
on the multicast port. If the search criteria match, a unicast reply is sent. In the same
way, a device, when plugged in, will send out multiple SSDP presence announcements.
Apart from the leasing concept that UPnP also shares, SSDP provides a way for a device
to notify that it is leaving the network.

The Generic Event Notification Architecture (GENA) defines the concepts of sub-
scribers and publishers of notifications. The GENA formats are used to create these
announcements that are sent using SSDP. SOAPis used in UPnP to execute remote pro-
cedure calls, as well as to deliver control messages and return results or error messages
to the control points. XML is used in UPnP in device and service descriptions, control

24 2. Background

messages and eventing. The advertisement message that a device issues contains a URL
that directs to an XML file in the network, which describes the capabilities of the de-
vice. Each UPnP device must be a DHCP client and search for a DHCP server when
connected to a network. In the lack of a DHCP server it must use Auto IP to get an
address: the device randomly chooses an address, and then makes an ARP request to see
if it is already occupied. This mechanism minimizes administration requirements.

2.5.2 Jini

Jini [57] is a network architecture for distributed systems, developed by Sun Microsys-
tems in Java. The aim of this architecture is to make the network dynamic and self-
administered, where services are added and deleted in a flexible manner. More precisely,
the purpose is to end up with a monolithic system where users are able to not only share
services and resources in a network, but have easy access to the services, even though
the user’s location may change. In a way, Jini can be considered as an extension of the
Java application environment from a single machine to the whole network. Jini is based
on Java environment, which offers built-in security for executing code from another ma-
chine and adds functionality on top of that to support the moving of components in a
distributed system, as compared to the easy movement of objects in a Java application
environment.

Jini makes the assumption that the devices connected to the network have a cer-
tain memory capacity and processing power. The limitation on the devices that can be
connected directly to the network is a Java legacy; the devices need to have the JVM.
Other devices not meeting this criteria need to be presented to the network by means of
a proxy, which is a piece of hardware and/or software that meets the above-mentioned
requirements. The service proxy has the drawback that in order to have no need for
drivers, manufacturers must agree to a common interface. This is hard to achieve for
every kind of device, and is exacerbated by the fact that each device tends to encompass
multiple and different functionalities. There is benefit from the JVM: it makes Jini plat-
form independent, but the JVM is heavy for hand-held devices and embedded systems.
As for Java, Jini depends on the Java application environment, rather than on the Java
programming language. Any language, as claimed, producing compliant bytecode can be
used. However, practically, only the Java language is used.

Services are crucial to the Jini architecture. They can be used by a person, a program,
or another service. Some examples of services are: storage, a computation, a hardware
device, a user, devices such as printers, software such as applications, information such as
databases. A Jini system is made up of services that can be collected in order to complete
a particular task. A service can use another service, a client may be a service for another
client. A service protocol is used for the communication between services. The one Jini
offers is a set of interfaces that define critical service interaction between services. It
can be extended further. A lookup service is used to find and resolve services. What it
does is a mapping of the interfaces that indicate the functionality of a service to sets of
objects implementing the service. A service has to be registered in at least one lookup
service. A Jini service provider registers itself with every discovered lookup service. An
object can itself consist of other services, this makes room for hierarchical services and
lookup. Furthermore, objects may also be the encapsulation of other naming or directory
services. References to the Jini lookup system can also be placed in other naming and
directory services. In this way, bridging between the Jini lookup system and other forms
of lookup service is created.

The discovery, join and lookup protocols are the heart of the Jini architecture. The

2.5 General Device Communication Protocols 25

discovery protocol is used when a device looks for a lookup service to register with.
The join protocol is used when a service has located the lookup service and wants to
join it. The lookup protocol is used when a client needs to locate and invoke a service.
Discovery/join is how a service is added to the system. The service provider multicasts a
request for local lookup services to identify themselves (discovery). After this, a service
object is loaded into the lookup service (joining). This service object has the Java
interface for the service including the methods of the interface to be invoked for using
the service. There can also be other descriptive attributes. The lookup process ensures
that a copy of the service object is loaded into the client. The client can now use the
service. Java Remote Method Invocation (RMI) can be used for the communication
between services. RMI basically implements the remote procedure call mechanisms in
Java. It allows data as well as objects to be passed through the network.

With Jini, administration is still needed, because when a device is introduced to the
network, it needs to be assigned an IP. Jini supports distributed events: an object can
register its interest in events of another object and be notified whenever these events
happen. This adds reliability guarantees to the architecture. Interfaces to devices have
to be implemented for the Jini architecture to work. This is a disadvantage for Jini, since
other service discovery protocols have them already available for consumer electronics.

2.5.3 SLP

SLP [58] is an IETF standard for service discovery. It enables the discovery and selection
of a wide range of services accessible through an IP network. With SLP, a user needs
only to search for a particular type of service, and optionally for attributes associated
with it. It has three major software entities: User Agent (UA), Service Agent (SA), and
Directory Agent (DA).

The SA advertises the location and attributes of one or more services on behalf of
them by using broadcasts. It also replies with IP unicast to requests for these services.
The services register and deregister with the SA. Each registrations has a lifetime and
reregistration is required periodically. It is the same leasing concept already discussed in
previous protocols.

The UA receives requests from a client application and forwards multicast requests
to SAs. Hence, there is little network overhead for SA discovery. The SA unicasts a
response back with the service URL and possible attributes if there is a match with the
registered services.

The DA is a central information repository and it is optional. Its main function is
to improve the performance of SLP. It can be thought of as a tier between the UAs and
the SAs, which communicate with the DA instead of with each other. DAs relieve the
network traffic from many multicast requests; the effect is more visible in large network,
where multicast traffic can increases sharply because there are many SAs and UAs. A DA
keeps the SA advertisements, and responds to UA requests. An SA registers itself with
a DA. The registration contains the URL for the services, the lifetime, and descriptive
attributes of the service. The registration should be refreshed periodically. A UA sends
a request message to the DA, which in turn sends a message containing the URL of the
service matched against the UA needs. SLP can work both with and without a DA: (1)
with DA, information about the services is kept in the DA, so that the UA sends a query
there for services; (2) without a DA, the UA multicasts service requests to the network,
and a SA offering the service would reply back. In small networks, there may be no real
need for a DA.

SLP scales well in large networks; the reason is the minimal use of multicast messages

26 2. Background

and the fact that it can have multiple DAs. It has a flexible and scalable architecture,
where service browsing and human interaction is possible. SLP offers filtered search for
attributes and predicates, such as AND, OR, comparators, and substring matching. SLP
shares the concept of leasing with Jini and UPnP. Services can be deployed in small
networks without any special configuration or deployment. It works even if there is no
DNS, DHCP, SLP DA, or routing. Therefore, home networks would benefit much from
the automation of service discovery, because they often lack network administration.
However, the architecture with DAs makes the system vulnerable to a single point of
failure. SLP is an open source, vendor independent and already implemented. It has the
advantage of not depending on any programming language.

2.5.4 Bluetooth SDP

Bluetooth is a transmission technology, meant for short-range (10m) wireless communi-
cation between low-power devices. Bluetooth devices form a personal area network, a
piconet, with a maximum of 8 members. Groups of piconets communicating with each-
other form a scatternet. Every Bluetooth SDP device has to implement a SDP server that
provides services. The server has a list of service records, each with a list of attributes
that represent different service classes. A Bluetooth SDP client sends a request message
with the list of service classes.

Bluetooth is designed for Bluetooth environments, therefore, it offers limited function-
ality compared to other SDPs. Its functionalities are: search for services by service type;
search for services by service attributes; and service browsing without a priori knowl-
edge of the service characteristics. The Bluetooth SDP does not include functionality
for accessing services. After services have been discovered with it, the selection, access,
and usage can be done with mechanisms out of the scope of SDP, for example by other
SDPs such as SLP and Salutation. SDP can coexist with other SDPs, but they are not
a necessity.

The strong point of Bluetooth in the home environment is the lack of wires, while the
short range it provides is a disadvantage. Also, it has a peer-to-peer connectivity, which
does not scale well, because typically the systems lack resources. Another disadvantage is
the lack of event notification when services become unavailable. The Bluetooth security
mechanisms offer either one-way, two-way, or no authentication. When authentication
is used, the Bluetooth devices generate a secure connection with a pairing process that
makes use of PIN codes entered by users. But for home environment usage, maybe
security and privacy have to be addressed also in higher layers. Bluetooth has huge
implementation opportunities in home environments. Apart from cell phones and PCs
which have already been implemented, there are other potentials. Home automation,
for example, could replace doorbells. This would eliminate unnecessary wires around
the place. Other goods, such as toys or entertainment devices, could be another area of
implementation.

2.6 Medical Device Communication Protocols

In this section, the most widely used state-of-the-art communication standards for the
transmission of medical data among the medical devices and different information systems
in the hospitals and laboratories are explained. These communication standards include
HL7, ASTM, DICOM and CEN/ISO/IEEE 11073. Additionally, a brief description of
other relevant medical communications standards is also given, i.e. EDI, and EDIFACT.

2.6 Medical Device Communication Protocols 27

2.6.1 HL7 Standards

HL7 [59] is a standard for the information exchange between medical applications. It is
an abbreviation of Health Level Seven, 7th OSI layer protocol for the health environment.
HL7 is a protocol for data exchange, which defines the format and the content of the
messages that applications must use when exchanging data with one another in various
circumstances. HL7 specifies a transport-independent messaging framework and structure
that enables disparate healthcare information systems to exchange data.

The Components of an HL7 Message

This section describes about different components of a typical HL7 message. In Fig. 2.5,
a typical HL7 ADTÂ04 message is shown, which is sent when a new patient arrives at
the hospital. The patient’s demographics are entered into hospital information system
and then the information is communicated to all the other systems to avoid multiple
entries of the patient’s demographic information. HL7 messages are ASCII messages
and defined as sequence of segments and/or segment groups. Each segment, group, or

Figure 2.5: An example of HL7 ADTÂ04 message

message set within a message can be optional and/or repeating. Each message consists
of the segments that are delimited by ”carriage return” characters (”
r” or 0x0D). That’s why we see each segment starting on a different line. Each segment
has its own semantic purpose and contains information of a specific type. The segments
consist of fields that are composites and are delimited by ”|” (Pipe sign). For example,

• MSH segment contains information about the Sender and Receiver of the message,
the type of the message, a time stamp, etc.

• EVN contains information about the type of message; for example, A04 (Register
a patient). Information contained in EVN is duplicated in MSH, so starting from
HL7 version 2.3 this segment is excluded from all message definitions.

• PID contains demographic information about the patient such as name, id codes,
address, and so on.

• PV1 contains information regarding the patient’s stay in the hospital, such as
location assigned, referring doctor, etc.

Although there exist a series of dozen HL7 versions, ranging from v.1.0ṽ.3.0, but in the
following section, we give a brief introduction to the most important version HL7 v.3.0
only.

28 2. Background

HL7 v.3.0

HL v.3 represents a departure from the v.2.x series as it adopts a new methodology for
developing messages. Historically, v.2 did not have a rigorous development methodology,
and consequently, different parts of the standard were developed in different ways. HL7
v.3, however, has a specific and rigorous methodology that ties together over-arching
information and application interaction models with messages and message sets, and ties
those in turn to syntax and semantics specifications [59]. The v.3.0 was being built around
a single object model, named RIM (Reference Information Model), which contained 123
classes, 179 associations and 890 attributes in the first implementation. HL7 v.2.x was
mostly focused on the general triggers, structure, and layout for communication, while
v.3.0 is more focused on specific contexts, terminology, models, and conceptual definitions
and relationships.

After 10 years of development, HL7 v.3.0 was released for the first time in the form
of the ”Normative Edition 2005”. HL7 v.3.0 has been adapted right now to support:
large scale integration (state/province, region, country), public health, decision support,
and research. HL7 v.3.0 is the standard of choice for countries and their initiatives to
create national EHR and EHR data exchange standards as it provides a level of semantic
interoperability, unavailable with previous versions and other standards.

HL7 is like a language and every language has a grammar. The HL7 RIM specifies
the grammar of HL7 messages and specifically the basic building blocks of the language
and their permitted relationships. The RIM is neither a model of healthcare, though it
is healthcare specific, nor is it a model of any message, though it is used in messages. At
first site the RIM is quite simple, as the RIM backbone has just five core classes and a
number of permitted relationships between them. In HL7 v.3.0, every event is an Act,
which is analogous to a verb in English. Each Act may have any number of Participations,
in Roles, played by Entities. These are analogous to nouns. Each Act may also be related
to other Acts, via Act-Relationships. Act, Role and Entity classes also have a number
of specializations, for example, Entity has a specialization called Living Subject, which
itself has a specialization called Person. Person inherits the attributes of both Entity and
Living Subject.

HL7 CDA

HL7 Clinical Document Architecture (CDA), which was until recently known as the Pa-
tient Record Architecture, provides an exchange model for clinical documents, such as
discharge summaries and progress notes. CDA was approved as an ANSI standard in
November 2000 and it brings the healthcare industry closer to the realization of an
electronic medical record. By leveraging the use of XML, the HL7 RIM and coded vo-
cabularies, the CDA makes documents both machine-readable so they are easily parsed
and processed electronically, and human-readable, so they can be easily retrieved and
used by the people who need them. CDA documents can be displayed using XML-aware
web browsers or wireless applications such as cell phones.

2.6.2 DICOM

DICOM (Digital Imaging and Communication in Medicine) [60] is a standard which
defines a method of communication for the various equipments of digital medical imaging
devices and software (modalities). It specifies a network protocol utilizing TCP/IP,
defines the operation of service classes beyond the simple transfer of data, and creates

2.6 Medical Device Communication Protocols 29

a mechanism for uniquely identifying information objects as they are acted upon across
the network. DICOM is also structured as a multi-part document in order to facilitate
extension of the standard. Additionally, DICOM defines information objects not only
for images but also for patients, studies, reports, and other data groupings. With the
enhancements made in DICOM version 3.0, the standard is ready to deliver on its promise
not only of permitting the transfer of medical images in a multi-vendor environment,
but also facilitating the development and expansion of PACS (Picture Archiving and
Communication Systems) and interfacing with medical information systems. Fig. 2.6

Figure 2.6: Electronic radiology practice and its components

illustrates the usual electronic radiology practice in the hospitals. Image acquisition
combined with image management and interpretation is generally considered together
as PACS. The communication of the PACS with the other electronic systems in the
radiology department, i.e. Radiology Information System, and institution, i.e. Hospital
Information System is essential to fully realize the implementation and benefits afforded
by automation. Even though the effect of PACS is far greater outside the radiology
department, the function of PACS within the department can be markedly different
depending upon the proper design and function of these interfaces.

2.6.3 ASTM

The most relevant standards from ASTM [61] are the standards from the committee E31
on ”Healthcare Informatics”. This committee is recognized as an accredited organization
by ANSI, and the following standards are the most widely used relevant standards in the
field of health care informatics [62][63].

• ASTM E1238 standard specification for transferring the clinical observations be-
tween independent systems. This standard is developed by the ASTM subcom-
mittee E31.11. This standard is being used by most of the largest commercial
laboratory vendors in the United States to transmit laboratory results. It has
been incorporated into the Japanese Image Store and Carry standard. HL7 has
incorporated E1238 as a subset within its laboratory results message format.

• ASTM E1394 standard specification for transferring information between clinical
instruments. This standard was developed by ASTM Subcommittee E31.14 and is
being used for communication of information from laboratory instruments to the

30 2. Background

computer systems. This standard has been developed by a consortium consisting
of most U.S. manufacturers of clinical laboratory instruments.

• ASTM E1460 standard specification for defining and sharing modular health knowl-
edge bases (Arden Syntax). This standard was developed by ASTM Subcommittee
E31.15. The Arden Syntax provides a standard format and syntax for represent-
ing medical logic and for writing rules and guidelines that can be automatically
executed by computer systems. Medical logic modules produced in one site-of-
care system can be sent to a different system within another site-of-care and then
customized to reflect local usage.

• ASTM E1467 standard specification for transferring digital neuro-physical data
between independent computer systems. This standard was developed by ASTM
Subcommittee E31.16, and it defines codes and structures needed to transmit
electro-physiologic signals and results produced by electro-encephalograms (EEG)
and electro-myograms. The standard is similar in structure to ASTM E1238 and
HL7, and has been adopted by most of the EEG systems manufacturers.

2.6.4 ANSI/IEEE 1073

ANSI/IEEE Standard 1073 [64], which is also known as Medical Information Bus (MIB),
is one of the famous standards for medical device communication, which leverages the
advantages of standardization to the problem of patient-connected device interfacing.
In comparison to single-vendor proprietary networks, MIB comprises a truly open sys-
tem, public domain standard. It provides a robust, cost effective answer to the need for
guaranteed electrical and mechanical safety, and data integrity. Moreover, it guarantees
plug-and-play interoperability between all devices from any manufacturer by specifying
a common communication protocol for all devices. This provides hospital users the free-
dom to move equipment around an institution, while eliminating any concerns regarding
interfacing compatibility. In addition, MIB allows for great reductions in software de-
velopment and maintenance costs for device manufacturers, clinical software developers,
and hospital end users by specifying a common data language applicable to all devices
from all manufacturers.

The purpose of the MIB family of standards is to enable the automatic and universal
capture of clinical data from any type of bedside device, from any manufacturer, and
for this purpose, MIB is highly optimized for real-time device communications in an
acute care environment. Fig. 2.7 [64] illustrates a generic example of the use of MIB
for bedside device interfacing, where MIB bedside subnetwork consists of a configuration
with multiple patient-connected devices interfacing to a bedside hub. In MIB terminology,
the hub is called the bedside communication controller, or BCC. Each patient connected
device interfaces by means of a device communication controller, or DCC, which can
be either an external converter box, or an embedded implementation. The purpose of
an external box is to convert between an RS-232, RS-422, RS-423, RS-485, 4 to 20mA,
analog, parallel, or other legacy device interface, and an MIB DCC.

2.6.5 CEN/ISO/IEEE 11073

Since 1993 a set of open CEN (European) Standards, for point-of-care device commu-
nication has been created to provide the ability to connect devices to each other freely
and to exchange data between them. These standards worked to complement those of
the IEEE 1073, not to be competitive. In 2000 it was agreed that CEN, ISO and IEEE

2.6 Medical Device Communication Protocols 31

Figure 2.7: Typical ANSI/IEEE 1073 (MIB) Environment

would jointly migrate and publish this work in a single set of standards, designated as
11073 [65], for point-of-care device communication under the general leadership of IEEE.
In 2003 the IEEE approved the core standards, the domain information model, the com-
mon nomenclature, the basic communications profiles and two arrangements defining the
underlying transport mechanism. In early 2004, approval of these five 11073 standards
within CEN and ISO was achieved, with more already in the balloting process. Alongside
the core standards, application profiles have been defined for specific types of devices,
such as dialysers, ventilators, monitors and infusion pumps.

2.6.6 IHE

Integrating the Healthcare Enterprise (IHE) [66] is an initiative taken by healthcare pro-
fessionals and industry in 1997 to improve the way computer systems in healthcare share
information. IHE promotes the coordinated use of established standards such as DICOM
and HL7 to address specific clinical needs in support of optimal patient care. The sys-
tems developed in accordance with IHE communicate with one another better, are easier
to implement, and enable care providers to use information more effectively. Physicians,
medical specialists, nurses, administrators and other care providers envision a day when
vital information can be passed seamlessly from system to system within and across de-
partments and made readily available at the point of care. IHE is designed to make their
vision a reality by improving the state of systems integration and removing barriers to
optimal patient care.

32 2. Background

2.6.7 EDI

EDI (Electronic Data Interchange) is the computer-to-computer exchange of structured
information, by agreed message standards, from one computer application to another by
electronic means and with a minimum of human intervention. In common usage, EDI
is understood to mean specific interchange methods agreed upon by national or inter-
national standards bodies for the transfer of business transaction data, with one typical
application being the automated registration of a patient in a hospital. Despite being
relatively unheralded, in this era of technologies such as XML Web Services, the Inter-
net and the WWW, EDI is still the data format used by the vast majority of electronic
commerce transactions in the present computing world.

The EDI standards were designed from the beginning to be independent of lower level
technologies and can be transmitted using Internet protocols as well as private networks.
It is important to differentiate between the EDI documents and the methods for transmit-
ting them. There are two major sets of EDI standards. The first one is UN/EDIFACT,
which is the only international standard (in fact, a United Nations recommendation) and
is predominant in all areas outside of North America. The second is ANSI ASC X12
(X12), which is popular in North America and used worldwide. These standards pre-
scribe the formats, character sets, and data elements used in the exchange of documents
and forms, such as purchase orders (called ORDERS in UN/EDIFACT and an 850 in
X12) and invoices. These standards say which pieces of information are mandatory for
a particular document, which pieces are optional and give the rules for the structure of
the document.

Interfacing systems is one of the key challenges faced by IT staff of any healthcare
institution. Understanding the differing implementations of standards in various vendor
systems and trying to find ways to reconcile them is an expensive, labor-intensive and
often painful process. IHE offers a common framework for vendors, IT departments,
clinical users and consultants to understand and address clinical integration needs. The
IHE technical framework allows flexibility while ensuring that key integration needs are
met. IHE promotes integration within and across all units of the healthcare enterprise.
The initial successes of IHE were achieved in radiology and the IHE initiative in radiology
remains very active. The IHE process has since been adopted in other domains, as
well: IT infrastructure, cardiology, laboratory, and medication management. Working
in coordination with the others, each of these domains will develop its own technical
framework and integration profiles, and implement its own testing and demonstration
process. [66].

2.7 ICT Infrastructure in the Hospitals and Clinical
Environments

In the existing ICT (Information and Communication Technology) infrastructure in the
hospitals, laboratories and clinical environments, different types of information systems
and medical devices are used, provided by different manufacturers and vendors. Some
of the leading manufacturers of hospital information systems (HIS) are Agfa healthcare,
Fujifilm medical systems USA, GE medical systems, Philips medical systems, Siemens
medical system and SAP etc. Some of the leading point-of-care devices’ manufacturers are
Roche Diagnostics, BD, Bayer Healthcare, CARESIDE medical etc. Most of the time,
the devices manufactured by these companies are compliant to their own proprietary
protocols, and are interoperable only to their own developed information systems.

2.8 e-Health 33

Modern hospitals have at least two data processing systems, one system for finances
and general administration, while the other for patient administration and basic pa-
tient data (demographics, diagnoses and procedures) [67]. In many cases there are other
systems, which are often dedicated departmental systems e.g. system in chemical lab,
system(s) in radiology department (RIS and PACS), ICU patient data management sys-
tem, etc. These data processing systems are dedicated to the processes internal to the
departments and in many cases they deal with device data, e.g. control of the analytic
equipment in the chemical lab and collection of measurement data, collection and storage
of radiological pictures, collection of measurement data of patient monitoring and thera-
peutic devices in ICU. These systems normally communicate in two different directions,
one to devices, and one to hospital information system (HIS). The data collected from
devices, images, waveforms, etc. must be readable for machinery and not necessarily be
readable by humans. Often this data is understandable by humans only if available in
the graphical representation. Nevertheless, these systems communicate with the HIS too
in order to receive e.g. demographic data of patients. That can be described by different
levels of communication, the HIS or enterprise level, and the departmental or device level.

In fact, communication to the HIS and communication with devices is rather different
in nature and indeed there are big differences between e.g. the communication with radi-
ology machinery and to devices in the ICU. The data representation and communication
requirements are very different between these domains, e.g., the radiology images to com-
municate and store are rather huge, while the messages in ICU device communication are
rather small compared to image communication. The ICU device communication needs
alert messages and real time communication.

In Fig. 2.8, the communication of HIS or enterprise level, as well as the departmental
or device level is shown. The Domain/Enterprise Level concerns the communication in
the whole hospital, communication between different hospitals, and exchange with health
care professionals outside the hospital and with health care organizations. Mostly, HL7
standard is used for the communication of patient’s medical data on this level, resulting
successfully interfacing the HISs, insurance companies and public health organizations.
HL7 v.3.0 is the latest version which has been developed and has strongly influenced the
future ISO and CEN standards for enterprise level communication in healthcare after
establishment of co-operation between CEN/TC251 and HL7 organizations.

The communication on Device/Departmental Level is mostly limited to a single de-
partment or parts of a single department (ICU) only. As a typical departmental communi-
cation standard, as already shown in Fig. 2.8, the DICOM standard is used to exchange
images between different modalities like CT (Computer Tomographs), MRI (Magnetic
Resonance Tomographs) etc., to diagnostic workstations, PACS (Picture Archiving and
Communication Systems) etc. The ASTM-1394 standard for the exchange of data be-
tween analytical instruments and laboratory information systems is another example used
on the departmental level, usually inside clinical chemistry or lab subsystems.

2.8 e-Health

This section describes briefly about e-Health, healthcare, e-Health systems and their
challenges w.r.t interoperability.

In the current communication era, governments and health organizations have real-
ized that the cost-effective application of technologies (including Information Technology,
communications, medical devices and telemetry solutions) can assist in improving access
to health services and in achieving better quality care and health outcomes. To success-

34 2. Background

Figure 2.8: The interoperability of medical devices and information systems in hospitals

fully achieve these services, e-Health [68] is the best choice to be opted.
e-Health is an emerging field encompassing the convergence of Telematics, health

informatics, healthcare services & business, and refers to healthcare services/information
delivered by or enhanced through technologies such as the Internet, UMTS, WLAN, and
Body Area Networks. In a broader sense, the term e-Health denotes not only a technical
development, but also an organizational mind-set with the goal of improving quality of
care by using Information and Communication Technology [69].

e-Health solutions have been used in all forms of electronic health-related service
delivery ranging from informational, educational, and commercial products to direct
services offered by professionals, non-professionals, businesses and consumers themselves.
e-Health services encompass the ”five C’s” [70].

• Content (health-related information e.g. disease management).

• Connectivity (communication channels between care providers, consumers, and or-
ganizations).

• Community (support groups).

2.8 e-Health 35

• Commerce (online marketing and sales of health-related products and/or services).

• Clinical care (clinical diagnostic services, over-the-counter and prescription medi-
cations).

e-Health uses the following encompassing technologies [71]:

2.8.1 Use of multiple technologies

e-Health spans over the use of multiple technologies, including:

• Information technology (e.g., computers, software applications, multimedia de-
vices).

• Telecommunications technology (e.g., wire-based and wireless networking devices).

• Telemetry (e.g., medical devices capable of measuring a patientŠs state of health
remotely).

2.8.2 Multiple modes of interaction

e-Health supports multiple modes of interaction among participating parties, which are:

Real-Time

All parties directly participate in an e-Health session at the same time. For example, at
a pre-scheduled date and time, a patient accompanied by a general practitioner in a rural
hospital make a videoconferencing connection with the patient’s psychiatrist located at
the psychiatry care center. Live interactive consultation takes place between the patient,
the general practitioner, and the psychiatrist.

Store-and-forward

Involves compilation of data (store) and transfer of the data to the receiving party (for-
ward). This method of interaction does not require the parties to participate at the same
time. For example, in a rural community, a patient x-ray is scanned and captured as an
electronic file. This file, along with accompanying medical notes, is sent electronically to
the radiologist in the tertiary care center, who reviews the x-rays and notes and confirms
and/or makes a diagnosis. The radiological report is then returned to the rural care
facility.

Streaming

Involves the delivery of real-time or stored multimedia data such as audio, video, docu-
ments, and still-images across networks with a reasonable amount of quality of services.
At the receiving site, multimedia data is presented (played, displayed) before the entire
content arrives. In other words, data continues to download in the background, while it
is presented. For example, physicians located at care centers in different provinces par-
ticipate in a videoconferencing session to discuss a complex cardiac case. The physician
who examined the patient’s heart transfers a video file captured during an ultrasound
exam to the participants to support his/her recommendation for patient’s treatment.

It is important to understand that the term e-Health does not necessarily imply the
use of the Internet, but also e-Health Web enabled applications can work over private

36 2. Background

networks using dial-up or dedicated telecommunication links. The ultimate goal of the
e-Health strategy is to link a myriad of clinical applications together to provide the right
information to the right person at the right place and time. It is critical to state the
importance of this in the changing healthcare environment because it means that the
care providers will have the intuitive access to the entire depth of clinical information.

2.8.3 Examples of e-Health Applications

In this section, we examine some examples of the e-Health applications, which include:

Electronic Health Record (EHR)

EHR is a secure corpus of accessible patient files with critical information required in
order to manage the health of the patient effectively.

Tele-health/e-Homecare

Tele-health provides a means of using telecommunications to deliver more services to
persons in outpatient settings. Additionally, this includes the real-time and store-and-
forward technologies designed to improve the consultation process. In addition to this,
e-Homecare consists of new products, such as clinical devices or even wearable biochemical
sensors for tracking any number of physiologic measurements and transmitting them via
discrete wireless mechanisms to a constant monitoring system.

Clinical Lab Reports

Applications allowing for the searching and tabulating of all clinical and diagnostic lab
information related to the patient.

Radiology/PACS

The systems that are able to acquire, transmit and store digital radiology examinations.

Disease Self Management Programs

The systems by which caregivers can gain access into the home, through the provision
of care plans administered in conjunction with video and/or Web based technologies;
also accessible by the patient to provide ongoing monitoring of physiological patient
parameters.

Internet based e-Learning tools

Publicly assessable information from peer reviewed websites with clinical information,
treatment protocols and user groups designed for the education and empowerment of the
new clinical consumers.

Personal Digital Assistants (PDA)

A hand-held computer loaded with personal productivity tools such as a calendar, ad-
dress book, word processing, and spreadsheet functions. Mobile workers use PDAs and
work with central databases either with wireless connections using cellular phones or by
synchronizing with the host computer with the cradle. Recent interest in the physician

2.8 e-Health 37

e-Health market focused on prescription writing, digital voice dictation or recognition for
note taking, and direct access to patient centric database from anywhere at anytime.

e-Pharmacy/e-Prescribe

These are usually wireless Internet based systems that allow physician to transcribe
a prescription on a PDA device to a remote pharmacy able to deliver the drugs to
where a patient is located. Integrated applications include drug interaction tables, dosage
protocols, etc.

In order to reach its full potential, e-Health has to meet with several conditions before
it becomes commonly used in the health service delivery system. These conditions include
adequate service quality, health system functionality, and interoperability.

2.8.4 What is e-Healthcare

Healthcare is a vital part of the economy and important to every citizen, and yet the
healthcare economy has not benefited from the technology revolution that is fundamen-
tally changing whole industries. Leading software companies i.e. Microsoft and IBM
believe that the present time is right for the technology to have a dramatic and fun-
damental impact in improving healthcare delivery, payment and personal health man-
agement. In healthcare domain, e-Health initiatives are designed to present proactive,
coordinated, and evidence-based healthcare where the clinical, social and technological
issues are combined to create a flexible patient-focused healthcare system.

e-Healthcare is defined as a way of delivering and achieving better health outcomes
through effective and innovative use of health information. It includes in the health
sector the use of digital data-transmitted, stored and retrieved electronically-for clinical,
educational and administrative purposes, both at local site and at a distance [19].

The aim of e-Healthcare is to provide high quality healthcare to all health consumers;
to increase homecare by remotely monitoring the chronically ill patients in their homes;
and to reduce the need for hospital care for patients. It is also to develop preventive health
education and through the use of information technology reduce errors, waste and costs.
This is being achieved through the interchange of collaborative multiple healthcare teams
across regional, interstate and international boundaries and by the projection of specialist
medical and surgical expertise to rural and remote areas. It is also being developed by
the instant access to comprehensive secure, reliable and standardized health records; the
integration of hospital, community, insurance industry, pharmacy, government, home and
educational health management systems; and the provision of computer based training
programs to health professionals [19].

This revolution will be hugely significant and it is relevant to the key problems faced
by the industry today, such as:

• Improving patient safety

• Reducing costs

• Decreasing the time to develop and release new drugs and medical devices

• Improving the quality of care and outcomes achieved

• Improving the efficiency of processes for coordinating and paying for care

38 2. Background

2.8.5 e-Health Challenges

More than any other recent development, e-Health bridges the barriers between telecom-
munications and Information technologies. While regulation, standardization and in-
teroperability form the base of the telecommunications industry, the IT industry (the
desktop computing industry in particular) has achieved success by encouraging innova-
tion and diversity. While this strategy has resulted in rapid technical advances as well as
tremendous cost-effectiveness and efficiencies, it has also suffered from proprietary and
evolving standards, and the consequent interoperability problems.

While changing the business culture of these industries is a long-term goal, there are
other challenges that the e-Health industry must deal with in short-term [71]. Some of
these include:

Limited clinical guidelines

The general-use and well established standards being used in the healthcare sector (e.g.
HL7, DICOM) are being complemented by e-Health specific clinical guidelines and pro-
tocols. The list of e-Health guidelines includes telephone triage, Teleradiology, homecare,
Telesurgery, and health call center applications. Their scope, however, is limited to
specific clinical applications and, in some cases, to specific projects.

Limited functional alignment

There is no official e-Health standard. The e-Health industry uses high-level healthcare
guidelines and technical standards developed for various technology sectors including
multimedia conferencing, information technology, data communications, security, and
the Internet. These standards focus on functional requirements of these sectors and do
not necessarily address the needs of the healthcare system.

Limited interoperability

In the current implementations, there is no interoperability standard for e-Health systems
and networks in order to provide seamless interoperability. As a consequence, there is no
plug-and-play e-Health technology platform.

Limited integration

e-Health systems do not typically offer tools to integrate with other systems to provide a
seamless interface and most of the times, the e-Health networks are implemented as stand-
alone solutions, and are not integrated with any other systems or business processes.

Monolithic and non-expandable architecture

Today, the closed and monolithic architecture of e-Health systems offers limited autonomy
and scalability. System components are tightly coupled, so most implementation changes
(e.g. addition or removal of components, or changes in their implementation) impact the
architecture of the entire solution.

2.8 e-Health 39

Limited failure recovery

e-Health solutions offer very limited capabilities to recover from failures, or to continue
operating in a degraded mode until the failure is repaired. Typically, a failure of a system
or a system component affects the entire e-Health solution.

To overcome these challenges, it is necessary to define both the functional model and
the architectural framework for e-Health systems. While the functional model must be
compliant with the requirements of the healthcare systems, the architectural framework
must be based on a plug-and-play computing paradigm, distributed processing principles
and open technology standards.

Chapter 3

Related Work

Although, several initiatives have been studied that have experimented the integration
of Semantic Web and Web Services technologies into ubiquitous computing architectures
in the last years, but this chapter is devoted to have an overlook on most relevant of
them, which include HYDRA, SODA, Task Computing, Gaia and SCALLOPS research
projects. First of all, it outlines the evaluation criteria, in comparison with the pros
and cons of these initiatives with our envisaged architecture for the ambient intelligent
medical or mobile devices, and then it identifies the constituent parts of these initiatives,
up-to what extent they have applied the Semantic Web and Web Services technologies,
and their contributions in the corresponding domains.

3.1 Evaluation Criteria

In this section, we define a set of evaluation criteria by analyzing and evaluating state-
of-the-art architectures, and determine how our proposal ranks in comparison with these
architectures. Most of the selected criteria can be found, implicitly or explicitly, through-
out all the literature concerning ubiquitous and pervasive computing architectures. The
examples of these criteria are decentralization, context-awareness, autonomy and/or stan-
dards adherence, while other criteria are more specific to our research goals, i.e. having
reasoning capability (inferencing) on medical devices, and communication with other
medical or mobile devices through Web Services technology. In the following sections,
we have organized the criteria into three different categories, namely Architectural, Tech-
nological and Intelligence, depending on their nature.

• Architectural

– Decentralization: At the core of any ubiquitous computing system, de-
centralization endorses a spontaneous and unanticipated nature, non-critical
components in the architecture, ad-hoc reconfiguration according to the situa-
tion, and natural deployment of elements and scalability. However, the design
and planning of decentralized systems is more difficult, as well as resulting
in a higher load of network traffic due to synchronization and coordination
messages.

– Lightness: The architectural elements and software components in partic-
ular should be designed in such a way that they could be easily embedded

41

42 3. Related Work

in resource-constrained systems, i.e. medical or mobile devices, as well as
promote operational simplicity if possible.

• Technological

– Standards Adherence: It represents the degree to which the envisaged
system reuses and applies the widely accepted standards, thus taking advan-
tage of previous R&D work and promoting re-usability in the industry and
academia. The intention behind our research is to create new original work by
assuring the highest possible degree of standards adherence. Please note that
we exclude the discussion of adherence to the medical (device) communication
standards, as neither the frameworks discussed in this chapter support the
most commonly used medical (device) communication standards, nor, to the
best of our knowledge, any known SOA framework support them.

– Technological Consistency: It represents the degree of coherence among
the technologies used for the development of a system. The complementary
technologies must be applied, if possible, in order to obtain synergistic perfor-
mance and future re-usability.

• Intelligence

– Reasoning Capability: It is the ability of the system to acquire and apply
knowledge via reasoning (inferencing) process. In order to create the next gen-
eration of ambient intelligent medical or mobile devices, artificial intelligence
techniques must be applied to a certain degree.

– Context-Awareness: In simple terms, it is the ability of the system to
perceive and identify the relevant information from an environment and ac-
tively respond according to the defined rules. Context-awareness is inevitably
required to meet the ultimate goals of ubiquitous computing and ambient
intelligent environments.

The above-mentioned criteria are not completely isolated, rather certain dependencies
exist among some of them in such a way that the degree of fulfillment in one concrete
criterion can affect the other in a positive or negative manner. A high degree of decen-
tralization favors the design of distributed lightweight components, instead of a bulky
and heavy central controller. Lightweight components make the actual implementation
feasible, but they also reduce the degree and quality of the embedded reasoning processes,
which normally demand some amount of software complexity. The Reasoning Capability
affects lightness negatively in the same way, since the more reasoning power the device is
provided with, the heavier the component becomes. However, it promotes the context-
awareness and autonomy, which can take advantage of the built-in intelligence to react
accordingly. The Context-Awareness promotes autonomy, since architectural components
can self-regulate their behavior depending on the context information provided by the
surrounding entities. The Technological Consistency can significantly reinforce APIs re-
usability during the implementation, thus promoting more lightweight components that
would be negatively affected by mixing up non-complementary technologies. At the same
time, we consider that technological consistency simplifies the overall design by taking
advantage of the existing mechanisms, procedures and interfaces.

Not all these criteria are equally important, but depending on the desired strengths
of the resulting architecture, some of them must be promoted. We will focus primarily
on maximizing decentralization, reasoning capability, lightness and standards adherence,

3.2 HYDRA 43

and, in a lesser extent, technological consistency and context-awareness. Table 3.1 enu-
merates the criteria with relative weights depending on their importance to our goals.

Table 3.1: Criteria’s relative weights of importance

Criterion Weight
Decentralization 4
Reasoning Capability 4
Lightness 3
Technological Consistency 3
Standards Adherence 2
Context Awareness 1

3.2 HYDRA

The HYDRA1, an FP6 European Commission funded Integrated Project, addresses the
problem that is frequently faced by producers of devices and components - the need for
(which is actually becoming a trend) networking the products available on the market
in order to provide higher value-added solutions for their customers [17]. This require-
ment is implied by citizen centered demands requiring intelligent solutions, where the
complexity is hidden behind user-friendly interfaces to promote inclusion. The vision of
the HYDRA project is ambitious: ”To create the most widely deployed middleware for
intelligent networked embedded systems that will allow producers to develop cost-effective
and innovative embedded applications for new and already existing devices”.

HYDRA develops a middleware based on a Service-Oriented Architecture (SOA), to
which the underlying communication layer is transparent. Hydra middleware is designed
to run on a variety of stationary and mobile devices, and includes support for distributed
as well as centralized architectures, security and trust, reflective properties and model-
driven development of applications. It is deployable on both new and existing networks
of distributed wireless and wired devices, which operate with limited resources in terms
of computing power, energy and memory usage. It allows for secure, trustworthy, and
fault tolerant applications through the use of novel distributed security and social trust
components and advanced Grid technologies.

The embedded and mobile Service-Oriented Architecture provides interoperable ac-
cess to data, information and knowledge across heterogeneous platforms, including Web
Services, and support true ambient intelligence for ubiquitous networked devices. Fur-
thermore HYDRA develops a Software Development Kit (SDK), which will be used by
developers to develop innovative Model-Driven applications using the Hydra middleware,
where middleware and connected devices enable the developers to implement applications
that depend on and adapt to context information. In particular, the developers stress
the acquisition and management of spatial context information that allows for locating
devices attached to the system and for the positioning of people and assets. The HYDRA
project validates the middleware, the SDK toolkit in real end-user scenarios in three user
domains, namely Building Automation, Healthcare, and Agriculture.

1http://www.hydramiddleware.eu

http://www.hydramiddleware.eu

44 3. Related Work

3.2.1 Software Architecture of HYDRA

The functional structure model of HYDRA middleware is divided mainly into two parts:
Application Elements and Device Elements, as shown in Fig. 3.1 [17]. Both ele-
ments differ in the following aspects:

• Power of the machine.

• Intended purpose of the components.

• Target developer user.

Figure 3.1: Structural Overview of the Hydra Middleware Layers

Application Elements

Application Elements describe components that are usually deployed on hardware which
is performance-wise capable of running the application that the solution provider creates.
This means these components are meant to be running on powerful machines. They have
been put together and configured to work together with other software in order to support
a specific application such as building automation by a specific developer, e.g. system
integrator.

Device Elements

Device Elements describe components that are usually deployed inside HYDRA-enabled
devices, so that they could be deployed in small devices as well which have limited

3.2 HYDRA 45

resources in terms of e.g. processing power or battery life. These components have a
limited set of functionality but could also be deployed on another machine acting as a
proxy for e.g. a mote where it would be highly unlikely that those managers would ever
be deployed on such a resource-limited device. They have been put on the device by
a device manufacturer to provide certain functions irrespective of which application is
using the device.
The HYDRA middleware elements are enclosed by the physical and the application layer
shown at the bottom and at the top of the diagram respectively. The physical layer
realizes several network connections like ZigBee, Bluetooth or WLAN. The application
layer contains user applications which could contain modules like workflow management,
user interface, custom logic and configuration details. These two layers are not part of the
HYDRA middleware. The middleware itself consists of three layers - the network, service
and semantic layer, where each layer holds elements according to their functionality
and purpose. It is to be noted that some device elements have similar and thus like-
wise named, counterparts among the application elements. Both, device and application
elements, have a Security Manager, which is an orthogonal service and depicted as vertical
to cover all three middleware layers.

Figure 3.2: Hydra enabled healthcare application using Service-Oriented Architecture

46 3. Related Work

3.2.2 Healthcare Scenario of HYDRA

A common problem for the manufacturers of medical devices and for developers of e-
Health systems is the lack of interconnectivity and interoperability of the various propri-
etary components and subsystems. The Hydra middleware enables devices and subsys-
tems to communicate and allow developers to develop intelligent, secure, multi-parametric
healthcare services using a range of medical devices and subsystems. Fig. 3.2 shows an
envisaged HYDRA healthcare scenario using Hydra devices, where the patient is being
monitored with the attached devices, e.g. glucose meter and blood pressure devices etc.,
and the medical data is transferred to the home-care services provider, whenever the
measurement is performed. In case of emergency, an alert message is sent in parallel to
the registered relative of the patient so that s/he could approach the patient immediately
besides the emergency services provider.

3.2.3 Conclusion

The HYDRA research project is one of the most relevant research projects related to our
research goals. The vision of the HYDRA project is to create the most widely deployed
middleware for intelligent networked embedded systems that will allow producers to
develop cost-effective and innovative embedded applications for new and already existing
heterogeneous physical devices. The embedded and mobile Service-Oriented Architecture
will provide interoperable access to data, information and knowledge across heterogeneous
platforms, including Web Services, and support true ambient intelligence for ubiquitous
networked devices.

However, there are few drawbacks in HYDRA in comparison with our approach. First
of all, the HYDRA project does not target the resource-constrained devices themselves,
rather it provides an HYDRA device, which is usually a PC/notebook, that acts as
a proxy for the resource-constrained devices and expose their functionalities as Web
Services. It means that the existing resource-constrained devices have to be connected to
a PC/notebook, requiring high computing and memory resources. Secondly, the HYDRA
project lacks with the use of any semantic discovery protocol for the desired physical
devices, which means that the simple discovery protocol, i.e. SSDP of UPnP, is enhanced
and used to discover the pre-defined physical devices.

The following sections provide analysis of HYDRA against our defined evaluation
criteria, and the conclusion is summarized in Table 3.2.

• Decentralization: HYDRA is a combination of pure Peer-to-Peer network tech-
nologies and traditional Web Service technologies allowing any device to offer, iden-
tify, and consume Web Services transparently from the application developer point
of view. Very High.

• Lightness: The Hydra middleware requires a PC/notebook based Hydra device
to interconnect other resource-constrained devices. Low.

• Standards Adherence: The standards and recommendation, i.e. OWL, OWL-S,
SAWSDL, UPnP are honored. High.

• Technological Consistency: HYDRA applies Web Services and Semantic Web
technologies in a coherent and synergistic manner. High.

• Reasoning Capability: Different ontologies, including Security ontology and De-
vice ontology have been developed to support the reasoning process on a HYDRA
device. High.

3.3 SODA 47

• Context Awareness: There are few ontologies developed to represent different
contexts in the envisaged scenarios. High.

Table 3.2: Analysis of HYDRA against the evaluation criteria

Criterion Value
Decentralization Very High
Reasoning Capability High
Standards Adherence High
Lightness Low
Technological Consistency High
Context Awareness High

3.3 SODA

The SODA (Service Oriented Device and Delivery Architecture) project [15], an FP6
European Commission funded Integrated Project, targets to create a service-oriented
ecosystem2, built on top of the foundations laid by the groundbreaking SIRENA [72]
framework for high-level device communications based on the Service-Oriented Archi-
tecture (SOA) paradigm. The SODA project implements a comprehensive, scale-able
and easy-to-deploy SOA ecosystem on industry-favorite platforms, supported by wired &
wireless communications. The service infrastructure for real-time embedded devices used
as a foundation for the SODA project is defined in a platform-, language- and network-
neutral way, applicable to a wide variety of networked devices for diverse applications in
domains like industrial automation, automotive electronics, home & building automation,
telecommunications, medical instrumentation, etc.

The SODA project is intended to:

• Implement a complete ecosystem for designing, building, deploying and running
device based applications leveraging the service-oriented breakthrough provided by
the SIRENA framework:

– Providing a complete set of tools for the entire system life-cycle support.

– Developing and extending the run-time infrastructure in term of performances,
serviceability, and security.

– Insuring seamless integration of device-provided services with high-level busi-
ness processes.

• Develop elaborated experimental applications in several application domains, i.e.
industrial automation, telecommunications, home networking and automotive elec-
tronics, to validate the usage of the SOA paradigm at a broad scale and promote
its standardization in several vertical application domains.

• Conduct feasibility studies on application of the device-level SOA approach in ap-
plication areas thus far unexplored.

2An Ecosystem is a combination of all the living (organisms or actors) and non-living elements
(environment) of a complex area organized in a perfect harmony functioning as a whole. In the context
of the SODA project, the living elements are similar to the run-time components of a particular SODA
system, and the non-living elements are similar to the tools used during design, deployment, etc.

48 3. Related Work

3.3.1 The SODA Ecosystem

A major result of the SODA project is a service-oriented ecosystem for embedded devices,
neutral with respect to operating systems and programming languages and independent
from physical resources, networks and protocols, as well as from application domains.
This ecosystem is built on top of the foundations laid by the SIRENA framework, and
features:

• an infrastructure for service-oriented systems based on embedded devices.

• a methodology and guidelines helping users to move from traditional architectures
towards service-oriented ones.

• a tooling chain supporting the design, development and operations of service-
oriented applications.

This ecosystem supports a substantial improvement of overall software quality by
automating design and deployment tasks as much as possible, as well as applies novel
service testing and validation methodologies and tools. In order to support the use of
SOA concepts in device-based architectures, the ecosystem needs to fulfill the following
requirements:

• Enable services on devices: publish basic device functionalities as coarse-
grained, self-contained and manageable service components.

• Enable service composition: build higher-level functionalities through an ex-
plicit composition model and dynamic component binding capabilities

• Provide connectivity and adaptative quality of service: through built-in
infrastructure capabilities, performances, security, management, and reliable mes-
saging.

• Improve the product development and deployment life cycle: by leveraging
the SOA approach.

Fig. 3.3 [73] highlights the SODA approach to realize its ecosystem. The right-hand
side depicts the run-time environment, for which the results of SIRENA project, and in
particular the Device Profile for Web Services (DPWS) [74] stack provides the high-level
SOA infrastructure for device communication. The DPWS defines a minimal set of im-
plementation constraints to enable secure Web Service messaging, discovery, description,
and eventing on resource-constrained devices. Its objectives are similar to those of UPnP
but, in addition, DPWS is fully aligned with Web Services technology and includes nu-
merous extension points allowing for seamless integration of device-provided services in
enterprise-wide application scenarios. The left-hand side depicts a comprehensive de-
velopment environment, which allows to aggregate devices into composite devices, to
design and generate applications using those devices, to deploy and manage devices and
applications, and to integrate devices into control and business applications.

3.3.2 Conclusion

Like HYDRA, SODA is one of the most relevant research projects related to our research
goals. It is the first step towards developing the SOA-based smart devices in different
domains, and fulfills many of the requirements for semantic interoperability of SOA-based

3.3 SODA 49

Figure 3.3: The SODA Approach

smart devices, except the semantic discovery and the provision of reasoning capabilities
entirely integrated on smart devices. SODA project provides an ontology, named SPMO
(SODA Process Modeling Ontology) [75] for semanticizing the descriptions of devices’
Web Services, in order to support semantic searching, discovery, invocation, composition
and monitoring of their services. There are few drawbacks in SODA in comparison with
our approach, i.e. the smart devices are not fully autonomous with respect to composition
and invocation of the Web Services that they host, as well as reasoning on the available
knowledge base that could help smart devices to make decisions and take the desired
actions to fulfill their tasks.

The following sections provide analysis of SODA against our defined evaluation cri-
teria, and the conclusion is summarized in Table 3.3.

• Decentralization: SODA ecosystem supports a mixed architecture in which some
devices are autonomous (having sufficient memory/processing capabilities to host
Web Services), while others (not having sufficient memory/processing capabilities)
expose their services through proxies running on a gateway connected to the central
network. High.

• Lightness: DPWS is targeted for the resource-constrained devices. Very High.

• Standards Adherence: The standards and recommendation, i.e. OWL-S, OWL
and DPWS are honored. High.

• Technological Consistency: SODA applies Web Services and Semantic Web
technologies in a coherent and synergistic manner. High.

• Reasoning Capability: Although, SPMO ontology is developed to semanticize
the Web Services’ descriptions, but no reasoning capability on smart devices is
supported. Low.

50 3. Related Work

• Context Awareness: The requirements for different domains are defined, but
lack with the definition of context awareness for the envisaged scenarios. Low.

Table 3.3: Analysis of SODA against the evaluation criteria

Criterion Value
Decentralization High
Reasoning Capability Low
Standards Adherence High
Lightness Very High
Technological Consistency High
Context Awareness Low

3.4 Task Computing

Task Computing3 (TC) technology is a joint effort by Fujitsu Laboratories of America
and the MINDSWAP group, devoted to Semantic Web research, at the University of
Maryland Institute for Advanced Computer Studies. The goal of TC is to ”fill the gap
between the tasks that users want to perform and the services that constitute available
actionable functionality” [76]. TC presumes initially that users do not know how to
achieve their goals when using computing facilities due to increased complexity at com-
puting environments and tasks, and tries to ease the process by providing the user with
an intelligent aid that hides the complexity of coordinating existing devices and services.

TC provides dynamic service discovery, service publishing and management, task
creation and execution on the fly [77]. It even assists users in discovering what their
goals are by suggesting possible tasks that can be performed with available facilities. All
these features try to solve the frustration of users in application-rich environments, where
they have to orchestrate a variety of devices and applications. Using Task Computing
they can focus on their final goal and accomplish it with a reduced number of simple
interactions.

Service composition can be seen as the ”process of creating customized services from
existing services by a process of dynamic discovery, integration and execution of those
services in a planned order to satisfy a request from a client” [78]. Some examples of
documented scenarios [79] that can be accomplished using TC technology are: exchanging
business cards, showing and sharing a presentation, scheduling a future presentation or
checking and printing directions to the airport. All of them are accomplished by sharing
services on different devices and orchestrating those services to create a workflow in order
to carry out the desired task. A prototype of TC has been implemented experimentally
for Smart Conference Rooms and Home Multimedia Environments [80] and the first
public results date back to 2003. It consisted in applying Semantic Web technologies to
Pervasive Computing scenarios for semi-automatic composition of tasks, based on their
previous research [77].

3Task Computing - the Technology; http://taskcomputing.org/

http://taskcomputing.org/

3.4 Task Computing 51

Figure 3.4: General Architecture of Task Computing Environment

3.4.1 Task Computing Architecture

Fig. 3.4 shows the TC architecture [81], which is composed of four different layers,
performing complementary activities:

• Realization Layer: It is the bottommost layer, directly representing available fa-
cilities. There are three different types of entities at this layer: devices, applications
and e-services over the Web.

• Service Layer: The available facilities from the Realization Layer are embodied
into the form of service at this layer and services interfaces are constructed. Se-
mantic Service Descriptions (SSD) comprising knowledge about these services are
also created in order to disseminate information.

• Middleware Layer: This layer is in charge of service discovery, service composi-
tion and execution, and other management activities such as Service Publishing. In
some way, it glues services created at the Service Layer with available underlaying
technologies to support transport and management functions over them.

• Presentation Layer: It is considered to be the most important layer in the ar-
chitecture. It provides the user with an abstraction of available tasks that can be
performed in the environment, hiding underneath complexity, and allowing the user

52 3. Related Work

to dynamically assemble components to perform the desired task. A client imple-
menting the Presentation Layer is usually referred to as Task Computing Client
(TCC) and makes use of well-defined interfaces to the Middleware Layer.

Task Computing is implemented in concrete Task Computing Environments (TCEs),
which are computational systems able to perform Task Computing functionality and
composed of Task Computing Clients, Semantic Service Descriptions, Semantic Service
Discovery Mechanisms and Service Controls. The detailed information about all of these
components is given in the afore-mentioned literature.

3.4.2 Conclusion

Task Computing is primarily a framework for services orchestration, composition, and
execution. All the mechanisms it features are aimed at service publishing and discovery,
semantic descriptions, service-ization of resources to make them available to any re-
quester, and so forth. These features can be implemented in multiple environments, not
being specially addressed for Ubiquitous Computing scenarios. In fact, Task Computing
applies well-known Internet-wide technologies such as UDDI for discovery or traditional
Web Services at external servers as endpoints. In order to assume a more context-aware
nature, Task Computing has embraced some pervasive computing technologies to com-
plement existing ones, such as UPnP’s Simple Service Discovery Protocol (SSDP) for
discovery, so services can be found both at a global level via UDDI and at a local level
via the group by subnet discovery range.

The following sections provide analysis of Task Computing technology against our
defined evaluation criteria, and the conclusion is summarized in Table 3.4.

• Decentralization: Task Computing is not aimed at creating a network of inter-
connected devices. The TCEs are intended to run in desktop computers or servers
that can be connected to UPnP or Jini networks if device control is required. Low.

• Lightness: The processes such as semanticization and serviceization as well as the
need of the Task Computing Client result in complex and heavy software compo-
nents. The devices need an amount of computing resources (i.e. processing power
and screen size) presently not available in every embedded platform. Low.

• Standards Adherence: In general, Task Computing honors the existing stan-
dards and technologies, i.e. OWL-S, WSDL, HTTP, UDDI, and even industry de
facto standards such as SSDP. High.

• Technological Consistency: Task Computing applies Web Services and Seman-
tic Web technologies in a coherent and synergistic manner. High.

• Reasoning Capability: Task Computing uses semantic information to annotate
service descriptions and perform service composition, but neither reasoning nor
domain ontologies are provided to understand context information. Low.

• Context Awareness: No form of capturing context or sensing environmental
conditions are provided directly by Task Computing, except for service discovery
mechanisms which is a technical issue and not related to context-awareness. Low.

3.5 Gaia 53

Table 3.4: Analysis of Task Computing against the evaluation criteria

Criterion Value
Decentralization Low
Reasoning Capability Low
Standards Adherence High
Lightness Low
Technological Consistency High
Context Awareness Low

3.5 Gaia

Since 2001, the research group at the Department of Computer Science of the University
of Illinois at Urbana-Champaign, led by Dr. Roy H. Campbell has been working on the
design of an infrastructure to support intelligent Ubiquitous Computing environments.
The Gaia project is the result of these efforts, constituting a software infrastructure to
support Active Spaces. An active space is a ”model that maps the abstract perception
of a physical space as a computing system, into a first class software entity” [82].

Thus, the active space acts as a mapping between the real and virtual space, connect-
ing both in such a way that real world actions affect virtual world objects and vice versa.
The active space hides the complexity of the real world elements into one unique entity
that provides functions for manipulating the space, discovering and locating internal en-
tities, storing and retrieving information from the space and so forth. The name Gaia
was adopted from the Gaia theory by James Lovelock that advocated for the earth as a
self-regulated super-organism, who in turn borrowed it from the Greek Earth Goddess.
The Gaia project tried to replicate the same global awareness and self-regulated behavior
for smart environments and their constituent elements.

3.5.1 Gaia Architecture

The Gaia Operating System (Gaia OS) is the core element of the whole architecture,
which is defined as a meta-operating system, running at the top of others and providing
a distributed communication model for coordinating active spaces [83]. Gaia is composed
of three main components, as shown in Fig. 3.5.

• Gaia Kernel: It provides basic services such as component life-cycle management
or remote component execution and management. Gaia relies on CORBA as under-
lying distributed component model, and extends some CORBA services to provide
the so-called Gaia services, such as Event Service, Context Service, Presence Ser-
vice, Space Repository and Context File System.

• Application Framework: It consists of a distributed component-based infras-
tructure following the MVC (Model View Controller) model, including new func-
tionality to manipulate component bindings, a mapping mechanism and poli-
cies/rules for application customization.

• Active Space Applications: These applications implement the desired functional
behavior in the active space, such as the Presentation Manager application that lets
the users present slides in multiple displays simultaneously, move slides from one
display to another, as well as move the input device functionality.

54 3. Related Work

Figure 3.5: General Architecture of Gaia

The mapping mechanism of the Application Framework offers the possibility of de-
scribing requirements to find the suitable real device to assign a functional behavior (for
example, audio output) so that matching devices can be found within the active space
to perform that function during a task. The interesting part is how Gaia represented
context in the form of a 4-components structure: Context(<ContextType>, <Subject>,
<Relater>, <Object>) that in many ways resembles that of the Semantic Web, for ex-
ample: Context(locatedIn,CoaguChekS, is,RoomLab123). Later, this model evolved into a
predicate-based representation of context information:

• Location(CoaguChekS, isOperating,RoomLab123)

• InternetConnectionStatus(Gateway, is,OffLine)

• User(Safdar, role,Admin)

During 2003, Gaia was extended with a semantic middleware layer for context awareness
endorsing existing Semantic Web technologies in order to model and annotate context
information, perform reasoning and carry out reactive behavior in response to context
changes [84]. DAML+OIL (later OWL) was selected to represent the context informa-
tion following a predicate model. In order to map the predicates onto the ontology, an
ontology class is created for each predicate structure. So, the above-mentioned Location
predicate becomes a Location ontology class with three possible relationships to denote
the information that was previously enclosed in the predicate parameters.

Representing the context in this way, operations such as search, querying, fusion and
so forth, become possible. There are several different entities involved in Gaia’s context
information infrastructure, as depicted in Fig. 3.6.

• Context Providers: These are the sources of context information, probably ob-
tained by sensors.

• Context Synthesizers: They retrieve context information from different providers
and perform some form of reasoning to infer new information making it available
to other agents. Both static rules and machine learning techniques (such as Naive
Bayes) can be applied to obtain new information.

3.5 Gaia 55

Figure 3.6: The Context Infrastructure in Gaia

• Context Consumers: They gather context information from providers and syn-
thesizers, reason about it and perform reactive behavior accordingly.

• Context Provider Lookup Service: It is used by the context providers, one per
environment, in order to publish the kind of context information they provide in
order to be found by context consumers.

• Context History Service: It contains database records, one per environment, of
the past context information to make them available to the requesting parties.

• Ontology Server: It stores ontologies, one per environment, for different types of
information.

3.5.2 Conclusion

Gaia fulfills many of the requirements established for a smart Ubiquitous Computing
architecture, mainly those related to intelligence support. It makes use of context predi-
cates for representing context information and OWL ontologies for taxonomical purposes.
However, Gaia has two important drawbacks and several inconsistencies. The first main
drawback is that, as a requisite, three different elements in the architecture must be
deployed and properly configured in the environment: the Context Provider Lookup Ser-
vice, the Context History Service and the Ontology Server. This constraint prevents Gaia
from creating spontaneous emergent pervasive computing environments anywhere, since
a deployment phase must me performed beforehand, enforcing an undesirable central-
ization. The second main disadvantage arises from the fact that core elements in the
architecture, such as those three mentioned above, seem to be suitable for installation in
desktop computers or servers, but not in embedded computers.

The main inconsistencies with Gaia are originated from the initial selection of tech-
nologies and the subsequent integration of newer ones, that result in a strange mixture.
For instance, representation of context information through predicates was present at the
very initial stages, but when OWL ontologies were integrated in Gaia, context predicates
remained as knowledge representation mechanisms instead of shifting to RDF, which

56 3. Related Work

could have sound more sensible. Another strange mixture is related to the communica-
tion model, where Gaia uses CORBA as distributed computing architecture instead of
the Web-based model.

The following sections provide analysis of Gaia against our defined evaluation criteria,
and the conclusion is summarized in Table 3.5.

• Decentralization: The prerequisite of deployment of three main components in
the environment leads towards a centralized architecture in Gaia. Low.

• Lightness: Some elements in the architecture are difficult to migrate to resource-
constrained devices, such as the Context History Service or the Ontology Server.
The Gaia architecture does not seem to be deployed on embedded devices, but in
desktop computers. Low.

• Standards Adherence: The standards and recommendation, i.e. CORBA and
OWL are honored. High.

• Technological Consistency: The technological evolution during the Gaia project
resulted in lot of changes as new technologies were adopted, which created a strange
mixture in the final outcome. The OWL is combined with predicate logics, instead
of shifting to RDF. CORBA is applied as distributed computing architecture instead
of newer more lightweight web-based communication models that would make the
Semantic Web fit better. Low.

• Reasoning Capability: The application of ontologies, rules, probabilistic logic,
fuzzy logic and Bayesian networks in order to perform all sorts of reasoning about
context information, promotes a very high degree of intelligence in Gaia. Very High.

• Context Awareness: The integration of rules and confidence values contribute
to situation identification and subsequent adaptation. High.

Table 3.5: Analysis of Gaia against the evaluation criteria

Criterion Value
Decentralization Low
Reasoning Capability Very High
Standards Adherence High
Lightness Low
Technological Consistency Low
Context Awareness High

3.6 SCALLOPS

The SCALLOPS4 (Secure Agent-Based Pervasive Computing) project targets to de-
velop a coherent, methodological framework for the design and implementation of secure
agent-based pervasive computing applications in the area of Personal Health Informa-
tion (Health-SCALLOPS). The focus of basic research is on innovative means for flexible
agent-coordinated Semantic Web Service discovery and composition, and effective data
and service privacy enforcement in open, large scale pervasive computing environments.

4SCALLOPS Project; www.dfki.de/scallops

www.dfki.de/scallops

3.6 SCALLOPS 57

3.6.1 Vision of SCALLOPS

Future health information systems will be more and more pervasive within the healthcare
system. Daily work in hospitals is dominated already today by mobility of doctors,
nurses - and even the patients are on the move. Consequently, there are many medical
applications and services for PDAs and other mobile computing devices available and
an extensive Web community is making them accessible. Many of these services rely on
sensitive data from various medical devices, sensors, and outside laboratories that are
usually transfered and processed by sites in different departments, hospitals or doctors’
offices. Health-SCALLOPS consists of a potentially vast collection of heterogeneous sites
and computing devices that are fixed-line or wireless connected with the Internet. The
management of the network infrastructure in Health-SCALLOPS includes appropriate
means of resource discovery and all application-specific services are assumed to be hosted
at sites of at least one relevant Web Service provider.

3.6.2 Healthcare Scenario of SCALLOPS

This section describes one of the demonstration healthcare scenarios envisaged for SCAL-
LOPS project. Mikka spends his summer vacations in Portugal. Unfortunately, after one
week in Lisbon he becomes seriously ill, suffering from a disease unknown to him. In this
emergency situation, he activates his personal Health-SCALLOPS agent on his PDA with
an integrated phone for help, as shown in Fig. 3.7. The agent quickly finds and calls the
nearest local emergency center in Portugal, and Mikka describes the observable symp-
toms of his disease. At the same time, his Health-SCALLOPS agent transfers general,
non-sensitive information about Mikka and his current location to the patient database
of the emergency center. The local representative at the Portuguese emergency center
quickly recognizes that Mikka’s symptoms are very serious and strongly recommends him
to immediately visit the nearest hospital. Hospital contact information including geo-
graphical map and how to reach the ambulance station are transmitted to Mikka’s PDA
by the Health-SCALLOPS emergency center agent. Mikka readily arrives at the hospi-
tal’s ambulance station by taxi, passes his individual health patient card (HPC) to the
physician, and authorizes him to access his patient record. Mikka may decide whether
he wants to get full treatment at the local hospital, or at a hospital of his choice back
home in Helsinki. In order to make a reasonable decision, Mikka requests his personal
Health-SCALLOPS agent on his PDA for appropriate assistance in this matter.

Given task and requirements, the agent contacts the Health-SCALLOPS agent of
Mikka’s health insurance (HI) for approval of full coverage of travel and medical expenses
in both cases. The HI agent contracts the Health-SCALLOPS agent of an emergency
medical assistance (EMA) company in Helsinki to investigate transport options and cost
estimations with respect to the regulatory constraints of the insurance fund. For this
purpose, the EMA agent plans a composite service to go home and have his treatment in
Helsinki. Appropriate services in the network check the availability of regular or charter
flights from Lisbon to Helsinki, accommodation and medical escort of Mikka to and from
the airport, and the availability of a physician for Mikka’s treatment at the hospital
in Helsinki at the time of his arrival. Optional plans of patient transport and costs
are reported back to the HI agent, which negotiates options for Mikka’s treatment with
the local hospital agent in Lisbon and pharmacy agents in the network for purchasing
the required drugs for his treatment. All agents involved use the information of some
individual experience while handling similar emergency cases in the past. The results of
both kinds of negotiations enable the HI agent to make its decision through individually

58 3. Related Work

Figure 3.7: SCALLOPS Scenario - Coverage of Emergency Medical Care and Transport

composed health care expense approval service of Mikka’s insurance fund according to his
membership status. In this scenario, the HI agent confirms full coverage of expenses for
local treatment and recreation in Stockholm, as well as return flight, but no emergency
transport with escort back home.

Finally, after two weeks treatment in the hospital and one week of full recovery in a
recreation area in the outer bound of Stockholm selected by his insurance fund, Mikka
returns to Helsinki and continues his summer vacation with his family.

3.6.3 Conclusion

SCALLOPS provides means of Semantic Web Service discovery via middle agents such
as brokers and matchmakers, which adapt to the non-deterministically changing envi-
ronment, where agents and services may enter or leave at any time. Therefore, SCAL-
LOPS agents are able to interleave service composition planning with service discovery
to find alternative services provided by other agents. SCALLOPS fulfills many of the
requirements established for the agents-based secure communication of a smart ubiq-
uitous computing architecture, mainly those related to intelligence support. It makes
use of context predicates for representing context information and OWL ontologies for
taxonomical purposes.

The main disadvantage of SCALLOPS is that its architecture is not targeted to be
used or hosted solely on mobile devices, hence the core components developed in this
project, i.e. Semantic Web Service composition planner and matchmaker can not be

3.7 Comparative Analysis 59

deployed on resource-constrained medical devices. The following sections provide analysis
of SCALLOPS against our defined evaluation criteria, and the conclusion is summarized
in Table 3.6.

• Decentralization: SCALLOPS architecture uses JXTA technology, which enables
to create decentralized peer-to-peer applications for the connected devices on the
network, ranging from cell phones and wireless PDAs to PCs and servers, to com-
municate and collaborate in a peer-to-peer manner. Very High.

• Lightness: Some core components of the SCALLOPS architecture can not be
migrated to resource-constrained medical or mobile devices, such as the Semantic
Web Service composition planner. Low.

• Standards Adherence: The standards and recommendations, i.e. OWL-S, OWL
are honored. High.

• Technological Consistency: SCALLOPS applies multi-agents, Web Services,
Semantic Web technologies in a coherent and synergistic manner. High.

• Reasoning Capability: The application of ontologies (OWL-DL), rules and fuzzy
logic in order to perform reasoning about context information, promotes a high
degree of intelligence in SCALLOPS. High.

• Context Awareness: The integration of rules and confidence values contribute
to situation identification and subsequent adaptation. Very High.

Table 3.6: Analysis of SCALLOPS against the evaluation criteria

Criterion Value
Decentralization Very High
Reasoning Capability High
Standards Adherence High
Lightness Low
Technological Consistency High
Context Awareness Very High

3.7 Comparative Analysis

Table 3.7 shows the comparative analysis of the research projects discussed in the light
of evaluation criteria, and ranks the SCALLOPS and HYDRA projects best among all
others. The final weighted value for each criteria is obtained by multiplying the criterion
value with the criterion weight, as mentioned in Table 3.1, while the criterion value is
assigned as: None = 0, Low = 1, Medium = 2, High = 3, Very High = 4. In general,
all the architectures feature a correlation among intelligence and centralization, which
implies that higher the level of intelligence in the system, the more centralized it is.

As mentioned earlier, an Hydra device enjoys the full memory & computing resources
of a PC/Notebook in order to control other attached devices, and to expose their func-
tionalities as Web Services, which puts a question mark on its lightness and prevents
using the Hydra middleware entirely on resource-constrained devices. Same is the case

60 3. Related Work

with SCALLOPS architecture. Although, the Web Services’ description is enhanced us-
ing Semantic Web technologies, i.e. SAWSDL, OWL-S and ontologies, but they still lack
with the capability of a semantic discovery protocol for mobile devices, which is inevitably
required to provide the serendipitous collaboration among smart devices in different AmI
scenarios. All this leads us to develop a lightweight SOA framework for the resource-
constrained embedded systems with integrated miniaturized components, i.e. knowledge
querying and reasoning system, together with a lightweight semantic discovery protocol,
besides making maximum use of the existing experiences and technologies as much as
possible.

Table 3.7: Comparative analysis of related work against the evaluation criteria

Chapter 4

Semantic Medical Devices
Space

This chapter provides the details about the semantic middleware infrastructure, named
Semantic Medical Devices Space (SMDS), that has been developed to provide a perva-
sive computing platform for the semantic interoperability of Ambient Intelligent (AmI)
medical or mobile devices by exploiting the Semantic Web and Semantic Web Services
(SWSs) technologies. SMDS is designed and developed as a framework1 which could be
used or integrated easily in the existing novel communication software solutions for the
resource-constrained medical or mobile devices to enhance them with the capabilities of
ambient intelligence and semantic coordination. SMDS provides a platform for all types
of real-time and non-real-time medical devices and is particularly suited for the emerging
pervasive computing healthcare environments consisting of many interconnected medical
or mobile devices. On the other hand, SMDS can also be used on Hospital Information
Systems (HISs) or Laboratory Information Systems (LISs) sides to expose their func-
tionalities regarding medical data reception or provision as SWSs, in order to allow the
AmI medical devices to send their measurement results or request a particular patient’s
medical information.

4.1 Philosophy of SMDS

SMDS is built on the philosophy of ad-hoc networking of autonomous medical or mobile
devices, which includes the semantic discovery/matching of the desired devices and then
coordinating with the matched devices based on the SWSs offered by them. Before any
of two autonomous medical or mobile devices can interact with each another, they need
to know what interfaces each of them supports and what protocols or commands they
understand. In ambient intelligent healthcare environments, this cannot be known in
advance, where new devices or sensors may enter in the environment at any time and
need to interact with the existing medical devices and the HISs or LISs. This interaction
must be based on unambiguous and commonly agreed terms and concepts, which are
well-defined in the application/domain ontologies.

1In a Java library form, named smds.jar

61

62 4. Semantic Medical Devices Space

4.2 Overall Architecture of SMDS

This section describes the detailed information about the complete architecture of SMDS.
Fig. 4.1 shows the multi-tier architecture of SMDS, showing the inter and intra-layer
interaction of all the components. However, the detailed UML design diagrams of SMDS
software framework are given in Appendix A.

4.2.1 Storage Layer

The Storage Layer is responsible for storing all types of information locally on each
medical device. These types could include storing the measurement results of a medical
device in a small database, the RDF triples, the application/domain ontologies and the
context-aware application rules in a knowledge base. The following sections describe each
type of information in detail that is stored locally.

Device Database

The medical devices performing measurements and producing measurement results use
the device database to store these results permanently. Every measurement is consisted
of various parameters and other important properties including its date/time and (op-
tionally) the patient’s ID. For example, when a urine analyzer performs urine analysis,
it measures not only different urinary parameters, i.e. pH, LEU, NIT etc. but stores the
date/time and the patient’s ID as well. Fig. 4.2 shows generalized schema of a medi-
cal device database. The Measurement, Measurement Values and Parameter are the most
important tables which keep record of a complete measurement, including the medical de-
vice identifier, so that when a medical device sends its measurement to a HIS or LIS, the
system could keep record of which medical device(s) performed which measurement(s).
In Appendix A, Fig. A.7 shows the UML class diagram of device database.

Application/Domain Ontologies

This unit is used to store the application/domain ontologies in OWL/RDF(S) form.
These ontologies are used to express the physical and/or functional characteristics of a
medical or mobile device, the context in which a medical or mobile device is being used,
and the rules which a context-aware application must follow in order to fulfill a task.
Fig. 4.3 shows the snapshot of partial medical device ontology that is used to express the
physical characteristics of a medical or mobile device, while Fig. 4.4 shows the partial
snapshot of measurement capability ontology that is used to express one of its functional
characteristics.

Device Knowledge Base

The device knowledge base is a file based storage unit, which is used to store the physical
and/or functional characteristics of a medical or mobile device in the form of RDF triples,
described using the application/domain ontology(ies), and associated with the instance
of that particular device. As shown in Fig. 4.1, the device knowledge base is used by the
Knowledge Querying and Reasoning Engine during the medical device discovery process.
The following snippet is a part of the knowledge base of a medical device, which shows
its physical property (device vendor).

4.2 Overall Architecture of SMDS 63

F
ig

u
re

4.
1:

O
ve

ra
ll

A
rc

h
it

ec
tu

re
o
f

S
em

a
n
ti

c
M

ed
ic

a
l

D
ev

ic
es

S
p
a
ce

64 4. Semantic Medical Devices Space

Figure 4.2: Generalized Schema of a Medical Device Database

<mdonto:DeviceVendor rdf:about="http://vendors.com/Roche">
<mdonto:vName>Roche Diagnostics</mdonto:vName>
<mdonto:vUrl>http://www.roche.de</mdonto:vUrl>

</mdonto:DeviceVendor>

Context-Aware Application Rules

It is a file(s) based storage unit, which is used to store the behavioral rules for the
context-aware application(s) of medical devices. A rule is a combination of two or more
pre-conditions and a post-condition, and in order to execute the post-condition, all of the
pre-conditions must be fulfilled. These behavioral rules, or profile(s) are either stored
locally on the medical devices or obtained from the external sources, e.g. a central
repository. Within the context of this thesis, this unit is not fully implemented, as we
restricted the behavior of medical devices only for the envisaged healthcare scenarios,
where only a single medical application is executed.

4.2 Overall Architecture of SMDS 65

Figure 4.3: Medical Device Ontology - A Partial Snapshot

Figure 4.4: Measurement Capability Ontology - A Partial Snapshot

4.2.2 Middleware Layer

Middleware Layer is the core-layer of the whole SMDS infrastructure, as it provides
various components for a range of tasks. The following sections describe each type of
component and its characteristics in detail.

Service

The Service component is actually the Web Service that is hosted by a medical or mobile
device. As Fig. 4.1 shows, there could be more than one Web Services offered by a
medical or mobile device, catering different type of its client, i.e. a medical device, a
simple mobile device, an HIS or LIS. This Web Service functionality can be developed
using any programming language, i.e. Java, and can be hosted using any compact Web
Service server. The implementation details for service component of SMDS framework
are given in Chapter 7.

66 4. Semantic Medical Devices Space

Semantic Service Annotation

The Semantic Service Annotation component is used to semantically annotate and en-
hance the Web Services description, which is usually described in a WSDL (Web Service
Description Language) file. In SMDS infrastructure, the WSDL description of Web Ser-
vices offered by a medical or mobile device is enhanced/annotated using the W3C stan-
dard, called SAWSDL (Semantic Annotation for WSDL and XML Schema) [48], which
requires the application/domain ontologies to annotate the plain WSDL document with
semantics. Such semantic annotation of Web Service helps during the device discovery
process, when a medical or mobile device is searched based on its functional characteris-
tics. Please note that in the whole thesis, when we talk about the execution or invocation
of Semantic Web Service of a medical or mobile device, we actually mean the execution
of its grounding, which has binding with its SAWSDL description. Further implemen-
tation details and UML class diagram of this component are given in Chapter 7 and
Appendix A, respectively.

When a medical or mobile device is matched with the requirements of the client medical
or mobile device, the SAWSDL file of the matched device is downloaded on the client
device side and parsed to extract the Web Service method name, which is then invoked
automatically. While parsing the SAWSDL file, the input parameter types and their
sequence as well as the output parameter type are matched with the client’s requirements
(input parameter types, output parameter type). This process or task is similar to
what a service broker performs, which is to match the available Web Services with the
requirements given by a Web Service client.

Semantic Device Annotation

The Semantic Device Annotation component is used to semantically annotate the phys-
ical characteristics of a medical device. In SMDS infrastructure, these physical charac-
teristics are annotated using application/domain ontologies, as described under Section
4.2.1. Such semantic annotation helps during the semantic medical device discovery
process, when a medical device is searched based on its physical characteristics.

WS-Security

One of the most important aspects of any software systems is its security, which means
how it protects itself from different foreign attacks and how it allows the desired users to
access its functionalities. In SMDS infrastructure, the security mechanism is developed
using the guidelines laid down in WS-Security [86] specification. It is made possible to
configure which security functionalities are required, i.e. if it is desired to have encryp-
tion and decryption functionalities, both of these options are set to yes or true in the
configuration file. Also, if it is desired to have signing and verification functionalities too,
both of these can also be set to yes or true in the configuration file. The Web Service
SOAP messages, which are encrypted and/or signed, takes more time to reach on other
node(s) of the network as compared to the plain SOAP messages.

Fig. 4.5 shows the complete sequence diagram of the security handling between two
medical devices in SMDS infrastructure, where Device A acts as a Client device, while
Device B acts as a Server device. The important steps for the medical devices in this
sequence diagram are downloading the digital certificate(s) of other medical device(s)
and then storing them in their local truststores, if it does not exist already. The URI to
download the digital certificate is provided in the response messages, as shown in <cert>

4.2 Overall Architecture of SMDS 67

F
ig

u
re

4.
5:

S
ec

u
ri

ty
M

ec
h

a
n
is

m
o
f

S
em

a
n
ti

c
M

ed
ic

a
l

D
ev

ic
es

S
p

a
ce

68 4. Semantic Medical Devices Space

tag of Listing 6.4. In Appendix A, Fig. A.6 shows the UML class diagram of security
framework implementation.

Eventing

The Eventing mechanism is used in communication protocols, where a client device reg-
isters itself on a server device in order to receive a notification about a change in the
state of its variable(s). In SMDS infrastructure, this mechanism is partially implemented
in order to facilitate the medical devices to get notifications from other medical devices,
whenever they are finished with performing their measurement(s). When a client medi-
cal devices receives such notification, it can directly call the Web Service method of that
medical device to retrieve its measurement results.

Knowledge Querying and Reasoning Engine

The Knowledge Querying and Reasoning Engine (KQRE) is one of the research outcomes
of this thesis, and it has been described in detail in Chapter 5. The KQRE facilitates
the medical or mobile device to perform querying on the local device knowledge base,
as well as to perform Description Logics and/or Rules based reasoning to generate infer-
ences (new facts) from this knowledge base, based on the available application/domain
ontologies.

Semantic Discovery Engine

The Semantic Discovery Engine (SDE) is also one of the research outcomes of this the-
sis, and it has been described in detail in Chapter 6. The SDE, which internally uses
the KQRE, facilitates a medical or mobile device to semantically search for the desired
medical or mobile devices based on their physical and/or functional characteristics.

Main Device Controller

The Main Device Controller (MDC) is the central component of SMDS infrastructure,
which acts as a manager and provides coordination among all the components. The MDC
controls the sequence of launching and dis-launching the relevant processes, whenever it
is desired during the semantic discovery of medical devices or during the Web Service
communication for the retrieval of measurement results.

4.2.3 Implementation Layer

The Implementation Layer shows the entities, i.e. medical device, other (mobile) device,
hospital information system, and/or laboratory information system, which can make
use of SMDS infrastructure, although the SMDS is primarily targeted for the resource-
constrained medical or mobile devices. A brief illustration of each type of entity is given
below.

Medical Device

The primary target entity of SMDS infrastructure is the medical device class, as the title
of the thesis suggests. The SMDS is realized and tested on non-real-time medical devices,
i.e. urine analyzer, blood coagulation meter, weight scale, as well as on real-time medical
devices, i.e. ECG. The experimental evaluation details about all of these medical devices
is given under Chapter 8.

4.2 Overall Architecture of SMDS 69

Other Device

The secondary target entity of SMDS infrastructure is other device, which includes all
other classes of resource-constrained devices, except medical devices. Such classes in-
clude mobile devices, robots with sensors and actuators etc. Within the context of this
thesis, only the mobile devices have been tested along with other medical devices for the
envisioned healthcare scenarios.

Hospital Information System & Laboratory Information System

Although, SMDS is not targeted for the information systems side, i.e. hospital infor-
mation system, and/or laboratory information system, but it can be used to expose the
stored medical information of patients as Semantic Web Services, which will enable the
HIS and/or LIS to be involved in the semantic discovery process. In advanced healthcare
scenarios, where the medical devices send/receive the patients’ medical information to
the information systems, such functionalities are inevitably required. Within the context
of this thesis, only the HIS entity is tested and realized regarding sending the mea-
surement information from medical device(s) to HIS through Semantic Web Services.
The experimental evaluation details are covered under Chapter 8 regarding the seman-
tic coordination of medical devices and hospital information system, and/or laboratory
information system.

Chapter 5

Micro OWL Querying and
Reasoning System

This chapter describes the design and implementation details of a powerful micro OWL
Description Logic and Rules based Reasoning & Querying system, named µOR, which
is developed to support semantic querying and reasoning capabilities entirely integrated
on the resource-constrained medical or mobile devices. µOR is an integral part of Se-
mantic Medical Device Space (SMDS) middleware framework, as described in Chapter
4, which is designed and developed for the semantic interoperability of next generation
Ambient Intelligent (AmI) medical devices. Section 5.1 presents details about the syntax
specification and semantic formalism of SCENT language that is designed to express the
semantic queries on the device knowledge base, while Section 5.2 describes the SCENTRA
algorithm, which is a resolution and patterns matching algorithm designed for SCENT
queries. Sections 5.3.1 and 5.4 outline the expressivity requirements and the architectural
details of µOR, while makes use of SCENT and SCENTRA to query the knowledge base
and make inferences on it. Section 5.5 gives a comparative analysis of µOR with some
other reasoning systems, while the last Section 5.6 discusses the scalability issues of µOR.

5.1 SCENT - Semantic Device Language for N-Triples

The Resource Description Framework (RDF)[39] is a data model for representing infor-
mation about World Wide Web resources. In order to query RDF data, several query
languages have been designed and developed (see [87] for a detailed comparison of these
languages). SPARQL [88] is a W3C standard and probably the best positioned candi-
date, as its syntax provides rich levels of expressiveness for constructing conditions about
resources in a RDF graph, and provides its efficient query engine [89] for query process-
ing. Normally, the resource-constrained medical or mobile device do not have sufficient
memory/computing power to host such a query engine and to support such a query lan-
guage, when required. One solution is to use N-Triples [90] instead, which is the basic
standardized RDF notation and a subset of Notation 3 [91]. N-Triples features a line-
based, absolute URIs based, plain-text format and a simple grammar for encoding RDF
graphs, and allows typed literals and blank nodes. However, an important drawback in
N-Triples notation is that it can only express concrete RDF triples, neither patterns nor
conditions which are required to express a semantic query.

To cope with this problem, a simple alternative solution must be developed by modi-

71

72 5. Micro OWL Querying and Reasoning System

fying the EBNF (Extended Backus-Naur Form) grammar of the original N-Triples spec-
ification, as described in [92]. We have developed a simple RDF query language, named
SCENT (Semantic Device Language for N-Triples), which represents a subset of SPARQL
expressiveness much in the similar way as N-Triples represents a subset of Notation 3 ex-
pressiveness, and its simplicity makes it possible to be processed by resource-constrained
medical or mobile devices. In the following sections, we describe the EBNF grammar,
algebraic syntax and the formal semantics of SCENT query language on the similar lines
as described for SPARQL query language in [93].

5.1.1 EBNF Syntax of SCENT Query Language

Table 5.1 shows a glimpse of comparison between original N-Triples syntax and the
SCENT syntax specifications. The original subject and object productions are modified
with the inclusion of variable term (starting with ? sign) which now allows us to use
variables at the places of subject or object of a triple to build a semantic query.

Table 5.1: Comparison between original N-Triples and SCENT syntax specifications

Original N-Triples specification SCENT syntax specification

subject ::= uriref | nodeID
object ::= uriref | nodeID | literal

subject ::= uriref | nodeID | variable
object ::= uriref | nodeID | literal | variable
variable ::= ’?’ name

Listing 5.1 shows the complete EBNF grammar of SCENT query language, which
uses the above modification made in the subject and object productions, and encapsulates
some of the productions used in EBNF of N-Triples [90], i.e. ws, absoluteURI, CRLF and
datatypeString. A SCENT query (line 1) comprises one or more SCENT patterns/condi-
tions where each pattern is an RDF like triple and composed of subject, predicate, optional
operator, object (line 2) and a dot at the end, followed by a carriage return and line feed
characters (line 6). Other productions (lines 3-11) are simple and self-explanatory to
define subject, predicate, operator and object of each condition triple. The optional
operator production, as the name suggests, is used to define comparative binary operator
for the object of a pattern, and its default value is Equals. Other possible values are
NotEquals, GreaterThan, GreaterOrEqualsThan, LessThan and LessOrEqualsThan.

Listing 5.1: EBNF Grammar of SCENT Query Language

1 scent−query ::= [scent−condition]+
2 scent−condition ::= subject ws predicate ws [operator] ws object
3 subject ::= uriref | nodeID | variable
4 predicate ::= uriref
5 operator ::= uriref
6 object ::= [uriref | nodeID | literal | variable] ws ’.’ CR LF
7 uriref ::= ’<’ absoluteURI ’>’
8 nodeID ::= ’_:’ name
9 literal ::= ’_:’ datatypeString
10 variable ::= ’?’ name
11 name ::= [A−Za−z][A−Za−z0−9]∗

5.1 SCENT - Semantic Device Language for N-Triples 73

5.1.2 Semantics of SCENT Query Language

In this section, we first present the algebraic formalization of the core fragment of SCENT,
which is then used to define formal semantics of SCENT, as well as to study fundamental
properties of this language. We start by introducing the necessary notions about RDF
(for details on the formalization of RDF see [39][94]).

Definition 5.1 (RDF Terms, Triples, and Variables). Assume that there are pair-
wise disjoint sets I, B, and L (URIs, Blank nodes, and Literals, respectively). A tuple
(s, p, o) ∈ (I ∪B)× I × (I ∪B ∪L) is called an RDF triple. In this tuple, s is the subject,
p the predicate and o the object. We denote the union I ∪ B ∪ L by T (RDF Terms).
Assume additionally the existence of a set V of variables disjoint from the above sets.

Definition 5.2 (RDF Graph [39]). An RDF graph is a set of RDF triples, where the
nodes is the set of subjects and objects, and the edges is the set of predicates (a.k.a prop-
erties or directed arcs) of RDF triples in the graph. The directed arc shows relationship
between subject and object, and always points towards the object. If G is an RDF graph,
then term(G) is the set of elements of T appearing in the triples of G, and blank(G) is
the set of blank nodes appearing in G, i.e. blank(G) = term(G) ∩ B.

Definition 5.3 (Mapping). A mapping µ from V to T is a partial function µ : V → T .
The domain of µ, denoted by dom(µ), is the subset of V where µ is defined. The empty
mapping µ∅ is a mapping such that dom(µ∅) = ∅.

To define the algebraic structure of SCENT, we need to introduce the notions of triple
pattern and scent graph pattern. A triple pattern is a tuple t ∈ (I ∪ V)× I × (I ∪L∪ V)
and a scent graph pattern is a finite set of triple patterns. Notice that a triple pattern
is essentially an RDF triple with the subject and object positions replaced by variables.
Also notice that in our definitions of triple pattern and scent graph pattern, we are
not considering blank nodes1. We make this simplification here to focus on the pattern
matching part of the language.

Definition 5.4. Let P be a SCENT graph pattern, and var(P) is used to denote the set
of variables occurring in P , then the SCENT query is a tuple (W ,P) where W = var(P).

In order to define the semantics of SCENT graph pattern expressions, we use the alge-
braic representation of SCENT introduced above, and start by introducing some formal
terminologies in the light of SPARQL semantics [93].

Definition 5.5 (Triple and SCENT Graph Pattern). A tuple t ∈ (I ∪ V) × I ×
(I ∪L∪V) is a triple pattern. A SCENT Graph Pattern is a finite set of triple patterns.
Given a triple pattern t, var(t) is the set of variables occurring in t. Similarly, given
a SCENT graph pattern P , var(P) =

⋃
t∈P var(t), i.e. var(P) is the set of variables

occurring in P .

Definition 5.6 (SCENT Graph Pattern and Mappings). Given a triple pattern t
and a mapping µ such that var(t) ⊆ dom(µ), µ(t) is the triple obtained by replacing the
variables in t according to µ. Similarly, given a SCENT graph pattern P and a mapping
µ such that var(P) ⊆ dom(µ), we have that µ(P) =

⋃
t∈P {µ(t)}, i.e. µ(P) is the set of

triples obtained by replacing the variables in the triples of P according to µ.

1A blank node (or anonymous resource or bnode) is a node in an RDF graph which is not a URI
reference or a literal. In graph patterns, blank nodes are essentially defined as variables whose values
cannot be retrieved by a query

74 5. Micro OWL Querying and Reasoning System

Definition 5.7 (RDF Graph Evaluation). Let G be an RDF graph over T , and P a
SCENT graph pattern. The evaluation of P over G, denoted by [P]G, is defined as the
set of mappings:

[P]G = {µ : V → T | dom(µ) = var(P) and µ(P)⊆ G}

If µ ∈ [P]G, we say that µ is a solution for P in G.

Note: For every RDF graph G, [∅]G = {µ∅}, i.e. the evaluation of an empty SCENT
graph pattern against any graph always results in the set containing only the empty
mapping. For every SCENT graph pattern P 6= ∅, [P]∅ = ∅

Definition 5.8 (SCENT Query Result). Given a SCENT query (W,P), where P is
a SCENT graph pattern and W = var(P), then the evaluation/answer of (W,P) in a
triples graph G is the evaluation of P over G, as defined above.

[(W,P)]G = [P]G

5.1.3 Comparison between SCENT and SPARQL Expressiveness

In this section, we compare the expressiveness of SCENT and SPARQL query languages,
as well as show how a SCENT query can be easily converted to a SPARQL query, when
required. The query model of SCENT is query-by-example style, which means that
the query specifies the known literals and leaves the unknowns as variables. Furthermore,
all SCENT patterns represent conjunctive conditions, hence the variables that occur in
multiple patterns imply joins. It means that the SCENT language supports only SELECT
like query, which produces constructions of bounded variables with values. On the other
hand, SPARQL queries are much more powerful than SCENT queries, as they can express
conditions and filters with logical connectives and a broad range of operators, i.e. FILTER
and OPTIONAL. Besides SELECT queries, SPARQL also supports CONSTRUCT and
DESCRIBE queries which return a graph, and ASK query which returns a boolean value.
However, all these additional constructions and keywords are neither required nor useful
during the discovery process of medical or mobile devices.

Listing 5.2 shows an example of a SCENT query2 which is composed of three patterns
or conditions, where each pattern contains at least one variable and is terminated with
a ’dot’. This semantic query is about searching all the urine analyzers in a pervasive
healthcare environment, i.e. a clinical laboratory or a hospital. SCENT queries can be
easily formulated using any domain/application ontologies to exhibit the physical and/or
functional characteristics of the medical or mobile devices and their services. However,
this example SCENT query is formulated using our own developed MeDO ontology,
as described under Section 4.2.1, which is used to encode or express only the physical
characteristics of a medical device. The condition in line 1 says that we are searching
all the devices (?d) having type of MedicalDevice, the condition in line 2 says that the
devices (?d) belong to particular group (?g), and the condition in line 3 says that this
group (?g) of devices has category/type of UrineAnalysis.

2Apparent line breaks are due to the space (width) limitation

5.2 SCENTRA - The SCENT Resolution Algorithm 75

Listing 5.2: Example of a SCENT Query

1 ?d <http ://www.w3.org/1999/02/22−rdf−syntax−ns#type >
<http ://www.ibmt.fhg.de/onto /2008/04/ md#MedicalDevice > .

2 ?d <http ://www.ibmt.fhg.de/onto /2008/04/ md#hasGroup > ?g .
3 ?g <http ://www.ibmt.fhg.de/onto /2008/04/ md#deviceType >

<http ://www.ibmt.fhg.de/onto /2008/04/ md#UrineAnalysis > .

On the other hand, Listing 5.3 shows how the above SCENT query can be easily trans-
lated into a SPARQL query. As we can see, the SPARQL language supports the use
of PREFIX for the predicates of RDF triples, but SCENT does not support it because
it is not supported by N-Triples. From this translated SPARQL query, it is reflected
that if the future medical or mobile devices get required computing resources to process
SPARQL queries and to integrate/host the SPARQL query engine, the SCENT queries
can be easily transformed to SPARQL queries without affecting rest of the system.

Listing 5.3: Example of a SCENT query translated into a SPARQL query

1 PREFIX rdf: <http :// www.w3.org/1999/02/22−rdf−syntax−ns#>
2 PREFIX md: <http :// www.ibmt.fhg.de/onto /2008/04/ md#>
3 SELECT ?d ?g
4 WHERE { ?d rdf:type md:MedicalDevice .
5 ?d md:hasGroup ?g .
6 ?g md:deviceType md:UrineAnalysis .
7 }

5.2 SCENTRA - The SCENT Resolution Algorithm

To resolve a SCENT query, as shown in Listing 5.2, we have developed an algorithm,
named SCENTRA (SCENT Resolution Algorithm), which is based on the formal defini-
tions presented in the previous section, particularly Definitions 5.6 and 5.7. It works as a
variables’ unification and patterns matching algorithm, so that it could be used by both
query processor and the inference engine, to find the matching triples from KB against
the provided SCENT patterns and generate inferences, respectively. It is structured in
the following steps.

1. Extract all the variables to a set V from the SCENT patterns/conditions graph P .

2. Select the triples from the knowledge base graph G that match every SCENT
pattern/condition, and annotate the combination of valid values of the triple (* for
any value) for every variable.

3. Substitute the asterisk (*) with the available values of the used variable, which
exist in combinations in other SCENT patterns/conditions.

4. Search for the combinations of values that exist in all the SCENT patterns/condi-
tions. If no combination is found, the query is irresolvable.

76 5. Micro OWL Querying and Reasoning System

5.2.1 Example

In this section, we describe in detail how a SCENT query will be resolved by fol-
lowing the afore-mentioned steps. For the sake of simplicity, we use rdf and md for
http://www.w3.org/1999/02/22-rdf-syntax-ns and http://www.ibmt.fhg.de/onto-
/2008/04/md respectively. Let’s assume that a set P is a patterns graph containing the
SCENT patterns given in Listing 5.2, and a set G is a triples graph containing the
following knowledge base triples of a medical device (e.g. urine analyzer).

<urn:uuid:urisys> <rdf#type> <md#MedicalDevice> .
<urn:uuid:coaguchek> <rdf#type> <md#MedicalDevice> .
<urn:uuid:weightscale> <rdf#type> <md#Device> .
<urn:uuid:urisys> <md#hasGroup> <md#UrineAnalyzer> .
<urn:uuid:coaguchek> <md#hasGroup> <md#BloodMeter> .
<urn:uuid:weightscale> <md#hasGroup> <md#WeightMeter> .
<md:UrineAnalyzer> <md#deviceType> <md#UrineAnalysis> .
<md:BloodMeter> <md#deviceType> <md#BloodAnalysis> .
<md:WeightMeter> <md#deviceType> <md#WeightAnalysis> .

1. Extract all the variables from graph P to a set V .

?d ?g

2. Select the triples from G, that match with every element of P , and anno-
tate the combination of valid values of the triple (* for any value) for every
variable.

- Results of pattern/condition 1:

<urn:uuid:urisys> <rdf#type> <md#MedicalDevice> .
<urn:uuid:coaguchek> <rdf#type> <md#MedicalDevice> .

?d ?g

<urn:uuid:urisys> *
<urn:uuid:coaguchek> *

- Results of pattern/condition 2:

<urn:uuid:urisys> <md#hasGroup> <md#UrineAnalyzer> .
<urn:uuid:coaguchek> <md#hasGroup> <md#BloodMeter> .
<urn:uuid:weightscale> <md#hasGroup> <md#WeightMeter> .

?d ?g

<urn:uuid:urisys> <md#UrineAnalyzer>
<urn:uuid:coaguchek> <md#BloodMeter>
<urn:uuid:weightscale> <md#WeightMeter>

5.2 SCENTRA - The SCENT Resolution Algorithm 77

- Results of pattern/condition 3:

<md:UrineAnalyzer> <md#deviceType> <md#UrineAnalysis> .

?d ?g

* <md:UrineAnalyzer>

3. Substitute the asterisk (*) with the available values of the used variable,
which exist in combinations in other SCENT patterns/conditions.

?d ?g

Pattern/Condition 1:

<urn:uuid:urisys> <md#UrineAnalyzer>
<urn:uuid:urisys> <md#BloodMeter>
<urn:uuid:urisys> <md#WeightMeter>
<urn:uuid:coaguchek> <md#UrineAnalyzer>
<urn:uuid:coaguchek> <md#BloodMeter>
<urn:uuid:coaguchek> <md#WeightMeter>

?d ?g

Pattern/Condition 2:
<urn:uuid:urisys> <md#UrineAnalyzer>
<urn:uuid:coaguchek> <md#BloodMeter>
<urn:uuid:weightscale> <md#WeightMeter>

?d ?g

Pattern/Condition 3:
<urn:uuid:urisys> <md:UrineAnalyzer>
<urn:uuid:coaguchek> <md:UrineAnalyzer>
<urn:uuid:weightscale> <md:UrineAnalyzer>

4. Search for the combinations of values that exist in all the SCENT pattern-
s/conditions. If no combination is found, the query is irresolvable.

?d ?g

<urn:uuid:urisys> <md:UrineAnalyzer>

As we can see above that there is only one combination that appears in every SCENT
pattern/condition, hence it is the solution to the query of Search all the Urine Analyzers.
The values of ?d are the network addresses of the Urine Analyzer(s). We have studied
other alternative algorithms, i.e. Rete [95] and its improved forms [96] which normally
require more computing time and memory to create the temporal structures for efficient
matching, while our algorithm is easy and straightforward to be implemented for the
resource-constrained medical or mobile devices and provides the required compatibility
and functionality for their semantic discovery and matching.

78 5. Micro OWL Querying and Reasoning System

Complexity Analysis

The overall complexity of SCENTRA algorithm, or more precisely the query Evaluation
(without reasoning process), is O(n2), where n = |G|. Please note that |P | is constant
relative to |G|, hence the complexity of processing SCENT conditions graph P is ignored.

5.3 µOR - A Micro OWL Querying and Reasoning
System

This section describes details about µOR, a small querying and reasoning system which
works on OWL description logics based rules, which are either created implicitly from the
given set of domain/application ontologies or explicitly defined in a text-based rules file
using SCENT language, as explained in Section 5.1. µOR uses SCENTRA algorithm, as
explained in Section 5.2, for two purposes; first to process the SCENT queries and match
the knowledge base triples graph with the SCENT pattern graph, secondly, to generate
inference graph on the provided knowledge base triples graph.

5.3.1 Semantics of µOR Expressiveness

OWL is the W3C recommendation for creating and sharing ontologies on the Web and its
theoretical background is based on the Description Logic (DL) knowledge representation
formalism, a subset of predicate logic. As explained in Section 2.3, the OWL recommen-
dation actually consists of three languages of increasing expressive power, namely OWL
Lite, OWL DL and OWL Full. OWL-Lite and OWL-DL are an abstract syntactic form
of the description logic SHIF(D) and SHOIN (D), respectively, whereas OWL-Full
corresponds to the description logic SHOIQ(D)∗.

Since µOR is targeted for the resource-constrained medical or mobile devices, the
set of expressivity requirements to be fulfilled would be rather concise and easier to be
implemented. Beside that, the supported degree of OWL-DL expressivity of µOR must be
high enough to cater the semantically annotated/harmonized application(s) knowledge
of our pervasive healthcare scenarios, as described in detail in Chapter 8, as well as
most of the other ubiquitous computing scenarios in general. Thus, we provide support
of a subset of OWL Lite3 [98] axioms for µOR, as listed in Table 5.2, because it has
even a lower formal complexity than OWL Lite and it attempts to capture many of the
commonly used features of OWL Lite, as well as to provide more descriptive language
than RDF(S) for Semantic Web applications. The implementation of OWL-Lite− axioms
by µOR gives us the desired degree of expressiveness (near to SHIF4) and the following
advantages:

• They do not produce or lead towards conflicts in term of decidability, when indi-
vidually used to represent the knowledge base triples.

• They avoid the complexities of non-determinism.

However, it should be noted that µOR is not intended to be used for knowledge con-
sistency checking, as supported by other DL reasoning systems, i.e. Pellet [99], rather
it is used only for querying and reasoning over consistent knowledge bases. We use the
definitions of Section 5.1 and define some new formal definitions for µOR.

3Hereafter referred to as OWL-Lite−
4The axioms which are not supported are given in Table 5.3

5.3 µOR - A Micro OWL Querying and Reasoning System 79

Table 5.2: OWL-Lite− axioms currently supported by µOR

Name DL Syntax FOL Semantics Abbr.

Thing, Nothing >,⊥ ∆I , ∅
Concept (Class) A AI

Role (Property) R RI S

Concept Inclusion C v D CI ⊆ DI

Concept Equivalence C ≡ D CI = DI

Trans. Role Closure R+ v R (RI)+

Role Inclusion R v P RI ⊆ P I H

Inverse Role ∃R−.C {x ∈ ∆I : ∃y ∈ ∆I .(y, x) ∈ RI ∧ y ∈ CI} I

Functional Role (≤ 1R) {x ∈ ∆I : |{y ∈ ∆I : (x, y) ∈ RI}| ≤ 1} F

Definition 5.9. Let VO be an OWL-Lite− vocabulary where VO = (Vcls,Vop, Vdp,VD,
Vlit) is a 5-tuple where Vcls is the set of URIs denoting class names, Vop is the set of
URIs denoting object properties, Vdp is the set of URIs denoting datatype properties,
VD is the set of URIs denoting datatype names, and Vlit is the set of well-formed RDF
literals. In OWL-Lite−, Vuri is the union of Vcls, Vop, Vdp, and VD and does not include
any of builtin URIs from RDF, RDF-S, or OWL namespace.

Definition 5.10. An interpretation I = (∆I , ·I) is a tuple where ∆I , the domain of
discourse, is a union of two disjoint sets ∆IO (the object domain) ∆ID (the data domain);
and I is the interpretation function that gives meaning to the entities defined in the
ontology. I maps each OWL class C ∈ Vcls to a subset CI ⊆ ∆IO, each object property
p ∈ Vop to a binary relation pI ⊆ ∆IO ×∆IO, each datatype property t ∈ Vdp to a binary
relation tI ⊆ ∆IO ×∆ID, each datatype D ∈ VD to a subset DI ⊆ ∆ID, and each literal
l ∈ Vlit to an element lI ⊆ ∆ID.

Definition 5.11. Let O be an OWL-Lite− ontology, VO = (Vcls,Vop,Vdp,VD,Vlit) the
vocabulary for O, and I = (∆I , ·I) be an interpretation for O, we say that a query atom
is compatible with VO if all the URIs used in query atoms are typed correctly, e.g. for
Type(l, C) we have l ∈ Vlit and C ∈ Vcls and so on.

Definition 5.12. We define an evaluation σ : Vvar ∪ Vlit → ∆I to be a mapping from
the variable names and literals used in the query to the elements of interpretation domain
∆I with the requirement that σ(v) = vI if v ∈ Vvar or v ∈ Vlit. The interpretation I
satisfies a query atom q w.r.t. σ (denoted as I |=σ q) if q is compatible with VO and the
corresponding condition listed in Table 5.2 is met.

Definition 5.13. The interpretation I satisfies a query Q = q1 ∧ ... ∧ qn w.r.t. an
evaluation σ (written I |=σ q) iff I |=σ qi for every i = 1, ..., n. Note that we are only
interested in the existence of an evaluation and we simply say that I satisfies a query Q
(written I |= Q) if there exists an evaluation σ such that I |=σ Q. Finally we say that
Q is a logical consequence of the ontology O (written O |= Q) if the query is satisfied by
every model of O, i.e. I |= O implies I |= Q.

Definition 5.14. The solution to a SCENT query Q = q1 ∧ ... ∧ qn w.r.t. an OWL-
Lite− ontology O is a variables mapping µ : Vvar → Vuri ∪ Vlit such that when all the

80 5. Micro OWL Querying and Reasoning System

variables in Q are substituted with the corresponding value from µ, we get a query µ(Q)
compatible with VO and O |= µ(Q). The solution set S(Q) for a query Q is the set of all
such solutions.

5.3.2 Description of the OWL-Lite− Axioms

This section gives a brief description about the OWL-Lite− axioms/constructs which are
currently supported by µOR.

OWL Lite− RDF Schema Features

OWL can be viewed as an extension of a restricted view of the RDF language, which
implies that every OWL document is an RDF document, but not all RDF documents are
OWL documents. All terms are in the OWL namespace unless explicitly stated otherwise.
Thus, the term Class is more precisely stated as owl : Class and rdfs : subPropertyOf shows
that subProperty is from the rdfs namespace. Also, the term individual will refer to the
objects that belong to classes as well as to objects that are datatypes.

• Class: A class defines a group of individuals that belong together because they
share some properties. There is a built-in most general class named Thing that is
the class of all individuals and the superclass of all OWL classes. We may choose
to make a new subclass of the class Thing named Device, and we may also create
a new class named MedicalDevice that is a subclass of Device. From this, µOR can
deduce that any instance of MedicalDevice is also an instance of Device.

• rdfs:subClassOf: The class hierarchies can be created by making one or more
statements that a class is a subclass of another class. For example, UrineAnalyzer
could be stated as a subclass of MedicalDevice. From this, µOR can deduce that if
an individual belong to UrineAnalyzer, then it is also a MedicalDevice.

• rdfs:Property: The properties can be used to state relationships between individ-
uals or from individuals to data values. The examples of properties are: hasGroup,
hasVendor, hasLocation, hasConnection etc.

• rdfs:subPropertyOf: The property hierarchies can be created by making one or
more statements that a property is a subproperty of one or more other properties.
For example, hasBluetoothConnection may be stated as a subproperty of hasCon-
nection. From this, µOR can deduce that if an individual is related to another by
the hasBluetoothConnection property, then it is also related to the other by the
hasConnection property.

• rdfs:domain: A domain of a property limits the individuals to which the property
can be applied. If a property relates an individual to another individual, and the
property has a class as one of its domains, then the individual must belong to
the class. For example, the property hasMeasurement may be stated to have the
domain of MedicalDevice. So, if UrineAnalyzer hasMeasurement X, then from this
µOR can deduce that the UrineAnalyzer is a MedicalDevice.

• rdfs:range: The range of a property limits the individuals that the property may
have as its value. If a property relates an individual to another individual, and
the property has a class as its range, then the other individual must belong to
the range class. For example, the property hasGroup may be stated to have the

5.3 µOR - A Micro OWL Querying and Reasoning System 81

range of DeviceGroups. From this, µOR can deduce that if RocheUriSys is related
to UrineAnalyzer by the hasGroup property, then RocheUriSys is a MedicalDevice.

OWL Lite− Equality and InEquality

The following features related to equality or inequality are included:

• sameAs: Two individuals may be stated to be the same. These constructs may
be used to create a number of different names that refer to the same individual.
For example, the individual RocheUriSys may be stated to be the same individual
as UriSys1100.

• differentFrom: An individual may be stated to be different from other individuals.
For example, the individual Soehnle may be stated to be different from the individ-
uals UriSys1100 and CoaguChekS. Thus, if the individuals Soehnle and UriSys1100
are both values for a property that is stated to be functional (the property that
has at most one value), then there is a contradiction.

OWL Lite− Property Characteristics

There are special identifiers in OWL Lite− that are used to provide information concern-
ing the properties and their values.

• ObjectProperty: It shows the relations (binary) between instances of two classes
(Individuals-to-Individuals).

• DatatypeProperty: It shows the relations (binary) between instances of classes,
RDF literals and XML Schema datatypes (Individuals-to-Datatypes).

• inverseOf: One property may be stated to be the inverse of another property. If
the property P1 is stated to be the inverse of the property P2, then if X is related
to Y by the P2 property, then Y is related to X by the P1 property. For example,
if hasVendor is the inverse of isVendorOf and UriSys1100 hasVendor Roche, then
µOR can deduce that Roche isVendorOf UriSys1100.

• TransitiveProperty: The properties may be stated to be transitive. If a property
is transitive, then if the pair (x,y) is an instance of the transitive property P, and
the pair (y,z) is an instance of P, then the pair (x,z) is also an instance of P.
For example, if isLocatedIn is stated to be transitive, and if the operation theatre
OT123 is located on Floor123, and Floor123 is located in Building123, then µOR
can deduce that OT123 is located in Building123.

• SymmetricProperty: The properties may be stated to be symmetric. If a prop-
erty is symmetric, then if the pair (x,y) is an instance of the symmetric property
P, then the pair (y,x) is also an instance of P.

• FunctionalProperty: The properties may be stated to have a unique value. If a
property is a FunctionalProperty, then it has no more than one value for each indi-
vidual (or it may have no values for an individual). For example, hasDeviceModel
may be stated to be a FunctionalProperty. From this, µOR can deduce that no
individual can have more than one device models.

82 5. Micro OWL Querying and Reasoning System

• InverseFunctionalProperty: The properties may be stated to be inverse func-
tional. If a property is inverse functional then the inverse of the property is func-
tional, which implies that the inverse of the property has at most one value for each
individual. This characteristic is also referred as an unambiguous property.

OWL Lite− Datatypes

OWL Lite− uses most of the built-in XML Schema datatypes, where references to these
datatypes are described by the URIs defined in http://www.w3.org/2001/XMLSchema.

5.4 Architectural Details of µOR

Fig. 5.1 shows the overall architecture of a small but powerful querying and reasoning
system that is developed for resource-constrained AmI medical or mobile devices. It
consists of a Query Processor, Inference Engine and SCENTRA algorithm.

Figure 5.1: Architecture of Micro Querying and Reasoning System - µOR

5.4.1 The Query Processor

The Query Processor (QP) is responsible for processing the SCENT queries, as shown in
Listing 5.2. In a pervasive computing environment, such query (embedded in the device
discovery request message) is broad-casted from one device to all the other devices in the
network, where the query processor running on each device processes this query; and if
matches are found, it returns back the results (embedded in the device discovery response
message) to the requesting device.

First of all, the QP extracts all the conditions/patterns from the SCENT query, and
adds them into a set P . Secondly, it loads the available knowledge base triples stored on
the device in a set G and requests the inference engine to make inferences on it, based
on the OWL-Lite− axioms/constructs. When the QP gets back the inference results as

5.4 Architectural Details of µOR 83

set I, it augments the set G with these inferences using the set union operation, and
then uses the SCENTRA algorithm to find the final results. When it gets back the final
results, it formulates the results only for the requested variable, e.g. in case of SCENT
query presented in Listing 5.2, only the result for variable ?d is returned.

Algorithm 1: MakeInferences: Find a set N of new facts (inferences) by creating
a set R of rules from a Set O of ontologies and applying these rules on a set G of
knowledge base triples.

Input: A set G of knowledge base triples
Output: A set N of (inferences)
begin1

Cpre ← ∅ /* A set of preconditions */2

Cpost ← ∅ /* A set of postconditions */3

R← ∅ /* A set of rules as triples*/4

M ← ∅ /* A temporary set of matched triples */5

N ← ∅ /* A set of new facts (inferences) */6

O←− Load the triples of ontologies7

R←− CreateRules(O) /* Algorithm 2 is used */8

/* Here R = {r1, r2, ..., rx} */9

for r ∈ R do10

Cpre ←− preconditions of rx11

Cpost ←− postconditions of rx12

/* Here Cpost = {c1, c2, ..., cy} */13

M ←− MatchTriples(Cpre, G) /* using Definition 5.7 */14

/* Here M = {m1,m2, ...,mz} */15

for m ∈M do16

for c ∈ Cpost do17

/* Substitute the variable(s) in cy with mz using18

Definition 5.6 to create new fact and store in set N */

N ←−+ SubstituteVariables(cy, mz)19

end20

5.4.2 The Inference Engine

The Inference Engine (IE) is responsible for generating new facts (inferences) from a
provided set G of knowledge base triples graph and a set O of triples created from
domain/application ontologies and/or user-defined rules (see Appendix C). The IE uses
the formal definitions, as explained under Section 5.3.1, to produce these inferences.
First of all, it loads all the locally stored domain/application ontologies as RDF triples,
and if required, generates the implicit rules from these triples based on the OWL-Lite−

axioms, as mentioned in Table 5.2. Additionally or alternatively, explicit rules can also
be defined in a separate rules file, as shown in Appendix C. Every implicit or explicit rule
contains two sets, one for preconditions and one for postconditions. The preconditions set
Cpre of each rule is matched with the knowledge base triples graph G using SCENTRA
algorithm, and if the matches are found, it creates new facts as triples by substituting the
variables of the postconditions set Cpost with these matches. The resultant set N of new
facts (inferences) is then returned back to the query processor. This set of new facts is

84 5. Micro OWL Querying and Reasoning System

Algorithm 2: CreateRules: Creates a Set R of rules by matching a Set O of domain
ontologies with OWL-Lite− axioms, Part 1.

Input: A Set O of triples of ontologies where O = {t1, t2, ..., tu}
Output: A Set R of rules

begin1

R← ∅ where R = {r1, r2, ..., rx} /* A Set of Rules */2

C← ∅ where C = {Cpre, Cpost}3

/* Cpre, Cpost are sets of triples for (pre/post)conditions */4

/* ts, tp, to are subject, predicate, object of a triple t, resp. */5

for t ∈ O do6

if tp = rdfs:subClassOf or tp = rdfs:subPropertyOf then7

Cpre ←−+ <?s rdf:type ts >8

Cpost ←−+ <?s rdf:type to >9

R←−+ CreateRule(C)10

else if tp = rdfs:domain then11

Cpre ←−+ <?s tp ?o >12

Cpost ←−+ <?s rdf:type to >13

R←−+ CreateRule(C)14

else if tp = rdfs:range then15

Cpre ←−+ <?s tp ?o >16

Cpost ←−+ <?o rdf:type to >17

R←−+ CreateRule(C)18

else if tp = owl:inverseOf then19

Cpre ←−+ <?s ts ?o >20

Cpost ←−+ <?o to ?s >21

R←−+ CreateRule(C)22

Cpre ←−+ <?s to ?o >23

Cpost ←−+ <?o ts ?s >24

R←−+ CreateRule(C)25

else if to = owl:TransitiveProperty then26

Cpre ←−+ <?s ts ?o1 >27

Cpre ←−+ <?o1 ts ?o2 >28

Cpost ←−+ <?s ts ?o2 >29

R←−+ CreateRule(C)30

else if to = owl:SymmetricProperty then31

Cpre ←−+ <?s ts ?o >32

Cpost ←−+ <?o ts ?s >33

R←−+ CreateRule(C)34

else35

/* See the remaining part in Algorithm 3 */36

end37

stored locally on each device in order to avoid repetetion of the inference process, unless
the knowledge base is updated, or domain ontology(ies) are modified/changed or more
explicit rules are defined.

5.5 Comparative Analysis of µOR 85

Algorithm 3: CreateRules: Creates a Set R of rules by matching a Set O of domain
ontologies with OWL-Lite− axioms, Part 2.

begin1

if tp = owl:sameAs then2

Cpre ←−+ < ts ?p ?o >3

Cpost ←−+ < to ?p ?o >4

R←−+ CreateRule(C)5

Cpre ←−+ < to ?p ?o >6

Cpost ←−+ < ts ?p ?o >7

R←−+ CreateRule(C)8

Cpre ←−+ <?s ?p ts >9

Cpost ←−+ <?s ?p to >10

R←−+ CreateRule(C)11

Cpre ←−+ <?s ?p to >12

Cpost ←−+ <?s ?p ts >13

R←−+ CreateRule(C)14

else if to = owl:FunctionalProperty then15

Cpre ←−+ <?s tp ?o1 >16

Cpre ←−+ <?s tp ?o2 >17

Cpost ←−+ <?o1 owl:sameAs ?o2 >18

R←−+ CreateRule(C)19

else if to = owl:InverseFunctionalProperty then20

Cpre ←−+ <?s1 tp ?o >21

Cpre ←−+ <?s2 tp ?o >22

Cpost ←−+ <?s1 owl:sameAs ?s2 >23

R←−+ CreateRule(C)24

....25

end26

Complexity Analysis

If R = {r1, r2, ..., rx} is a set of rules, and n = |G|, then x is constant w.r.t n, hence
the complexity of overall inferencing process would be O(n2),which is the complexity of
SCENTRA algorithm. Please note that |M | is also constant w.r.t n, where M is a set of
matched knowledge base triples.

Finally, the total complexity of both query processing and reasoning would be O(n2):

O(n2) +O(n2) =⇒ O(n2) (5.1)

5.5 Comparative Analysis of µOR

This section provides the details about the comparative analysis of µOR, in terms of its
memory usage and performance in comparison with a couple of other small reasoning
systems, namely Pocket KRHyper [100] and Bossam [101]. Although there exist various
implementations of OWL DL reasoners, e.g. Pellet [99], FaCT++ [102] and RacerPro
[103], but their resource requirements (memory/processing) are quite high, restricting

86 5. Micro OWL Querying and Reasoning System

them to be used only on desktop systems or servers, and not on resource-constrained
medical or mobile devices. Such reasoners mostly implement tableaux algorithms that
are developed for the expressive DL knowledge representation with high complexity.

The reasons to choose Bossam and Pocket KRHyper for comparative analysis are as
follows: Bossam is a DL reasoner and a forward chaining production rule engine, which
works on RETE [95] algorithm, and takes comparatively less resources (750Kb of runtime-
memory). Bossam requires namespace prefixing to express knowledge base triples and
queries which is not supported by N-Triples, and hence not supported by our SCENT.
Pocket KRHyper, to the best of our knowledge, is the only reasoner which is targeted for
mobile devices, thus most relevant to our work. It is a First Order Logic theorem prover
and model generator based on the hyper tableau calculus [104]. Its disadvantage is that
it works on a set of clauses and does not support direct DL reasoning, rather it adds an
additional layer for transforming all the DL expressions into first order clausal logic and
the inference results back to DL expressions, which is clearly an overhead.

A Windows XP system with Pentium R© 4, Intel R© 2.40 GHz processor, and 1.0GB
RAM was used to perform tests with a set of ten different SCENT queries. Ideally,
we should have used any benchmark system, e.g. LUBM [105] in order to analyse and
compare the performance of µOR with other reasoning systems, but since the test cases
(queries, knowledge base, ontology) provided by it have compliance with OWL-Full or
OWL-DL specification, it can not be tested on µOR. Therefore, we have designed our
own test cases, which consist of a set of ten different queries, having compliance with
OWL-Lite− entailments (see Appendix B). Fig. 5.2 shows the overall runtime memory
size (24 Kb) of complete µOR, which is far less than the run-time memory sizes of
Bossam (750 Kb) and Pocket KRHyper (245 Kb). Fig. 5.3, Fig. 5.4 and Fig. 5.5
show the comparison of loading times of varying sized knowledge bases, loading times of
different application/domain ontologies and the overall reasoning times respectively.

Figure 5.2: Comparison of Runtime Memory Usage

Based on the afore-mentioned comparative study of µOR, Bossam and Pocket KRHy-
per with respect to the run-time memory usage and RDF triples processing performance,
it is pretty evident that µOR performed much better than the others in all aspects. The
results show that µOR can be easily integrated solely on the (mobile/medical) devices
and can help in realizing the vision of having autonomous (mobile/medical) devices which
are enriched with semantic contents processing capabilities. Secondly, because µOR is

5.6 Scalability Issues of µOR 87

Figure 5.3: Comparison of Knowledge Base Loading Time

Figure 5.4: Comparison of Ontologies Loading/Conversion Time

developed in Java language, it inherently provides platform independence support, in
terms of integrating and using it within the existing software architectures.

5.6 Scalability Issues of µOR

This section discusses the scalability of µOR in terms of expressivity and the perfor-
mance efficiency. First of all, as described in Section 5.3.1, the expressivity of µOR is
currently based on OWL-Lite−, a subset of OWL-Lite axioms, which is sufficient to cater
the semantically annotated/harmonized knowledge of our envisaged pervasive healthcare
scenarios and application(s). However, if the axiomatic support, as presented in Table
5.2 is not sufficient to support the requirements of future context-aware applications, the
expressivity can be extended easily by implementing the desired axioms, provided that
the medical or mobile device has sufficient computing and memory powers to cater them
all. Table 5.3 shows the OWL Lite axioms that are currently not supported by µOR,
because these axioms are currently not needed for our envisioned healthcare scenarios.

88 5. Micro OWL Querying and Reasoning System

Figure 5.5: Comparison of Overall Reasoning Time

So, µOR does not currenlty support querying and reasoning on a knowledge base which
is built using these axioms, hence the SCENT queries which use these axioms will not be
answered and a NULL value is returned.

Table 5.3: OWL-Lite axioms currently not supported by µOR

Name DL Syntax FOL Semantics Abbr.

Concept Intersection C uD CI ∩DI

Concept Disjunction C tD CI ∪DI

Concept Complement ¬C ∆I \ CI S

Universal Role-
Value Restriction ∀R.C {x ∈ ∆I : ∀y ∈ ∆I .(x, y) ∈ RI → y ∈ CI}
Existential Role-
Value Restriction ∃R.C {x ∈ ∆I : ∃y ∈ ∆I .(x, y) ∈ RI ∧ y ∈ CI}

Non-Qualified Role (≤ nR) {x ∈ ∆I : |{y ∈ ∆I : (x, y) ∈ RI}| ≤ n}
(Cardinality) Restr. (≥ nR) {x ∈ ∆I : |{y ∈ ∆I : (x, y) ∈ RI}| ≥ n} N

(= nR) {x ∈ ∆I : |{y ∈ ∆I : (x, y) ∈ RI}| = n}
Qualified Role (≤ nR.C) {x ∈ ∆I : |{y : (x, y) ∈ RI ∧ y ∈ CI}| ≤ n}
(Cardinality) Restr. (≥ nR.C) {x ∈ ∆I : |{y : (x, y) ∈ RI ∧ y ∈ CI}| ≥ n} Q

(= nR.C) {x ∈ ∆I : |{y : (x, y) ∈ RI ∧ y ∈ CI}| = n}
Nominals {o1, ..., on} {oI1 , ..., oIn} O

∃R.{o} {x ∈ ∆I : ∃y ∈ ∆I .(x, y) ∈ RI ∧ yI ∈ {o}}
Concept Membership a : C a ∈ C

Role Membership (a, b) : R (a, b) ∈ RI

Secondly, although the performance efficiency of µOR has been tested with small-
scale knowledge bases (100 ∼ 300 triples), as shown in the above Figures (5.3, 5.4,
5.5), the efficiency of µOR would not be much affected if the sizes of knowledge base
and/or ontologies’ triples are increased, because the SCENTRA algorithm is based on
set-theory, which inherently avoids the duplication of KB triples and the time required
for set operations (Union, Intersection) theoretically remains same.

Chapter 6

Semantic Medical Device
Discovery Protocol

Discovery is one of the most important activities in distributed computing paradigm,
since recent pervasive computing and ad-hoc networking have identified the device(s) and
service(s) discovery as one of the major design components of an architecture [106][107].
Although various network protocols and architectures have been developed over the last
years, as described in Chapter 2, mainly for the discovery of device(s) and network
service(s), but still there is no consensus on using a unified discovery protocol. This
chapter describes the design and implementation details of Semantic Medical Device
Discovery Protocol (SMDDP), a lightweight HTTP based protocol that is designed and
developed, both as an integral part of Semantic Medical Device Space (SMDS) middleware
framework, as described in Chapter 4, and as a broader goal itself for the semantic
discovery of resource-constrained medical or mobile devices and their services. Section 6.1
articulates the (minimum) requirements for the semantic discovery protocol which could
fulfill the objectives of our envisioned pervasive healthcare scenarios, while Section 6.2
describes the overall workflow of SMDDP. Section 6.3 and Section 6.4 describe the request
and response messages’ format respectively, while Section 6.5.1 gives the performance
evaluation and compares SMDDP with the existing network discovery protocols.

6.1 Requirements for Semantic Discovery Protocol

The required semantic discovery protocol must support both the device and service dis-
coveries based on semantics, since the device and service characteristics are harmonized
and processed using ontologies. In order to achieve our goals, the semantic discovery
protocol must be designed with the following minimum requirements:

• To support context-awareness on medical or mobile devices regarding the sponta-
neous presence of other devices, a pure (un)structured Peer-to-Peer network would
suffice, thus getting rid of a central server and providing a decentralized solution.

• An expressive language for semantic search queries must be supported.

• The response messages from the matched medical device(s) must include

– the URI for the Web Service methods invocation.

89

90 6. Semantic Medical Device Discovery Protocol

– the URIs for the Web Service description files (WSDL, SAWSDL).

– the URI for the digital certificate of medical device.

• It must be based on TCP/IP stack, integrating HTTP and taking advantage of its
security mechanism, i.e. HTTP Basic or Digest Authentication, or even HTTPS.

The resulting design is SMDDP, an HTTP/UDP based semantic discovery protocol
for ambient intelligent medical devices which fulfills the afore-mentioned requirements.
SMDDP provides mechanism to search the peer-to-peer network and identify the desired
medical device(s) matching with particular conditions. The following queries, which can
also be thought as combination of each other making the notion more complex, are the few
examples which depict what sort of discovery capabilities are expected from the SMDDP
protocol. The italicized terms refer to the concepts of domain/application ontologies,
which are developed within the context of this thesis.

• Find all the medical devices in the network.

• Find all the medical devices in the operation theater XYZ.

• Find all the medical devices of type urine analyzer (or blood pressure, blood coag-
ulation, blood glucose, ECG etc.) in the network.

• Find a medical device of type urine analyzer which has performed the measurement
of a patient having ID ”3KD2008”

• Find a device in the network which has Internet connectivity and offers a Web
Service to send measurement results to XYZ Information System.

6.1.1 Advantages of using URIs

In the SMDDP response messages, as described earlier, sending only the URIs is more
efficient than directly sending the whole volume of data, and offers the following advan-
tages:

• Less traffic is generated as the packets are significantly smaller than conveying the
whole volume of data.

• The decision about downloading the Web Service description files, the digital device
certificate, or even invoking the Web Service methods is totally left up to the client,
if it is needed to perform all these tasks.

• The URIs can be reused by the client medical devices without re-searching the
network, if it is required to periodically poll the data about server medical devices.

The URI for the Web Service methods invocation can be used not only by the medical
devices, but other (health) information systems on the network as well, in order to re-
trieve their measurement values/results. Normally, the medical devices and/or health
information systems will be pre-installed with the Web Service stubs/skeletons, but the
(health) information systems may also dynamically generate the Web Service stubs/skele-
tons by downloading the WSDL document from the given WSDL URI using various tools
available for desktop systems, i.e. WSDL2Java1.

1http://ws.apache.org/axis/java/user-guide.html

http://ws.apache.org/axis/java/user-guide.html

6.2 Overall Workflow of SMDDP Protocol 91

Figure 6.1: Overall Workflow of SMDDP

On the other hand, the medical devices cannot use such tools because of the un-
availability of compilers for resource-constrained (mobile) devices. However, the URI
for SAWSDL file can be used both by medical devices and (health) information sys-
tem(s) in order to download and process it locally using the SAWSDL2 API, and extract
the name(s) of the desired Web Service method(s) to invoke. The last URI is for the
digital device certificate, which the client medical device uses to download it from the
server medical device. Before initiating the communication, every client/server medical
device(s) must have the digital certificate of each other, which is used later for encryp-
tion/decryption and signing/verification functionalities.

6.2 Overall Workflow of SMDDP Protocol

The workflow of SMDDP is quite simple, consisting of two agents like threads, smddp
client and smddp server, both co-exist on a medical device. Whenever a medical device
needs to find a particular medical device in a pure (un)structured peer-to-peer network
of medical devices,

• The smddp client on the client medical device reads the (configurable) query condi-
tions defined as searching criteria for a particular healthcare application and embed
them in a complete request message containing the HTTP Callback-URI. Finally,
it broadcasts this request message over the network and handles the response(s)
sent back from the matched medical device(s).

• On the other hand, the smddp server on the server medical device(s) receives the
request messages from the client medical devices, processes them against the avail-
able knowledge base of the medical device using µOR, as explained in Chapter 5,

2http://lsdis.cs.uga.edu/projects/meteor-s/SAWSDL/

http://lsdis.cs.uga.edu/projects/meteor-s/SAWSDL/

92 6. Semantic Medical Device Discovery Protocol

Figure 6.2: SMDDP over the TCP/IP Stack

and if matched, forms the results into a response message and sends it back to the
respective client medical device(s) on the provided Callback-URI.

Fig. 6.1 shows the interaction of a peer-to-peer network of four medical devices,
namely Medical Device A, Medical Device B, Medical Device C and Medical Device F,
each of them running both smddp client and smddp server threads. In order to search for
the desired medical device(s), the smddp client of Medical Device F broadcasts a query
q to the network using UDP (Universal Datagram Protocol) as the transport protocol, as
shown in Fig. 6.2. On the other hand, every medical device processes this query and
two of them, Medical Device A and Medical Device C respond with the responses rA and
rC respectively as the matched medical devices. Since the responses are always unicast
messages, so they can be sent back using the traditional HTTP protocol on the provided
Callback-URI in the request message.

6.3 SMDDP Request Message Format

This section describes the details about the SMDDP request messages. SMDDP request
messages, containing a SCENT query are broad-casted over UDP to the (configurable)
address 228.5.6.7 and UDP port 6790. The MIME type of SMDDP request message is
application/de.fhg.ibmt.scent and it consists of multi-line syntax, being extensible through
new headers to provide additional semantics information. Most Internet protocols use
ASCII characters of 13 and 10 (CRLF) to separate lines, which constitute the major
divisions in the message format. Listing 6.1 shows the Augmented Backus-Naur Form
(ABNF) of SMDDP request message, which encapsulates some of the widely used pro-
ductions in Internet protocols, i.e. SP, OCTET, DIGIT [108], and token, absoluteURI
[109].

The request−message is composed of a start− line, zero or more headers and a manda-
tory body section (line 1). The main element of the start− line is the SEARCH command,

6.3 SMDDP Request Message Format 93

followed by the main variable to be resolved, and a protocol version number (lines 2-5).

Listing 6.1: Augmented Backus-Naur Form of SMDDP Request Messages

1 request−message = start−line ∗ (msg−header CRLF) CRLF msg−body
2 start−line = c−search SP version CRLF
3 c−search = "SEARCH" SP variable
4 variable = "?" token
5 version = "smddp/" number "." number
6 msg−header = SeqN / Content−Type / Content−Length / Callback−Uri
7 SeqN = "SeqN" ":" SP number
8 Content−Type = "Content−Type" ":" SP cont−type
9 Content−Length = "Content−Length" ":" SP number
10 Callback−Uri = "Callback−Uri" ":" SP i−Callback
11 i−Callback = absoluteURI
12 msg−body = 1 ∗ OCTET
13 number = 1 ∗ DIGIT
14 cont−type = type "/" subtype
15 type = token
16 subtype = token

A brief description of each of the four headers of SMDDP request message (line 6)
is given below, which follows the same format as traditional headers in the standardized
protocols, i.e. HTTP.

• SeqN : The request sequence number (line 7) for detecting duplicate request mes-
sages from the same client medical device, and matching the requests and responses
for it.

• Content− Type : The MIME type (line 8) of the message body section. Currently,
SMDDP supports only one MIME type, which is application/de.fhg.ibmt.scent. In
future, if the medical devices get enough computing and memory resources, the
MIME type for SPARQL (or other languages) could also be included.

• Content− Length : The total length (line 9) of the message body section in bytes.

• Callback− Uri : The HTTP endpoint (line 10) where the server medical device sends
back the response to the client medical device.

Listing 6.2: An Example of Complete SMDDP Request Message

1 SEARCH ?d smddp /1.0
2 SeqN: 20
3 Content−Type: application/de.fhg.ibmt.scent
4 Content−Length: 400
5 Callback−Uri: http ://192.168.2.11/ smddpcallback
6
7 ?d <http ://www.w3.org/1999/02/22−rdf−syntax−ns#type >

<http ://www.ibmt.fhg.de/onto /2008/04/ md#MedicalDevice > .
8 ?d <http ://www.ibmt.fhg.de/onto /2008/04/ md#hasGroup > ?g .
9 ?g <http ://www.ibmt.fhg.de/onto /2008/04/ md#deviceType >

<http ://www.ibmt.fhg.de/onto /2008/04/ md#UrineAnalysis > .

Listing 6.2 shows an example of SMDDP request message, encapsulating the SCENT
query conditions (lines 7-9), as mentioned earlier in Listing 5.2. Due to the unreliable
nature of UDP protocol, some UDP packets could be lost during the broadcasting phase,
so the SMDDP request messages must be sent three times, as per the UPnP-SSDP
specification [56] recommendation, in order to increase the probability of SMDDP request
message to reach the possible destinations without generating much network traffic.

94 6. Semantic Medical Device Discovery Protocol

6.4 SMDDP Response Message Format

This section describes the details about the SMDDP response messages. When a server
medical device receives the SMDDP request message, it extracts the SCENT query con-
ditions from it and resolves all of its variables. After resolving the SCENT query, the
smddp server constructs the reply message, which is an HTTP response back to the
Callback− Uri provided by the client medical device in the request message, and convey
the required information in a suitable format.

Listing 6.3: Augmented Backus-Naur Form of SMDDP Response Messages

1 response−message = start−line ∗ (msg−header CRLF) CRLF msg−body
2 start−line = "POST" SP Callback−Uri SP version CRLF
3 Callback−Uri = "/" subtype
4 version = "HTTP/" number "." number
5 msg−header = Host / SeqN / Content−Type / Content−Length
6 Host = "Host" ":" SP IP4−Address
7 SeqN = "SeqN" ":" SP number
8 Content−Type = "Content−Type" ":" SP cont−type
9 Content−Length = "Content−Length" ":" SP number
10 msg−body = 1 ∗ OCTET
11 number = 1 ∗ DIGIT
12 cont−type = type "/" subtype
13 type = token
14 subtype = token

Listing 6.3 shows the Augmented Backus-Naur Form (ABNF) of SMDDP response
messages which mostly uses the productions that are already used in ABNF of SMDDP
request messages. The response−message is composed of a start− line, zero or more
headers and a mandatory body section (line 1). The main element of the start− line is
the POST command, followed by the Callback− Uri where the response is going to be
sent, and a protocol version number (lines 2-4). There are four types of headers (Lines 5,6)
where, besides the already defined three headers, a new header Host is introduced, which
describes the IP address of the client medical device using the production of IP4− Address
[110].

Listing 6.4: An Example of Complete SMDDP Response Message

1 POST /smddpcallback HTTP /1.0
2 Host: 192.168.2.11
3 SeqN: 20
4 Content−Type: application/de.fhg.ibmt.smiddel
5 Content−Length: 561
6
7 <?xml version ="1.0" encoding ="UTF−8"?>
8 <smiddel xmlns="http ://www.ibmt.fhg.de/smds /2008/04/ smiddel"
9 xmlns:xsi="http :// www.w3.org /2001/ XMLSchema−instance"
10 xsi:schemaLocation ="http ://www.ibmt.fhg.de/smds /2008/04/ smiddel
11 http ://www.ibmt.fhg.de/smds /2008/04/ smiddel.xsd">
12
13 <medevice uri="urn:uuid:urisys">
14 <wsurl >http ://192.168.2.25:8086/ csoap/UrisysService </wsurl >
15 <wsdl >http ://192.168.2.25:8086/ csoap/wsdl/urisys.wsdl </wsdl >
16 <sawsdl >http ://192.168.2.25:8086/ csoap/wsdl/urisys.sawsdl </sawsdl >
17 <cert >http ://192.168.2.25:8086/ csoap/cert/urisys.cert </cert >
18 </medevice >
19 </smiddel >

6.4 SMDDP Response Message Format 95

Listing 6.4 shows an example of the simple SMDDP response message that is sent
back from a urine analyzer to the client medical device against the SMDDP request
message shown in Listing 6.2. The most important part (lines 13-17) of this response
message is the address of the responding medical device (line 13), the URI for the Web
Service methods invocation (line 14), the URI for the simple Web Service description file
(line 15), the URI for the semantically annotated Web Service description file (line 16),
and the URI for downloading the digital device certificate file (line 17). All these URIs
are used by the client medical device and/or (health) information system in the network
as per the requirements of an application, e.g. if it is required to invoke just the Web
Service methods of a server medical device, the client medical device will use only the
URI of wsurl.

6.4.1 SMIDDEL: A Schema for SMDDP Response Messages

The SMDDP response messages are very simple and straightforward to be processed by
the client medical devices, as they contain just the URIs of the matched medical devices.
In order to annotate the SMDDP response message and markup its body section, a simple
schema has been designed, called SMIDDEL (Semantic Medical Device Description
Endpoints Language), which is used by the client medical devices to process the SMDDP
response messages.

Listing 6.5: SMIDDEL XML Schema

1 <?xml version ="1.0" encoding ="UTF−8"?>
2
3 <!−− SMIDDEL XML Schema −−>
4 <!−− Author: Safdar Ali −−>
5 <!−− Version: 2008045.1 −−>
6
7 <xs:schema xmlns:xs="http ://www.w3.org /2001/ XMLSchema"
8 xmlns:smiddel ="http ://www.ibmt.fhg.de/smds /2008/04/ smiddel"
9 targetNamespace ="http :// www.ibmt.fhg.de/smds /2008/04/ smiddel"
10 elementFormDefault =" qualified">
11
12 <xs:element name="wsurl" type="xs:anyURI" />
13 <xs:element name="wsdl" type="xs:anyURI" />
14 <xs:element name=" sawsdl" type="xs:anyURI" />
15 <xs:element name="cert" type="xs:anyURI" />
16 <xs:element name=" medevice">
17 <xs:complexType >
18 <xs:sequence >
19 <xs:element ref=" smiddel:wsurl" minOccurs ="0" maxOccurs ="1" />
20 <xs:element ref=" smiddel:wsdl" minOccurs ="0" maxOccurs ="1" />
21 <xs:element ref=" smiddel:sawsdl" minOccurs ="0" maxOccurs ="1" />
22 <xs:element ref=" smiddel:cert" minOccurs ="0" maxOccurs ="1" />
23 </xs:sequence >
24 <xs:attribute name="uri" type="xs:anyURI" use=" required" />
25 </xs:complexType >
26 </xs:element >
27 <xs:element name=" smiddel">
28 <xs:complexType >
29 <xs:sequence >
30 <xs:element ref=" smiddel:medevice" maxOccurs =" unbounded" />
31 </xs:sequence >
32 </xs:complexType >
33 </xs:element >
34 </xs:schema >

96 6. Semantic Medical Device Discovery Protocol

Listing 6.5 shows the complete SMIDDEL XML schema. The most important part
(lines 19-22) is the sequence and the lower/upper limits of the occurrence of all the URIs.

6.5 Overall Analysis of SMDPP

This section describes the details about the overall analysis of SMDDP protocol, in
terms of matchmaking process on the medical devices and their response time, as well as
a comparative analysis of SMDDP with other existing network discovery protocols.

6.5.1 Performance Evaluation

The advantages of semantic discovery are pretty evident, since it gives us more refined
results by interpreting the information relationships, while on the other hand, the normal
lexical attribute-value based discovery gives us a subset of those results or even none. We
are quite satisfied with the performance of SMDDP, which is at core dependent on µOR
that enriches the medical devices with the capabilities of semantic querying, reasoning
and interpretation of the information and its relationships. In order to evaluate the
performance of Java based implementation of SMDDP protocol, we tested 10 different
SEARCH queries (see Appendix B) against the 5 instances of SMDDP servers running on
a single PC (Pentium 4, 2.4 GHz, 1GB RAM).

Figure 6.3: Semantic Matchmaking Performance of SMDDP Discovery

During the first test, the SMDDP servers parsed the local application/domain on-
tologies and created the rules as RDF triples from them, performed the description logic
reasoning against the available knowledge base and created the inferences using µOR.
This step will be performed only when the medical device is booted, or if there is a change
in the knowledge base or ontologies. Finally, the whole knowledge base is searched for
the matched triples against the searching criteria (conditions) of the received query.

6.5 Overall Analysis of SMDPP 97

T
ab

le
6.

1:
C

om
p
ar

is
o
n

o
f

S
M

D
D

P
w

it
h

S
ta

te
-o

f-
th

e-
a
rt

D
is

co
v
er

y
P

ro
to

co
ls

98 6. Semantic Medical Device Discovery Protocol

As shown in Fig. 6.3, the first execution took on average 130ms on each of the five
SMDDP servers, since Java takes longer time to initialize the internal data structures.
However, the response of SMDDP to the subsequent executions for rest of the nine
queries was much more faster, produced more stabilized measures and took on average
20-30ms, since no rules generation from ontologies or any form of semantic reasoning
was performed.

6.5.2 Comparative Analysis

SMDDP provides a simple and powerful way for the semantic discovery of ambient in-
telligent medical devices in pervasive (healthcare) environments, utilizing and exploiting
the advantages of HTTP protocol. Although, several discovery mechanisms for pervasive
computing have been proposed in the past, but none of them is widely adopted. Edwards
has published a comparative study [111] about SSDP, Jini, Bluetooth SDP, SLP, Bon-
jour, Salutation, INS and Ninja SSDS, including also infrared and RFID mechanisms.
The comparison was based on different parameters, i.e. topology, transport, scope, search
and security.

Table 6.1 shows a reproduction of the Edwards’ comparison table with the additional
row of SMDDP, which exhibits some distinct factors by comparing it with other alterna-
tives, such as its powerful semantic discovery capabilities and the use of widely-adopted
and reliable HTTP-based security mechanisms. This comparison shows and promotes
SMDDP to be the best candidate for the semantic discovery of ambient intelligent med-
ical devices in pervasive computing scenarios within the healthcare domain, and also a
valuable and promising alternative in other networking environments as well.

Chapter 7

Implementation

This chapter provides the details about the programming languages, libraries, environ-
ments and the tools used for the development of complete Semantic Medical Devices Space
(SMDS) framework and its constituent components, including Semantic Medical Device
Discovery Protocol (SMDDP), Micro OWL Description Logic and Rules based Reasoner
(µOR) and security framework. Also, it provides the details about the hardware plat-
forms that we have used to host our SMDS framework and to validate its performance
results, particularly in connection with the scenarios of SmartHEALTH Project [21]. The
UML class diagrams of complete SMDS framework are given in Appendix A.

7.1 Programming Languages

7.1.1 Java (J2SE 1.5)

The complete SMDS framework is developed using Sun’s Java Standard Edition (SE) 1.5
programming language. Apparently, it seems strange why SMDS is not developed using
Java Micro Edition (ME) (MIDP1 or CLDC2) which is particularly suited for resource-
constrained devices. However, there are various reasons, few of them are given below, to
prefer Java SE over Java ME for the development of SMDS framework.

• Java Native Interface (JNI): MIDP does not support JNI and therefore it is
not possible to extend Java APIs beyond those that come with the device. On the
other hand, we do want to provide support through SMDS for utilizing the existing
software functionality of medical devices, for which JNI is inevitably required.

• Reflection/Serialization: Java ME does not support reflection, object serial-
ization or Remote Method Invocation (RMI), which are usually required in Web
Services communication while transferring user-defined serialized objects.

• Accessing Native Application Data: MIDP 2.0 alone does not allow accessing
native S60 Symbian OS or other mobiles’ OSs application data, rather FileCon-
nection and Personal Information Management APIs (JSR-75) have to be used to
access native application data.

1Mobile Information Device Profile; http://java.sun.com/products/midp/
2Connected Limited Device Configuration; http://java.sun.com/products/cldc/

99

http://java.sun.com/products/midp/
http://java.sun.com/products/cldc/

100 7. Implementation

• File Handling: CLDC does not support file access, rather FileConnection API
(JSR-75) has to be used to access the file system.

• Class Un/Loading: MIDP does not support mechanism for class loading or un-
loading of both MIDlet classes and the platform’s API classes. All the classes
loaded during the running of a MIDlet will occupy the heap for its lifetime.

• Pre-verification: MIDP applications have to be pre-verified before runtime.
CLDC does not support a full Java SE type byte-code verifier, but instead a
different kind of byte-code verifier that takes less memory in the device, but re-
quires application class files to be pre-verified during application development,
more specifically in the compile process.

7.1.2 Microsoft Visual C#.NET

Microsoft’s Visual C#.NET language is used to develop the graphical (gateway) appli-
cations for Windows Xp and Windows Mobile 5.0/6.0 platforms, and clearly show the
advantages of using Semantic Web Services technology to get the heterogeneous medical
or mobile devices interoperable. These applications are developed to realize different
pervasive healthcare scenarios of the SmartHEALTH project.

7.2 Hardware Platforms

This section describes off-the-shelf hardware platforms that we have used to host the
SMDS framework for its evaluation, and to use them for different pervasive healthcare
scenarios in connection with SmartHEALTH Project. These hardware platforms include
Gumstix, Vodafone VPA 4, Viliv Net-Tablet PC and several desktop computers.

7.2.1 Gumstix

The Gumstix3 is a full functional open embedded computer which is available in various
configurations and can be individually extended through expansion boards. The main-
board has two connectors for expansion boards on both sides, which allows the use
of up to two expansion boards at the same time leading to a sandwich-like hardware
configuration. It offers various types of expansion boards allowing the user to align the
hardware configuration to his/her needs. The available interface types are for example
Ethernet, WiFi 802.11b/g, Bluetooth, GPS, USB, serial, GPIO, I2C, SPI, SD or Compact
Flash card slots, Audio in/out and even LCD interfaces.

We have selected Verdex Pro XL6P mother-board (Marvell
TM

PXA270 with XScale
TM

600MHz, 128MB RAM, 32MB Flash), NetPro-WiFi-Vx (10/100baseT Ethernet with
802.11b/g WiFi module) and Console-Vx (3 * RS-232 ports on miniDIN8 connectors)
together to host the SMDS framework. Fig. 7.1 shows the assembled Gumstix of all
these components, while Fig. 7.2 shows a Urine Analyzer device to which the Gumstix
is attached to enhance its capabilities and turning it into an ambient intelligent Urine
Analyzer. The Gumstix serves as a gateway between the connected Urine Analyzer and
SMDS framework, and offers Semantic Web Service based interface through Ethernet or
WiFi 802.11b/g to the clients, which could be other medical or mobile devices or even
health information systems.

3Gumstix miniaturized computers; http://www.gumstix.com/

http://www.gumstix.com/

7.2 Hardware Platforms 101

Figure 7.1: Gumstix with XL6P motherboard

Figure 7.2: Urine Analyzer from Roche R© Diagnostics with Gumstix

7.2.2 Viliv Promotion Pack S5 Net-Tablet PC

The Viliv Promotion Pack S5 EXP P 4.8-Inch Net-Tablet PC Viliv has crafted an amaz-
ing, ultra-portable, fully-functional Internet device, and rich in features with unabated
battery life and power. It features a superfine 4.8-Inch WSVGA display, 16 GB SSD,
and an Intel Atom

TM

Silverthorne 1.2GHz CPU. From a pocket PC standpoint, the S5
has a surreal (for its size) battery life of 7-hours of use, and it supports 720p HD video
playback with the features of integrated WiFi, Bluetooth and GPS. Fig. 7.3 shows the
Viliv Net-Tablet PC running the GUI based gateway application, which collects the mea-
surements from all the medical devices (or matched with the provided criteria) in the
environment and forwards them to the remote SmartHEALTH information system.

102 7. Implementation

Figure 7.3: The Viliv Promotion Pack S5 EXP P 4.8-Inch Net-Tablet PC

7.2.3 Vodafone VPA-4

Vodafone VPA-4 (Vodafone Personal Assistant) is a 3G-compatible model, having a
QWERTZ (German layout) keypad for convenient text entry, and its display is folded
out behind the keypad when users are writing or browsing the Web. The VPA-4 is
equipped with Windows Mobile Pocket PC Phone Edition 2003 OS, a 520MHz Intel
processor and 128MB RAM with various other features, i.e. Bluetooth, infrared, WiFi,
MiniUSB and SDIO/MMC card slot etc. Fig. 7.4 shows the VPA-4 device running the
GUI based gateway application, which collects the measurements from all the medical
devices (or matched with the provided criteria) in the environment and forwards them
to the remote SmartHEALTH information system.

7.3 Runtime Environments

This section describes the third-party software runtime environments that we have used
for the SMDS framework and SmartHEALTH Project.

7.3.1 JamVM

JamVM4 is a small Java Virtual Machine (JVM) which conforms to the Java 2 specifi-
cation, licensed under GPL, and targets the embedded devices. In comparison to most
other VMs (free and commercial) it is extremely small, with a stripped executable on
PowerPC of only 220K, and Intel 200K. However, unlike other small VMs (e.g. KVM)
it is designed to support the full specification and includes support for object finaliza-
tion, Soft/Weak/Phantom References, class-unloading, the Java Native Interface (JNI)
and the Reflection API. JamVM’s interpreter is highly optimized, incorporating many
state-of-the-art techniques such as stack-caching and direct-threading. JamVM can be
compiled for Linux, MacOS and Solaris platforms, and particularly for ARM processors

4JamVM, A Java Virtual Machine for small devices; http://jamvm.sourceforge.net/

http://jamvm.sourceforge.net/

7.3 Runtime Environments 103

Figure 7.4: The Vodafone VPA-4 with Windows Mobile 2003

which are mainly used in embedded systems due to their low energy consumption and
high processing speed. JamVM’s major advantages include its widespread use and good
support of JNI which is needed to access the hardware interfaces on the embedded plat-
forms through Java. We have used JamVM for embedded Linux running on Gumstix in
order to host SMDS framework, as explained under Section 7.2.1.

7.3.2 Mysaifu JVM

Mysaifu5 JVM is a free, open-source Java Virtual Machine which conforms to Java 2
specification and is targeted for almost all Windows Mobile and Windows CE (Compact
Edition) based Pocket PC platforms. Mysaifu JVM is developed in Java and C++
programming languages and is available under GPL License 2.0. We have used Mysaifu
JVM in order to host SMDS framework on Windows Mobile based devices, as explained
in Sections 7.2.2 and 7.2.3.

7.3.3 GNU Classpath

The GNU Classpath6 is an almost Java 1.5 compatible implementation of the Java stan-
dard libraries that is licensed under GPL. An exact comparison between the original Sun
Microsystems JDKs and GNU Classpath can be found at http://builder.classpath.
org/japi/jdk15-classpath.html. At the time of writing this thesis, the GNU Class-
path serves 99.11% of JDK 1.4 and 95.18% of JDK 1.5. In contrast to Sun Microsystems
JDKs, the GNU Classpath is ported to several ARM platforms and can be used in com-
bination with several JVMs, such as JamVM, Cacaovm or Kaffe. We have used GNU
Classpath in conjunction with JamVM in order to host SMDS framework on Gumstixs,
as explained under Section 7.2.1.

5Mysaifu, A JVM for Windows Mobile; http://sourceforge.jp/projects/mysaifujvm/
6GNU Classpath - GNU Project; http://www.gnu.org/software/classpath/

http://builder.classpath.org/japi/jdk15-classpath.html
http://builder.classpath.org/japi/jdk15-classpath.html
http://sourceforge.jp/projects/mysaifujvm/
http://www.gnu.org/software/classpath/

104 7. Implementation

7.3.4 CSOAP Web Services Server

CSOAP7 is a research outcome of OZONE8 Project, and provides a Java based SOAP
engine for resource-constrained devices (mobile or PDAs) and is able to deploy Web
Services, and to manage RPCs (Remote Procedure Call) from SOAP clients and dispatch
them to the Web Services. The implementation of CSOAP follows the Sun’s JAX-RPC
Specification, which gives a standard for SOAP-based RPC to support the development
of SOAP-based interoperable and portable Web Services. The original CSOAP server
supports Java Web Services only for Java based clients, but for SMDS framework, we
have adapted the CSOAP server to additionally support the clients developed in Microsoft
.NET programming languages, i.e. Visual C#.NET and Visual Basic.NET.

7.3.5 Jetty Web Server

Jetty9 is a compact HTTP server, HTTP client, and a Java servlet container, which is
used in a wide variety of projects and products, ranging from embedded devices, tools,
frameworks, application servers, and clusters. Jetty is open source and available for free
commercial use and distribution under Apache License 2.0. In SMDS framework, Jetty’s
servlet container is used to host the CSOAP server, while the HTTP Server is used for
hosting the Web Services description files (SA/WSDL files), the device’ certificate to be
downloaded on the client side, and for SMDDP protocol for receiving the HTTP callbacks
from the matched medical or mobile devices during the discovery process.

7.3.6 HyperSQL Database

HyperSQL Database (HyperSQL10) is the leading SQL relational database engine written
entirely in Java. It has a JDBC driver and supports a rich subset of ANSI-92 SQL (BNF
tree format) plus many SQL:2008 enhancements. It offers a small, fast database engine
which offers both in-memory and disk-based tables and supports embedded and server
modes. Additionally, it includes tools such as a minimal web server, in-memory query
and management tools (can be run as applets) and a number of demonstration examples.
In SMDS framework, we have used HSQL database to host the device DB (see Appendix
A for the class diagram) where each medical device stores its measurements and other
relevant information, which are later offered through Semantic Web Services.

7.4 Software Libraries

This section outlines the different software libraries used by the SMDS framework.

7.4.1 SAWSDL4J API

The Semantic Annotations for WSDL and XML Schema (SAWSDL11) W3C Recommen-
dation defines mechanisms using which semantic annotations can be added to WSDL
components. SAWSDL does not specify a language for representing the semantic mod-
els, e.g. ontologies, rather it provides mechanisms by which concepts from the semantic

7CSOAP - Web Services Server; http://www-rocq.inria.fr/arles/download/ozone/csoap-1.0.zip
8OZONE - EU-IST Project; http://www.hitech-projects.com/euprojects/ozone/
9Jetty - A Compact HTTP Server/Client; http://www.eclipse.org/jetty/

10HSQL - A 100% Java SQL Database System; http://hsqldb.org/
11Semantic Annotation for WSDL and XML Schema; http://www.w3.org/2002/ws/sawsdl/

http://www-rocq.inria.fr/arles/download/ozone/csoap-1.0.zip
http://www.hitech-projects.com/euprojects/ozone/
http://www.eclipse.org/jetty/
http://hsqldb.org/
http://www.w3.org/2002/ws/sawsdl/

7.4 Software Libraries 105

models that are defined either within or outside the WSDL document can be referenced
from within WSDL components as annotations. These semantics when expressed in
formal languages can help to disambiguate the description of Web Services during au-
tomatic discovery and composition of the Web services. SAWSDL4J12 API interface is
an implementation of the SAWSDL specification, which allows the developers to create
SAWSDL based applications by annotating the WSDL document of Web Services. In
SMDS framework, the client medical or mobile device(s) make(s) use of SAWSDL4J API
to parse the SAWSDL documents of the matched medical or mobile devices in order to
extract the the name(s) of the Web Service method(s) to invoke, which match with the
desired input/output parameters types.

7.4.2 Bouncy Castle Cryptography API

Bouncy Castle13 provides light-weight cryptography APIs for Java and C#.NET, as well
as provider for Java Cryptography Extension and the Java Cryptography Architecture.
In SMDS framework, besides using the standard Java cryptography API, an implementa-
tion of Bouncy Castle is also developed to provide security for the applications running on
Gumstixs and Mobile platforms, developed in Java and C#.NET languages respectively.
The user can also use any other third-party security provider, provided s/he has imple-
mented the required cryptographic methods defined in the interface, i.e. sign, verify,
encrypt and decrypt etc.

7.4.3 Piccolo XML Parser

Piccolo14 is a small, extremely fast XML parser for Java, which implements the SAX 1,
SAX 2.0.1, and JAXP 1.1 (SAX parsing only) interfaces as a non-validating parser and
attempts to detect all XML well-formedness errors. Piccolo was developed by Yuval Oren
and is released as open source software under the terms of the Apache Software License
2.0. In SMDS framework, Piccolo is used for fast XML processing of WSDL, SAWSDL
documents, and for ontologies and knowledge base triples as well.

7.4.4 RDF Filter for SAX2

The RDF Filter15 is a simple filter layer between SAX (The Simple API for XML) and
the higher-level RDF (Resource Description Format), an XML-based object-serialization
and meta-data format. The RDF filter library is used by several RDF-based projects.
In SMDS framework, RDF Filter is used in conjunction with Piccolo XML parser, while
loading the knowledge base or ontologies triples in the memory.

7.4.5 RXTX - A Communication Library

RXTX16 is a native library, available for various platforms, i.e. Windows and Linux, and
provides serial and parallel communication functionalities to the Java based applications.
In SMDS framework, RXTX is used exclusively on Gumstixs to support their serial
communication with medical devices. Fig. 7.1 and Fig. 7.2 illustrate how the medical
device (RS-232) is attached with serial interface (RS-422) of Gumstix.

12SAWSDL4J API; http://lsdis.cs.uga.edu/projects/meteor-s/opensource/sawsdl4j/
13Bouncy Castle Cryptography APIs; http://www.bouncycastle.org/
14Piccolo XML Parser for Java; http://piccolo.sourceforge.net/
15RDF Filter for SAX2; http://rdf-filter.sourceforge.net/
16RXTX - A Library for Serial/Parallel Communication; http://users.frii.com/jarvi/rxtx/

http://lsdis.cs.uga.edu/projects/meteor-s/opensource/sawsdl4j/
http://www.bouncycastle.org/
http://piccolo.sourceforge.net/
http://rdf-filter.sourceforge.net/
http://users.frii.com/jarvi/rxtx/

106 7. Implementation

7.5 Software Tools/IDEs

This section describes details about the software tools and IDEs (Integrated Development
Environments) used for the software development of SMDS framework/applications.

7.5.1 Microsoft Visual Studio 2005

Microsoft Visual Studio 200517 is an IDE from Microsoft. It can be used to develop
console and GUI (Graphical User Interface) applications along with Windows Forms
applications, web sites, web applications, and Web Services in both native code together
with managed code for all platforms supported by Microsoft Windows, Windows Mobile,
Windows CE, .NET Framework, .NET Compact Framework and Microsoft Silverlight.
In SMDS framework and for SmartHEALTH project, we have used MS Visual Studio
2005 and Visual C#.NET to adapt the SMDS framework and the development of GUI
applications for Windows (mobile) platforms, respectively.

7.5.2 Eclipse IDE

Eclipse18 is a free, open-source, multi-language IDE (Integrated Development Environ-
ment) for various languages, e.g. Java, C/C++, PHP, and Perl etc. Eclipse employs
plug-ins in order to provide all of its functionality on top of (and including) the run-
time system, in contrast to some other applications where functionality is typically hard
coded. The complete SMDS framework as well as rich graphics applications, i.e. Gateway
application, are developed using Eclipse IDE.

7.5.3 Protégé

Protégé19 is a free, open-source platform that provides a growing user community with
a suite of tools to construct domain models and knowledge-based applications with on-
tologies. At its core, Protégé implements a rich set of knowledge-modeling structures
and actions that support the creation, visualization, and manipulation of ontologies in
various representation formats. The Protégé platform supports two main ways of model-
ing ontologies: the Protégé-Frames editor enables users to build and populate ontologies
that are frame-based, in accordance with the OKBC (Open Knowledge Base Connec-
tivity) protocol; while the Protégé-OWL editor enables users to build ontologies for the
Semantic Web, in particular in the W3C’s OWL (Web Ontology Language) language. In
SMDS, we have used Protégé-OWL to develop MeDO (Medical Device Ontology) and
SmdsOnto (SMDS Ontology) ontologies.

7.5.4 Radiant

Radiant20 is an eclipse plug-in that provides a graphical user interface to allow the de-
velopers to create and publish SAWSDL and WSDL-S service interfaces by adding an-
notations to the existing service descriptions in WSDL via OWL ontologies. In SMDS
framework, Radiant is used to annotate the WSDL document of device Web Services via
MeDO (Medical Device Ontology) and SmdsOnto (SMDS Ontology) ontologies.

17MS Visual Studio 2005; http://msdn.microsoft.com/en-us/vstudio/default.aspx
18Eclipse - A Java Integrated Development Environment; http://www.eclipse.org/
19Protégé - An Ontology Editor and Knowledge base Framework; http://protege.stanford.edu/
20Radiant Plug-in; http://lsdis.cs.uga.edu/projects/meteor-s/downloads/index.php?page=1

http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://www.eclipse.org/
http://protege.stanford.edu/
http://lsdis.cs.uga.edu/projects/meteor-s/downloads/index.php?page=1

Chapter 8

Experimental Evaluation

This chapter provides details about the experimental evaluation of Semantic Medical
Devices Space (SMDS) framework in different pervasive healthcare scenarios, particularly
in connection with SmartHEALTH Project [21]. Sections 8.1 and 8.2 illustrate different
types of medical devices and health information systems (HIS), respectively, that we
have used as testbed for our experiments, while Section 8.3 illustrates all the healthcare
scenarios in detail which make use of these medical devices and HISs.

8.1 Testbed Medical Devices

This section provides details about all the medical devices that are used in different
scenarios of SmartHEALTH Project. Each of the medical device listed below was attached
with a separate Gumstix system through a serial cable, which connected the serial port
of medical devices (RS-232) to the serial port of Gumstix (RS-422). The medical devices
having no serial interface were connected with through Bluetooth/WiFi interface.

8.1.1 Blood Cancer Markers Analyzer - SmartHEALTH Device

In SmartHEALTH Project, a new generation of intelligent lab-on-chip bio-diagnostic
devices for point-of-care (POC) applications is developed that incorporates advanced
capabilities for context awareness, data interpretation through soft computing tools, e.g.
Neural Networks, ubiquitous communication in pervasive healthcare environments, and
the provision of e-Health services. SmartHEALTH devices are developed for three types
of cancers, namely breast, cervical and colorectal, and are intended to operate in all
POC driven environments such as hospitals, physicians’ offices and ultimately patient
self-testing at home or while moving. It is envisioned that SmartHEALTH devices at the
POC will be able to securely communicate seamlessly and transparently with the local
or remote health information system(s). Fig. 8.1(a) and Fig. 8.1(b) show the desktop
and portable types of SmartHEALTH device, respectively.

8.1.2 Pulse Oximeter - Masimo Rainbow

A Pulse Oximeter is a medical device that indirectly measures the oxygen saturation of
a patient’s blood (as opposed to measuring oxygen saturation directly through a blood
sample) and changes in blood volume in the skin by producing a photoplethysmograph.
It is often attached to a medical monitor so the staff could see a patient’s oxygenation at

107

108 8. Experimental Evaluation

(a) SmartHEALTH Device - Desktop Unit (b) SmartHEALTH Device - Portable Unit

Figure 8.1: Different types of SmartHEALTH Cancer Biodiagnostic Devices

all times. Fig. 8.2(a) shows an example of new generation of battery-operated fingertip
pulse oximeters, which is good for home blood-oxygen monitoring, while Fig. 8.2(b) shows
portable Masimo Rainbow pulse oximeter, which is used in hospital wards as well as in
home-care monitoring. Because of the simplicity and speed, pulse oximeter is of critical
importance in emergency medicine and is also very useful for patients with respiratory or
cardiac problems, or for diagnosis of some sleep disorders such as apnea and hypopnea.

(a) A fingertip pulse oximeter (b) A portable pulse oximeter

Figure 8.2: Different types of portable pulse oximeters

8.1 Testbed Medical Devices 109

8.1.3 Urine Analyzer - Urisys 1100

Fig. 8.3 shows the Urisys 1100 urine analyzer from Roche R© Diagnostics, which is a
compact, time-saving and easy to use system for standardized, semi-quantitative, and
one-at-a-time evaluation of Chemstrip 10MD urine test strips. Simple operation, an at-
tractive design, improved functions and flexible software options make it a suitable system
solution for physicians’ offices, specialists and occupational health care units as well as for
small hospital laboratories and other decentralized testing sites, e.g. hospital wards and
decentralized health care units, seeking a cost-effective way to improve standardization
and work-flow of urine analysis.

Figure 8.3: Urisys 1100 from Roche R© Diagnostics for Urine Analysis

8.1.4 Blood Coagulation Meter - CoaguChek S

Fig. 8.4 shows the CoaguChek R© S meter, which is a well-proven and established blood
monitoring system from Roche R© Diagnostics for Prothrombin Time (PT) and Interna-
tional Normalized Ratio (INR). It is a reflectance photometer for fast (∼ 1 min) on-the-
spot measurement from one single drop (10 µl) of capillary, means from the fingertip, or
venous whole blood. In addition, it has a large, easy-to-read and icon-based display.

Figure 8.4: CoaguChek S System from Roche R© Diagnostics for PT/INR Monitoring

110 8. Experimental Evaluation

8.1.5 Vital Signs Monitor - VITALMAX 4000 CL

The VITALMAX 4000 CL is simple to set up and the most affordable continuous multi-
parameter bed-side patient monitor with an outstanding user-friendly software, and fea-
tures an eight channel waveform display on a color LCD with a 12.1 inches effective
display area. It is the perfect answer to tight spaces and tight budgets, as it combines
the benefits of an anesthetic agent monitor in one compact unit. It is ideally suited for
the operating room as it has a two hour battery backup which facilitates patient transfer
to the recovery room without interrupting the continuous monitoring of vital signs data.

Figure 8.5: Vital Signs Monitor - VITALMAX 4000 CL

8.1.6 Weight Scale - SOEHNLE-Professional 7700

The accuracy, reliability and easy handling are the key factors when weighing patients in
hospitals and in GP offices. Fig. 8.6 shows SOEHNLE Professional 7700 scale, which is
particularly suitable for specialized hospital wards, as well as at home for periodic weight
monitoring. It offers RS-232 interface to transmit the measurement to the Gumstix.

Figure 8.6: Medical Personal Health Scale - SOEHNLE Professional 7700

8.2 Testbed Health Information Systems 111

8.1.7 Digital Blood Pressure Monitor - A&D Medical UA-767PC

Electronic or digital blood pressure monitors for home use are either semi-automatic
manual inflation (the user squeezes the bulb to inflate the cuff) or automatic inflation.
Automatic monitors have everything contained in one unit, so they’re easier to handle
than systems with a separate gauge and stethoscope. Most home blood pressure monitors
are portable and have a D-ring cuff for one-handed application, which may fit around
the wrist or upper arm. Also, expensive monitors have automatic inflation and deflation
systems, along with large, easy-to-read digital displays and error indicators, and built-in
pulse (heart rate) measurement. Fig. 8.7 shows the UA-767PC automatic blood pressure
monitor, which is clinically validated for accuracy and features memory for 280 readings
with wired communication (RS-232 or USB) to the computer system.

Figure 8.7: UA-767PC Digital Blood Pressure Monitor with Serial Interface

8.2 Testbed Health Information Systems

8.2.1 Laboratory Information System

The laboratory information system (LIS) of the NHS laboratory in New Castle upon
Tyne, United Kingdom is taken as testbed for the evaluation of SmartHEALTH analyzers
and SMDS framework. Fig. 8.1 reflects this HL7 based LIS, which is connected with
SmartHEALTH Information System in the laboratory for the synchronization of patients’
medical records.

8.2.2 Hospital Information System

The hospital information system (HIS) of Donostia Hospital in San Sebastian, Spain is
taken as testbed for the evaluation of SmartHEALTH analyzers and SMDS framework.
Fig. 8.2 reflects this HL7 based HIS, which is connected with SmartHEALTH Information
System in the hospital for the synchronization of patients’ medical records.

8.2.3 SmartHEALTH Information System

The SmartHEALTH Information System (SIS) is presented as a part of the complete
SmartHEALTH ICT platform with the back-end of a database of all relevant patients’
data, which is presented to the authorized users (e.g. health professionals) in their
Web browsers. The SIS does not claim to be a replacement for any HIS or any elec-
tronic health record, rather to assist them significantly in an ambient intelligent in-
frastructure. It can be used for a number of purposes: it provides a platform for

112 8. Experimental Evaluation

the validation of SmartHEALTH devices, by comparing the measurement results taken
from SmartHEALTH devices and from other reference/golden-standard devices; it of-
fers services for the remote home-monitoring of the patients; it validates our proof-
of-the-concept, which is to use Semantic Web Services for the communication among
SmartHEALTH devices as well as with SIS; it serves as a data management platform
for the clinical validation of different cancer markers or the interpretation algorithms of
multi-parametric cancer marker analysis. In addition, it represents the traditional way
how specific point-of-care equipment is integrated in a heterogeneous health information
infrastructure in a hospital or laboratory, where the medical results are sent from devices
to a specific information system that acts as a bridge to the HIS or LIS.

8.3 Testbed Pervasive Healthcare Scenarios

This section provides details about the pervasive healthcare scenarios in which medical
devices semantically coordinate with each other and with health information systems
through the SMDS framework. For the following scenarios, we define two roles, namely
active gateway and passive gateway for an entity, which could be a SmartHEALTH de-
vice or PC/PDA running the SmartHEALTH Terminal application together with SMDS
gateway application (GUI or Console based). Active gateway means that the entity plays
an active role by initiating the process of collecting measurement results from all or de-
sired medical or mobile devices in the environment, as per the requirements, and then
forwards them to the respective information system. Passive gateway means that the
entity does not initiate any process, rather it facilitates other medical or mobile devices
in the environment with its services in order to forward their measurement results to the
respective information system. An entity can have both active and passive roles together.

8.3.1 Cancer Diagnosis - Laboratory Scenario

Fig. 8.1 illustrates the pre-operation cancer diagnosis scenario, which was carried out as a
part of SmartHEALTH user evaluation use-cases at the clinical laboratory of New Castle
upon Tyne, United Kingdom. It involves a couple of SmartHEALTH Desktop analyzers,
two other types of analyzers, each attached with a separate Gumstix (red en-boxed),
SmartHEALTH PC Terminal application (STA) with GUI based SMDS gateway appli-
cation, an in-house HL7 based laboratory information system and the SmartHEALTH
information system (SIS). In this scenario, the STA uses the GUI based gateway applica-
tion, as shown in detail in Appendix D, as an active gateway for all the medical devices
in the laboratory and automatically collects the data values from these medical devices,
whenever a new measurement of a patient is available. Additionally, it makes a collec-
tive intelligent interpretation of all the measurement values using soft computing tools
(through trained neural networks and/or support vector machine), and then forwards
these measurement values with their interpretation to the SIS through Semantic Web
Service. If configured, the STA sends these measurement values to the legacy hospital
information system through HL7 communication standard as well, otherwise the SIS au-
tomatically synchronizes these measurement results of the patient with the health record
stored in hospital information system. The SIS offers a Web based application for the
authorized health professionals to view and analyze the patients’ disease status through
case-reports (cancer’s progression or regression) and react accordingly.

8.3 Testbed Pervasive Healthcare Scenarios 113
T

ab
le

8.
1:

P
re

-o
p

er
at

io
n

C
an

ce
r

D
ia

gn
os

is
S
ce

n
a
ri

o
a
t

C
li
n
ic

a
l

L
a
b

o
ra

to
ry

o
f

N
ew

C
a
st

le
u

p
o
n

T
y
n
e

H
o
sp

it
a
l,

U
.K

114 8. Experimental Evaluation

8.3.2 Cancer Treatment - Hospital Scenario

Fig. 8.2 illustrates the post-operation cancer treatment scenario, which was carried out
at the Donostia Hospital of San Sebastian, Spain, as a part of SmartHEALTH user eval-
uation use-cases. It involves a SmartHEALTH Desktop analyzer, SmartHEALTH PDA
Terminal application (STA), blood pressure device, ECG (Electro Cardiogram) device,
pulse Oximeter, each attached with a separate Gumstix (red en-boxed), with GUI based
SMDS gateway application, an in-house HL7 based hospital information system and the
SmartHEALTH information system (SIS). In this scenario, the STA acts as an active
gateway for all the medical devices in the hospital ward and automatically collects the
data values from these medical devices attached with a patient, whenever a new measure-
ment is available. For the real-time ECG and vital parameters data transfer to SIS, the
corresponding medical devices use the data forwarding Semantic Web Services offered by
the PDA based gateway application. Additionally, a collective intelligent interpretation
of all the measurement values is made using soft computing tools (through trained neural
networks and/or support vector machine), and then forwards these measurement values
with their interpretation to the SIS through Semantic Web Service. If configured, the
STA sends these measurement values to the legacy hospital information system through
HL7 communication standard as well, otherwise the SIS automatically synchronizes these
measurement results of the patient with the health record stored in hospital information
system. The SIS offers a Web based application for the authorized health professionals to
view and analyze the patients’ disease status through case-reports (cancer’s progression
or regression) and react accordingly.

8.3.3 Cancer Follow-up and Monitoring - Home-care Scenario

The SmartHEALTH Project aims to support independent living at home by providing
post-operation home-care breast cancer monitoring service, which provides an improved
quality of life for the patients and their families, and provides the opportunity to the
patient to stay at home yet receive the level of care required for their condition.

Fig. 8.3 illustrates this pervasive healthcare scenario where a SmartHEALTH portable
device, besides being blood cancer markers analyzer, also acts as an active or passive
gateway for other medical devices (e.g. blood pressure, blood coagulation, weight scale
etc.) and offers its services as Semantic Web Services. As an active gateway device, the
SmartHEALTH device semantically discover other desired or all medical devices in the
environment, as per the requirements of healthcare application, collects the measurement
values of a patient from these medical devices, makes a collective intelligent interpreta-
tion of all the measurement values using soft computing tools, and then forwards these
measurement values with their interpretation to the remote hospital information system
and/or doctor’s clinical information system as per configuration. As a passive gateway
device, the SmartHEALTH device only acts as a data forwarding device for other medi-
cal devices in the environment. Whenever a medical device finishes its measurement, it
semantically discovers the SmartHEALTH device as gateway device, and uses its service
to forward the measurement results to the respective information system(s), in our case
the SmartHEALTH information system. Finally, the patient’s family doctor or health
professional in the hospital analyzes the results of blood cancer markers, the measure-
ment values of other medical devices, and their intelligent interpretation in terms of the
disease status (cancer’s progression or regression) in order to discuss with the patient
about the further steps to be taken.

8.3 Testbed Pervasive Healthcare Scenarios 115
T

ab
le

8.
2:

P
os

t-
op

er
at

io
n

C
an

ce
r

T
re

a
tm

en
t

S
ce

n
a
ri

o
a
t

D
o
n
o
st

ia
H

o
sp

it
a
l

o
f

S
a
n

S
eb

a
st

ia
n

,
S
p

a
in

116 8. Experimental Evaluation

T
a
b
le

8
.3:

P
o
st-o

p
era

tio
n

H
o
m

e-ca
re

B
rea

st
C

a
n
cer

F
o
llow

-u
p

an
d

M
on

itorin
g

S
cen

ario

8.4 Conclusions 117

8.4 Conclusions

This chapter presents various medical devices, information systems and the pervasive
healthcare scenarios, which are used to invalidate the performance and behavior of
SMDS framework. Every medical device used in the healthcare scenarios, except the
SmartHEALTH device, was equipped with a Gumstix which hosted the SMDS frame-
work, not only to enable it to semantically discover other desired or all medical devices
or information systems in the healthcare environment, but also to get their measurement
results through the Semantic Web Services offered by them. We have got satisfactory
results, in terms of memory usage, cost, performance and reactivity of the hardware used
for the enrichment of state-of-the-art medical devices and their leverage towards the next
generation of ambient intelligent medical devices. Our experiments show that the SMDS
framework in particular, and other current SOA based approaches in general are not
feasible for real-time medical devices, e.g. ECG vital signs monitor or Pulse Oximeter,
where hundreds of data frames per second are transmitted. However, on the contrary,
medical devices working on store-and-forward principle gave exceptional results and we
believe that the SMDS framework will be a mile-stone towards achieving full-fledged se-
mantic interoperability among resource-constrained medical or mobile devices, not only
in the field of pervasive healthcare, but in other ubiquitous computing application in
general as well.

Table 8.4 extends the comparison of the related work, which is presented in Section 3.7,
and provides the comparative analysis of SMDS framework. The final weight of SMDS
(58) shows that it is the best candidate to be used on the resource-constrained medical or
mobile devices, whose functional characteristics are to be exposed as SWSs, and enriching
them with semantic processing capabilities without loosing autonomy with less resources
requirements.

Table 8.4: Comparative analysis of related work against the evaluation criteria

Chapter 9

Conclusion and Outlook

We have considered Semantic Web and Web Service technologies to develop a decentral-
ized semantic middleware infrastructure for the medical devices communication in order
to escalate them towards the next generation Ambient Intelligent (AmI) medical devices,
which are semantically aware of the presence of other medical or mobile devices and
their services in an e-Healthcare environment. The salient features of this middleware
infrastructure, namely Semantic Medical Devices Space (SMDS) set it apart from the
related work in several ways. First, the SMDS infrastructure is deployable on both new
and existing networks of distributed wireless and wired medical devices, which operate
with limited resources in terms of computing power, energy and memory usage. Second,
the SMDS framework facilitates the medical devices’ manufacturers to turn their dumb
medical devices into AmI medical devices, by exposing their functional capabilities as
Semantic Web Services (SWSs) which enable them to dynamically and semantically dis-
cover & invoke the Web Services of other medical devices, and could use their medical
data or measurement in a context-aware application.

We have presented, as integral part of SMDS, a lightweight HTTP-based semantic
discovery protocol, namely SMDDP (Semantic Medical Device Discovery Protocol to sup-
port the semantic discovery of AmI medical devices based on their physical characteristics
(i.e. device vendor, device group/type etc.) and/or functional characteristics (i.e. what
methods does a SWS provides and their semantic descriptions etc.). Also, we have pre-
sented, as integral part of SMDS, a lightweight but powerful knowledge base querying
and Description Logics and/or Rules based reasoning system, namely µOR (Micro OWL
Querying and Reasoning System, which can be integrated on resource-constrained medi-
cal or mobile devices. It uses our own SCENTRA algorithm, which is a simple variables’
unification and patterns matching algorithm and used for the SCENT query evaluation
as well as for the inferences generation.

Our experiments reflect that SOA architectures, in general, are not suitable for the
real-time medical devices, where the life-critical data, e.g. ECG, has to be immediately
transferred to the e-Health system. The reason is evident, because every frame of real-
time data is encapsulated in a SOAP message, which is an unacceptable overhead for
the resource-constrained medical devices to process the whole message and extract the
relevant data from it. However, we have developed a workable alternative, which gives us
near-real-time transfer of real-time data, by buffering it in chunks of configurable intervals
of time, and then sending each chunk one by one to the e-Health system for each interval.
In this way, though, there would be a lag of that time interval, but on the receiving side,
this lag will be unnoticeable and it would seem as the receiving e-Health system is getting

119

120 9. Conclusion and Outlook

continuous real-time data.
On the other hand, we got promising results for our experiments with the non-real-

time medical devices that usually work on the store-and-forward principle, which means
that such medical devices perform a measurement, store it in their local memory and then
(optionally) forward it to the e-Health system they are connected with. So, in our opinion,
it is worth using the SMDS infrastructure, and SOA in general, on such medical devices,
which allow them to expose their functionality through Semantic Web Services, allow
other medical devices to dynamically and semantically discover these devices and their
services, retrieve their measurement results, and then use them for further processing in
the respective healthcare application(s).
However, there are issues to be resolved in SMDS framework regarding different aspects
as future work:

• The current implementation of SMDS framework is targeted for CDC1 compliant
devices only, because of using java.util.HashSet and java.util.HashMap classes for
better performance, which are missing from the specifications designed for CLDC2

and MIDP3 compliant devices. In order to support SMDS on the latter compliant
devices, which have even lesser computing and memory resources, a substitutionary
version can be developed using java.util.Vector or java.util.ArrayList classes, but its
performance would be comparatively slower.

• The reliability of a medical device or its Web Services needs to be determined by
its client device(s), as this factor plays a key role in scenarios where more than one
medical devices match with the given criteria, and only the best reliable medical
device is chosen. This factor is also important when the client is a PC based system
and needs to compose the Web Services offered by the most reliable medical devices.
The SMDS framework still lacks this feature of providing reliability scores of medical
devices and their Web Services.

• The authenticity of a medical device or its Web Services needs to be provided to
the respective clients, as this factor is used during the selection of medical devices
or Web Services, and their composition, if required. The SMDS framework lacks
the feature of providing authenticity level of a medical device or its Web Services.

• A simple security mechanism is developed for the SMDS framework, which is built
on the paradigm of asynchronous PKI (Public Key Infrastructure) and supports a
handshake of digital certificates among medical devices as well as (configurable) en-
cryption/decryption and signing/verification functionalities. But, our experiments
show that the use of the PKI methods significantly affects the overall performance
of resource-constrained medical devices, so an alternative (synchronous) security
mechanism should be developed for SMDS framework to enhance its performance.

• The SMDS framework, although the µOR engine supports both implicit and explicit
rules, still lacks support for standard rules definition languages, e.g. SWRL [112]
for wide industry adoption. So obvious future work for µOR would be to extend
its support for SWRL by developing an appropriate wrapper. Furthermore, the
performance evaluation of µOR can be extended by studying some of the available
benchmarking systems, e.g. LUBM [105]. Last, but not the least, if medical or

1Connected Device Configuration; http://java.sun.com/javame/technology/cdc/index.jsp
2Connected Limited Device Configuration; http://java.sun.com/products/cldc/
3Mobile Information Device Profile; http://java.sun.com/products/midp/

http://java.sun.com/javame/technology/cdc/index.jsp
http://java.sun.com/products/cldc/
http://java.sun.com/products/midp/

121

mobile devices are equipped with more computing/memory resources in the future,
the remaining set of OWL-Lite axioms, as shown in Table 5.3, could be implemented
to enhance the axiomatic expressiveness of µOR, if needed as per the requirements
of new pervasive healthcare applications.

• Since SMDS does not support (semi)automatic composition or planning of Semantic
Web Services, future work could be the implementation of a small scale composition
planer for the small devices. Mechanism for run-time compilation of Web Service
client stubs could be pursued, perhaps with the help of a proxy system which com-
piles classes for a device, in order to support fully automatic composition/planning
of Semantic Web Services on a device.

122 9. Conclusion and Outlook

List of Figures

1.1 Cobas IT 1000 solution for point-of-care medical devices 1
1.2 Cobas IT 3000 solution for laboratory analyzers 2
1.3 Continua health alliance - first version of device connectivity standards . . 3
1.4 Post-operation Home-care Monitoring - A SmartHEALTH Project Scenario 5

2.1 The SOA architecture with SOAP, WSDL, and UDDI 11
2.2 Devices Profile for Web Services as protocol stack 14
2.3 General stack of Semantic Web enabling standards 16
2.4 Semantic Web Services Infrastructure Dimensions 18
2.5 An example of HL7 ADTÂ04 message . 27
2.6 Electronic radiology practice and its components 29
2.7 Typical ANSI/IEEE 1073 (MIB) Environment 31
2.8 The interoperability of medical devices and information systems in hospitals 34

3.1 Structural Overview of the Hydra Middleware Layers 44
3.2 Hydra enabled healthcare application using Service-Oriented Architecture 45
3.3 The SODA Approach . 49
3.4 General Architecture of Task Computing Environment 51
3.5 General Architecture of Gaia . 54
3.6 The Context Infrastructure in Gaia . 55
3.7 SCALLOPS Scenario - Coverage of Emergency Medical Care and Transport 58

4.1 Overall Architecture of Semantic Medical Devices Space 63
4.2 Generalized Schema of a Medical Device Database 64
4.3 Medical Device Ontology - A Partial Snapshot 65
4.4 Measurement Capability Ontology - A Partial Snapshot 65
4.5 Security Mechanism of Semantic Medical Devices Space 67

5.1 Architecture of Micro Querying and Reasoning System - µOR 82
5.2 Comparison of Runtime Memory Usage 86
5.3 Comparison of Knowledge Base Loading Time 87
5.4 Comparison of Ontologies Loading/Conversion Time 87
5.5 Comparison of Overall Reasoning Time 88

6.1 Overall Workflow of SMDDP . 91
6.2 SMDDP over the TCP/IP Stack . 92
6.3 Semantic Matchmaking Performance of SMDDP Discovery 96

7.1 Gumstix with XL6P motherboard . 101

123

124 LIST OF FIGURES

7.2 Urine Analyzer from Roche R© Diagnostics with Gumstix 101
7.3 The Viliv Promotion Pack S5 EXP P 4.8-Inch Net-Tablet PC 102
7.4 The Vodafone VPA-4 with Windows Mobile 2003 103

8.1 Different types of SmartHEALTH Cancer Biodiagnostic Devices 108
8.2 Different types of portable pulse oximeters 108
8.3 Urisys 1100 from Roche R© Diagnostics for Urine Analysis 109
8.4 CoaguChek S System from Roche R© Diagnostics for PT/INR Monitoring . 109
8.5 Vital Signs Monitor - VITALMAX 4000 CL 110
8.6 Medical Personal Health Scale - SOEHNLE Professional 7700 110
8.7 UA-767PC Digital Blood Pressure Monitor with Serial Interface 111

A.1 UML class diagram of SAWSDL wrapper package 127
A.2 Classes hierarchy in different packages of SMDS framework 128
A.3 UML class diagram of Web Services package 129
A.4 UML class diagram of µOR querying and reasoning system package . . . 130
A.5 UML class diagram of SMDDP semantic discovery protocol package . . . 131
A.6 UML class diagram of PKI based security package 132
A.7 UML class diagram of medical device database 133

D.1 SMDS Gateway application - showing medical devices with the matching
criterion . 140

D.2 SMDS Gateway application - retrieving measurement from the selected or
all medical devices . 141

D.3 SMDS Gateway application - displaying measurement results retrieved
from the selected medical device . 142

List of Tables

3.1 Criteria’s relative weights of importance 43
3.2 Analysis of HYDRA against the evaluation criteria 47
3.3 Analysis of SODA against the evaluation criteria 50
3.4 Analysis of Task Computing against the evaluation criteria 53
3.5 Analysis of Gaia against the evaluation criteria 56
3.6 Analysis of SCALLOPS against the evaluation criteria 59
3.7 Comparative analysis of related work against the evaluation criteria . . . 60

5.1 Comparison between original N-Triples and SCENT syntax specifications 72
5.2 OWL-Lite− axioms currently supported by µOR 79
5.3 OWL-Lite axioms currently notsupported by µOR 88

6.1 Comparison of SMDDP with State-of-the-art Discovery Protocols 97

8.1 Pre-operation Cancer Diagnosis Scenario at Clinical Laboratory of New
Castle upon Tyne Hospital, U.K . 113

8.2 Post-operation Cancer Treatment Scenario at Donostia Hospital of San
Sebastian, Spain . 115

8.3 Post-operation Home-care Breast Cancer Follow-up and Monitoring Scenario116
8.4 Comparative analysis of related work against the evaluation criteria . . . 117

125

126 LIST OF TABLES

Appendix A

UML Class Diagrams of SMDS
Software Framework

This appendix shows the UML (Unified Modeling Language) class diagrams of the com-
plete SMDS software framework, to understand the classes’ hierarchy, their associations
and package dependencies. These diagrams are generated using Omondo1 plugin.

Fig. A.1 shows the class diagram of SAWSDL wrapper that we developed around
the SAWSDL API to support semantically annotated WSDL processing. Fig. A.2 shows
the unfolded package hierarchy in the Eclipse environment. Fig. A.3 shows the com-
plete structure of general Web Services offered by a medical or mobile device, though
this can easily be extended if further methods need to be developed. Fig. A.4 shows
the package structure ofµOR while Fig. A.5 shows the package structure of SMDDP
protcol. Fig. A.6 shows the package structure of the security sub-framework based on
PKI (Public Key Infrastructure), while Fig. A.7 shows the database schema, used to
store the measurements of medical devices and other relevant information.

Figure A.1: UML class diagram of SAWSDL wrapper package

1Omondo plugin for Eclispe; http://www.omondo.com

127

http://www.omondo.com

128 A. UML Class Diagrams of SMDS Software Framework

Figure A.2: Classes hierarchy in different packages of SMDS framework

129
F

ig
u

re
A

.3
:

U
M

L
cl

a
ss

d
ia

g
ra

m
o
f

W
eb

S
er

v
ic

es
p
a
ck

a
g
e

130 A. UML Class Diagrams of SMDS Software Framework

F
igu

re
A

.4
:

U
M

L
cla

ss
d

ia
g
ra

m
o
f
µ

O
R

q
u

ery
in

g
a
n

d
rea

so
n
in

g
sy

stem
p

ackage

131

F
ig

u
re

A
.5

:
U

M
L

cl
as

s
d

ia
g
ra

m
o
f

S
M

D
D

P
se

m
a
n
ti

c
d
is

co
v
er

y
p
ro

to
co

l
p

a
ck

a
g
e

132 A. UML Class Diagrams of SMDS Software Framework

Figure A.6: UML class diagram of PKI based security package

133

F
ig

u
re

A
.7

:
U

M
L

cl
a
ss

d
ia

g
ra

m
o
f

m
ed

ic
a
l

d
ev

ic
e

d
at

a
b
a
se

134 A. UML Class Diagrams of SMDS Software Framework

Appendix B

List of Test Queries

This appendix provides a list of ten different queries in plain textual form, which we
used to evaluate the performance of µOR in comparison with other reasoning systems.
Although, this list is not exhaustive and can be increased with the combination of each
other, but it gave us with sufficient analytical data. The italicized words show the
concepts defined in the respective ontologies.

• Find all the devices (medical or non-medical).

• Find all the medical devices (of all types of all groups in a hospital/lab).

• Find all the medical devices in the Room xxxx (the room could be a hospital ward,
operation theater etc.).

• Find all the medical devices belonging to the group xxxx (the group could be urine
analysis, blood pressure, weight scale, ECG etc.).

• Find all the medical devices from the vendor xxxx (the vendor could be Roche,
Dräger, BD etc.).

• Find all the medical devices, who have performed the measurement of patient with
id xxxx (the unique patient id in hospital/laboratory).

• Find the urine analyzer having the measurement of patient with id xxxx (the unique
patient id in hospital/laboratory).

• Find the blood coagulation device associated with the patient xxxx (the patient’s id
in home-care/hospital/laboratory).

• Find all the gateway devices having Internet connectivity.

• Find the gateway device having connectivity with SmartHEALTH Information Sys-
tem.

135

136 B. List of Test Queries

Appendix C

SCENT Rules Definition

This appendix provides an example of two SCENT rules that we defined explicitly using
SmdsOnto ontology. Lines 1-2 shows the first rule1, the Line 3 is the rule separator, while
Lines 4-6 shows the second rule.

The first rule has only one pre-condition (Line 1) and one post-condition (Line 2),
where the post-condition is always followed by the implies sign (->). After the first rule,
and before starting the second or further rules, every rule is separated with the rule
separator sign ”====” (four times equal sign). Please note that if there is only one rule
in rules.txt, then there is no need to add the rule separator sign at the end. The second
rule has two pre-conditions (Lines 4-5) and one post-condition (Line 6).

1 ?d <http ://www.ibmt.fhg.de/smds /2008/04/ smdsonto#hasCompliance >
<http :// www.ibmt.fhg.de/smds /2008/04/ smdsonto#SmartHEALTHCompliance > .

2 −> ?d <http ://www.ibmt.fhg.de/smds /2008/04/ smdsonto#hasCompliance >
<http :// www.ibmt.fhg.de/smds /2008/04/ smdsonto#NeuroblastomaCompliance > .

3 ====
4 ?d <http ://www.ibmt.fhg.de/smds /2008/04/ smdsonto#hasCapability > ?c .
5 ?c <http ://www.ibmt.fhg.de/smds /2008/04/ smdsonto#mesType > "B. Analyzer" .
6 −> ?d <http ://www.ibmt.fhg.de/smds /2008/04/ smdsonto#hasCompliance >

<http :// www.ibmt.fhg.de/smds /2008/04/ smdsonto#NeuroblastomaCompliance > .

Both rules are good examples of showing the use of different productions at the
position of object, e.g. URI node (Rule 1), variable and literal (Rule 2). The first rule
means that if a device has compliance with the SmartHEALTHCompliance (is capable
of performing breast/cervical/colorectal cancers analysis), then it is also compliant with
NeuroblastomaCompliance (is capable of performing Neuroblastoma cancer analysis).

In the current example, both rules have similar post-condition, which means that if
we perform a query based on this post-condition on the current knowledge base, the
result would be same. So, it does not matter whether both rules exist or only one rule
exists, because the result would be same in either case.

1Apparent line breaks are due to the space (width) limitation

137

138 C. SCENT Rules Definition

Appendix D

Graphical Gateway Application

This appendix shows the GUI based Gateway application that is developed in Java using
Swing. As shown in Fig. D.1, this application broadcasts a SCENT query to find all
the medical devices in the environment and it finds two medical devices, namely blood
coagulation device and urine analyzer.

When a user clicks on the found medical devices, e.g. blood coagulation device in this
case, on the right-hand box, some of the physical characteristics of the corresponding
medical device are shown, which were retrieved through Semantic Web Service of that
medical device.

Fig. D.2 illustrates the behavior of the gateway application as active gateway, where
it retrieves the measurement from the selected or all medical devices. Fig. D.3 illustrates
by displaying what measurement results it has retrieved from the selected or all medical
devices.

139

140 D. Graphical Gateway Application

F
igu

re
D

.1:
S

M
D

S
G

a
tew

ay
a
p

p
lica

tio
n

-
sh

ow
in

g
m

ed
ica

l
d
ev

ices
w

ith
th

e
m

atch
in

g
criterion

141
F

ig
u

re
D

.2
:

S
M

D
S

G
at

ew
ay

ap
p
li
ca

ti
o
n

-
re

tr
ie

v
in

g
m

ea
su

re
m

en
t

fr
o
m

th
e

se
le

ct
ed

o
r

a
ll

m
ed

ic
a
l

d
ev

ic
es

142 D. Graphical Gateway Application

F
ig

u
re

D
.3

:
S

M
D

S
G

atew
ay

a
p

p
lica

tio
n

-
d

isp
lay

in
g

m
ea

su
rem

en
t

resu
lts

retrieved
from

th
e

selected
m

ed
ical

d
ev

ice

Bibliography

[1] IEEE Standard Computer Dictionary: A compilation of IEEE standard computer
glossaries. IEEE Computer Society Press, New York, NY, USA, jan. 1991.

[2] Glass M., Costa L.; IEEE 1073 (MIB) Standardized Connectivity for patient con-
nected devices; Medical Electronics. Pittsbugh, Pa. Measurement & Data Corp.,
September 1996.

[3] Stephan Pöhlsen et. al; A Concept for a Medical Device Plug-and-Play Architecture
based on Web Services; In Joint Workshop on High Confidence Medical Devices,
Software and Systems and Medical Device Plug-and-Play Interoperability 2007.

[4] John J. Garduilo, S. Martinez, R. Rivello, M. Cherkaoui. Moving Towards Semantic
Interoperability of Medical Devices. In Joint Workshop on High Confidence Medical
Devices, Software and Systems and Medical Device Plug-and-Play Interoperability
2007.

[5] EU SAPHIRE Project, Intelligent Healthcare Monitoring based on Semantic Interop-
erability Platform; http://www.srdc.metu.edu.tr/webpage/projects/saphire/

[6] SCALLOPS Project; www.dfki.de/scallops

[7] EU CAALYX Project, Complete Ambient Assisted Living Experiment; http://

caalyx.eu/

[8] EU Amigo Project, Ambient intelligence for the networked home environment; http:
//www.hitech-projects.com/euprojects/amigo/

[9] EU WSAMI Project, A Middleware Infrastructure for Ambient Intelligence based on
Web Services; http://www-rocq.inria.fr/arles/work/wsami.html

[10] EU InHome Project, An intelligent interactive services environment for assisted liv-
ing at home; http://www.ist-inhome.eu/

[11] IMPRONTA Project, Industrial Manufacturing Platform for Reconfigurable, Agent-
Based Production; http://www.pe.tut.fi/impronta/

[12] Ivan M. Delamer, J. L. Martinez Lastra, A Peer-to-Peer Discovery Protocol for
Semantic Web Services in Industrial Embedded Controllers, 2005.

[13] SOCRADES EU Project; http://www.socrades.eu/Home/default.html

[14] SAMIA Research Project, Service-bAsed Monitoring for Industrial Ambients; http:
//www.samia-project.info/

143

http://www.srdc.metu.edu.tr/webpage/projects/saphire/
www.dfki.de/scallops
http://caalyx.eu/
http://caalyx.eu/
http://www.hitech-projects.com/euprojects/amigo/
http://www.hitech-projects.com/euprojects/amigo/
http://www-rocq.inria.fr/arles/work/wsami.html
http://www.ist-inhome.eu/
http://www.pe.tut.fi/impronta/
http://www.socrades.eu/Home/default.html
http://www.samia-project.info/
http://www.samia-project.info/

144 BIBLIOGRAPHY

[15] The ITEA SODA Project; http://www.soda-itea.org/Home/default.html

[16] Network-centric Middleware for GrOup communication and Resource Sharing across
Heterogeneous Embedded Systems; http://www.ist-more.org

[17] Sarnovsky, M., Butka, P., Kostelnik, P., Lackova, D.; HYDRA - Network Embedded
System Middleware for Ambient Intelligent Devices, In: ICCC’ 2007: Proceedings
of 8th International Carpathian Control Conference, Strbska Pleso, Slovak Republic,
May 24-27 (2007) 611-614

[18] SemProM, Semantic Product Memory Project; http://www.semprom.org

[19] Varshney, Upkar; Pervasive Healthcare Computing, EMR/EHR, Wireless and
Health Monitoring, ISBN: 978-1-4419-0214-6, 2009

[20] Healthcare Information and Management Systems Society (HIMSS); http://www.
himss.org, 2007.

[21] Integrated Project SmartHEALTH; http://www.smarthealthip.com

[22] Safdar Ali, Stephan Kiefer, Semantic Medical Devices Space: An Infrastructure for
the Interoperability of Ambient Intelligent Medical Devices, In Proc. of International
IEEE/EMBS Conference on Information Technology in Biomedicine, Greece, 2006

[23] Safdar Ali, Stephan Kiefer, µOR - A Micro OWL DL Reasoner for Ambient Intelli-
gent Devices, In Proc. of 4th International IEEE Conference on Grid and Pervasive
Computing, Geneva, Switzerland, Lecture Notes in Computer Science 5529, pp 305-
316, 2009

[24] Safdar Ali, Stephan Kiefer, Semantic Coordination of Ambient Intelligent Medical
Devices - A Case Study, In Proc. of ACM SIGCHI, IEEE, EMB International Con-
ference on Pervasive Computing Technologies for Healthcare, London, U.K, 2009

[25] Safdar Ali, Stephan Kiefer, Semantic Coordination of Ambient Intelligent Medical
Devices in Future Laboratories, MASAUM Journal of Basic and Applied Sciences
(MJBAS), Volume 1 Issue 2, September 2009.

[26] Safdar Ali, Stephan Kiefer, Neuroblastoma Screening through Semantic Coordina-
tion of Ambient Intelligent Medical Devices, In Proc. of International Workshop on
Internet of Things & Services (IoTS), Sophia-Antipolis, France, 2008

[27] Safdar Ali, Stephan Kiefer et. al.; Personal Health Systems for Home Patients after

Stroke Rehabilitation Ű Experiences from Pilot Projects, In Proc. of German Congress
for the Exhibition, Technologies, Applications and Management for Ambient Assisted
Living, Berlin, Germany, 2008

[28] Safdar Ali, Aitor Uribarren et. al.; Applications of Ambient Intelligence in Medical
Devices and Clinical Environments, International IEEE Conference on E-Medical
Services, Morocco, 2007

[29] Safdar Ali, Stephan Kiefer, Enhancing the interoperability of disparate e-Health Sys-
tems through Web Services, In Proc. of International Conference of Medical Physics
and Biomedical Engineering (ICMP/BMT), Nuremberg, Germany, 2005

http://www.soda-itea.org/Home/default.html
http://www.ist-more.org
http://www.semprom.org
http://www.himss.org
http://www.himss.org
http://www.smarthealthip.com

BIBLIOGRAPHY 145

[30] Safdar Ali, Stephan Kiefer, Architecting disparate e-Health systems interoperable
through Web Services, In Proc. of International Med-e-Tel Conference, Luxembourg,
2005

[31] L. Cabral et al.; Approaches to Semantic Web Services: An Overview and Compar-
ison; LNCS 3053, pp. 225-239, 2004

[32] ARMUS Corporation, Introduction to Web Services

[33] SOAP 1.2 Part 1, W3C Working Draft; http://www.w3.org/TR/soap12-part1/

[34] Web Service Description Language, http://www.w3.org/TR/wsdl

[35] Universal Description, Discovery and Integration specifications; http://www.uddi.
org/specification.html

[36] S. Chan, et. al, Devices Profile for Web Services, MSDN Library, February, 2006,
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.pdf

[37] Elmar Zeeb et.al, Service-Oriented Architectures for Embedded Systems Using De-
vices Profile for Web Services, 21st International Conference on Advanced Information
Networking and Applications Workshops, AINAW’07

[38] T. Berners-Lee, J. Hendler and O. Lassila; The Semantic Web, Scientific American
284(5):34-43, 2001

[39] Klyne, G., et al. Resource description framework (RDF): Concepts and Abstract
Ssyntax, W3C recommendation 2004, http://www.w3.org/TR/rdf-concepts/

[40] RDF Schema Description Language (RDF-S); http://www.w3.org/TR/

rdf-schema/

[41] Web Ontology Language (OWL); http://www.w3.org/2004/OWL/

[42] DAML+OIL Ontology Markup Language; http://www.daml.org

[43] Matthias Klusch, On Agent-Based Semantic Service Coordination, Cumulative Ha-
bilitation Script 2008.

[44] Semantic Web Services; http://www.daml.org/services/

[45] Data, Information and Process Integration with Semantic Web Services (DIP); http:
//dip.semanticweb.org

[46] Semantic Web Service Initiative (SWSI); http://www.swsi.org

[47] BPEL4WS Consortium. Business Process Execution Language for Web Services;
http://www.ibm.com/developerworks/library/specification/ws-bpel/

[48] Semantic Annotations for WSDL (SAWSDL); http://www.w3.org/2002/ws/

sawsdl/

[49] OWL-S Semantic Markup for Web Services; http://www.w3.org/Submission/

OWL-S/

[50] Fensel, D., Bussler, C. The Web Service Modeling Framework (WSMF). Eletronic
Commerce: Research and Applications. Vol. 1. pp. 113-137, 2002

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl
http://www.uddi.org/specification.html
http://www.uddi.org/specification.html
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.pdf
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2004/OWL/
http://www.daml.org
http://www.daml.org/services/
http://dip.semanticweb.org
http://dip.semanticweb.org
http://www.swsi.org
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.w3.org/2002/ws/sawsdl/
http://www.w3.org/2002/ws/sawsdl/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/

146 BIBLIOGRAPHY

[51] Web Service Semantics (WSDL-S); http://www.w3.org/Submission/WSDL-S/

[52] METEOR-S: Semantic Web Services and Process; http://lsdis.cs.uga.edu/

projects/meteor-s/

[53] Semantic Web enabled Web Services (SWWS); http://swws.semanticweb.org/

[54] Web Service Modeling Ontology (WSMO); http://www.wsmo.org/

[55] Blerta Bishaj, Comparison of Discovery Protocols; TKK T-110.5190 Seminar on
Internetworking, 2007.

[56] UPnP Specification, http://www.upnp.org/resources/default.asp

[57] Sun Microsystems; Jini Architecture Specification, version 1.2, December 2001.
http://www.sun.com/software/jini/specs/jini1.2html/jini-title.html, 09
April 2007.

[58] Choonhwa Lee, Sumi Helal, Protocols for Service Discovery in Dynamic and Mobile
Networks. International Journal of Computer Research, 2002.

[59] HL7 Health Level 7 Communicaiton Protocol; http://www.hl7.org/

[60] DICOM Home Page; http://medical.nema.org/

[61] ASTM International; http://www.astm.org

[62] McDonald, C., Laboratory Observation Identifier Names and Codes (LOINC) Users
Guide vs. 1.0, Regenstrief Institute, Indianapolis, 1995

[63] Computer-based Patient Record Institute, CPRI-Mail, Vol. 3/1, February 1994,
Chicago, IL.

[64] M. Glass, ANSI/IEEE 1073: Medical Information Bus (MIB), Health Informatics
Journal, Vol. 4, No. 2, pp. 72-83, SAGE Publications 1998

[65] CEN/ISO/IEEE 11073 Medical Device Communication Standard; http://

standards.ieee.org/announcements/pr_ieeep11073.html

[66] Integrating the Healthcare Enterprise (IHE); http://www.ihe.net/

[67] Strategies for harmonization and integration of device-level and enterprise-wide
methodologies for communication as applied to HL7-LOINC and ENV 13734; Final
document approved by CEN/TC 251 2001-09-18

[68] Coiera, E., Guide to Medical Informatics, The Internet and Telemedicine, Oxford
University Press, ISBN 0-412-75710-9.

[69] University of Twente, The Netherlands CTIT, Mobile Telemedicine and eHealth ;
http://www.ctit.utwente.nl/research/sro/ehealth/index.html

[70] Maheu, Whitten, Allen, e-Health, Telehealth, and Telemedicine, A Guide to Start-
Up and Success. Jossey-Bass A Wiley Company; ISBN 0-7879-4420-3.

[71] E. Igras; Towards the 3rd Wave e-Health Technology Platform, A white paper.
January 2003

http://www.w3.org/Submission/WSDL-S/
http://lsdis.cs.uga.edu/projects/meteor-s/
http://lsdis.cs.uga.edu/projects/meteor-s/
http://www.wsmo.org/
http://www.upnp.org/resources/default.asp
http://www.sun.com/software/jini/specs/jini1.2html/jini-title.html
http://www.hl7.org/
http://medical.nema.org/
http://www.astm.org
http://standards.ieee.org/announcements/pr_ieeep11073.html
http://standards.ieee.org/announcements/pr_ieeep11073.html
http://www.ihe.net/
http://www.ctit.utwente.nl/research/sro/ehealth/index.html

BIBLIOGRAPHY 147

[72] The ITEA SIRENA Project; http://www.sirena-itea.org/Sirena/Home.htm

[73] SODA Technical Framework Description, 2007; http://www.soda-itea.org/

Documents/objects/file1176731057.06

[74] OASIS Devices Profile for Web Services (DPWS) Version 1.1, 2009; http://docs.
oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf

[75] SODA General Ontology for Process Modeling, 2007; http://www.soda-itea.org/
Documents/objects/file1228418088.76

[76] Ryusuke Masuoka, Yannis Labrou, Bijan Parsia, and Evren Sirin; Ontology-enabled
pervasive computing applications, IEEE Intelligent Systems, 18(5): 68-72, September-
October 2003.

[77] Evren Sirin, James Hendler, and Bijan Parsia. Semi-automatic composition of web
services using semantic descriptions. In Web Services: Modeling, Architecture and
Infrastructure workshop in ICEIS 2003, Angers, France, April 2003.

[78] Dipanjan Chakraborty, Filip Perich, Anupam Joshi, Tim Finin, and Yelena Yesha;
A reactive service composition architecture for pervasive computing environments,
Technical report, University of Maryland, Baltimore County, March 2002.

[79] Ryusuke Masuoka, Bijan Parsia, and Yannis Labrou; Task Computing - The Seman-
tic Web meets Pervasive Computing. In Proceedings of 2nd International Semantic
Web Conference (ISWC2003), Sanibel Island, Florida, October 2003.

[80] Zhexuan Song, Ryusuke Masuoka, Jonathan Agre, and Yannis Labrou; Task Com-
puting for ubiquitous multimedia services. In MUM’04: Proceedings of the 3rd inter-
national conference on Mobile and ubiquitous multimedia, pages 257-262, New York,
USA, 2004. ACM Press.

[81] Zhexuan Song, Yannis Labrou, and Ryusuke Masuoka; Dynamic service discovery
and management in Task Computing. In First Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04), pages
310-318, 2004.

[82] Manuel Román and Roy H. Campbell; Gaia: Enabling Active Spaces, In Proceedings
of the 9th workshop on ACM SIGOPS European workshop, pages 229-234, New York,
NY, USA, 2000.

[83] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganathan, Roy H.
Campbell, and Klara Nahrstedt; A middleware infrastructure for active spaces; IEEE
Pervasive Computing, 1(4): 74-83, 2002.

[84] Anand Ranganathan and Roy H. Campbell; A middleware for context-aware agents
in ubiquitous computing environments; In Proceedings of the ACM/IFIP/USENIX
International Middleware Conference, 2003.

[85] D. Sacchetti et. al., Seamless Access to Mobile Services for the Mobile User;
Demonstration at the IEEE International Conference on Software Engineering (ASE),
September 2004

[86] OASIS Web Services Security (WSS) Specification; http://www.oasis-open.org/
committees/wss/

http://www.sirena-itea.org/Sirena/Home.htm
http://www.soda-itea.org/Documents/objects/file1176731057.06
http://www.soda-itea.org/Documents/objects/file1176731057.06
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf
http://www.soda-itea.org/Documents/objects/file1228418088.76
http://www.soda-itea.org/Documents/objects/file1228418088.76
http://www.oasis-open.org/committees/wss/
http://www.oasis-open.org/committees/wss/

148 BIBLIOGRAPHY

[87] Peter Haase, Jeen Broekstra, Andreas Eberhart and Raphael Volz. A Comparison
of RDF Query Languages. In Proceedings of the Third International Semantic Web
Conference, Hiroshima, Japan, 2004.

[88] W3C Consortium, SPARQL Query Language for RDF, April 2006, W3C Recom-
mendation; http://www.w3.org/TR/rdf-sparql-query/

[89] SPARQL Query Engine; http://sparql.sourceforge.net/

[90] W3C Consortium, RDF Test Cases, 10 Feb. 2004, W3C Recommendation; http:
//www.w3.org/TR/rdf-testcases/#ntriples

[91] Tim Berners-Lee, Notation 3: An readable language for data on the Web, W3C
Consortium, March 2006; http://www.w3.org/DesignIssues/Notation3.html

[92] JUAN IGNACIO VÁZQUEZ GÓMEZ; A reactive behavioral model for context-
aware semantic devices; Ph.D Thesis, 2007.

[93] Jorge Pérez et.al, On the Semantics of SPARQL; http://web.ing.puc.cl/

~jperez/papers/chapter09.pdf

[94] C. Gutierrez, C. Hurtado and A. Mendelzon, Foundations of Semantic Web
Databases. In Proceedings of the Twenty-third ACM Symposium on Principles of
Database Systems (PODS), pages 95Ű106, 2004.

[95] Forgy, C.L.; Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem; Artificial Intelligence, 19(1982) 17-37

[96] Robert B. Doorenbos. Production Matching for Large Learning Systems. Ph.D The-
sis, 1995.

[97] I. Horrocks, U. Sattler, S. Tobies, Practical reasoning for expressive description
logics, Proceedings of the International Conference on Logic for Programming and
Automated Reasoning (LPAR’99), 1999 number 1705 in LNAI, pp. 161Ű180.

[98] OWL Web Ontology Language Overview, W3C Recommendation 2004, http://

www.w3.org/TR/owl-features/

[99] E. Sirin, B. Parsia et. al., ”Pellet: A Practical OWL DL Reasoner”, International
journal of web semantics, 2007

[100] T. Kleemann, A. Sinner, KRHyper - In Your Pocket, System Description; In pro-
ceedings of conference on automated deduction, LNAI 3632, pp. 452-457, 2005.

[101] J. Minsu, J. Sohn; Bossam: An extended rule engine for OWL inferencing, In
proceedings of RuleML 2004

[102] I. Horrocks, D. Tsarkov, FaCT++ Description Logic Reasoner: System Description,
In proceedings of 3rd international joint conference of automated reasoning 2006.

[103] R. Möller, V. Harrslev; Racer: A Core Inference Engine for the Semantic Web, In
proceedings of 2nd international workshop evaluation of ontology based tools, pp.27-
36, 2003.

[104] P. Baumgartner, Hyper Tableaux - The Next Generation; Technical Report 32-97,
Universität Koblenz-Landau, 1997

http://www.w3.org/TR/rdf-sparql-query/
http://sparql.sourceforge.net/
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/DesignIssues/Notation3.html
http://web.ing.puc.cl/~jperez/papers/chapter09.pdf
http://web.ing.puc.cl/~jperez/papers/chapter09.pdf
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/

BIBLIOGRAPHY 149

[105] Y. Guo, Z. Pan, J. Heflin; LUBM: A Benchmark for OWL Knowledge Base Systems;
Journal of Web Semantics 3(2), 2005, pp 158-182

[106] Zhu, F., Mutka, M., and Ni, L., ”Classification of Service Discovery in Pervasive
Computing Environments”, MSU-CSE-02-24, Michigan State University, East Lans-
ing, 2002

[107] Kozat, U. C. and Tassiulas, L., ”Network Layer Support for Service Discovery in
Mobile Ad Hoc networks”, IEEE INFOCOM 2003, San Francisco, USA, 2003.

[108] Paul Overell and Dave Crocker, Augmented BNF for Syntax Speficiations: ABNF,
October 2005. IETF RFC 4234; http://www.ietf.org/rfc/rfc4234.txt

[109] Tim Berners-Lee, Roy T. F, James T, et. al. Hyptertext Transfer Protocol -
HTTP/1.1, 1999. IETF RFC 2616; http://www.ietf.org/rfc/rfc2616.txt

[110] S. Olson et. al. Support for IPv6 in Session Description Protocol (SDP). RFC3266;
http://rfc.net/rfc3266.html

[111] W. Keith Edwards, Discovery Systems in Ubiquitous Computing, IEEE Pervasive
Computing, 5(2): 70-77, 2006.

[112] SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3C
Member Submission 21 May 2004;

http://www.ietf.org/rfc/rfc4234.txt
http://www.ietf.org/rfc/rfc2616.txt
http://rfc.net/rfc3266.html

	Introduction
	Problem Statement
	Main Contributions
	Selected Publications
	Thesis Outline

	Background
	Web Services
	Key Benefits of Web Services
	Roles in the Web Services Architecture
	Functional Standards of Web Services

	Devices Profile for Web Services
	The Underlying Protocols of DPWS

	Semantic Web
	Semantic Web Services
	Why Semantic Web Services?
	Semantic Web Services Description Frameworks

	General Device Communication Protocols
	Universal Plug and Play
	Jini
	SLP
	Bluetooth SDP

	Medical Device Communication Protocols
	HL7 Standards
	DICOM
	ASTM
	ANSI/IEEE 1073
	CEN/ISO/IEEE 11073
	IHE
	EDI

	ICT Infrastructure in the Hospitals and Clinical Environments
	e-Health
	Use of multiple technologies
	Multiple modes of interaction
	Examples of e-Health Applications
	What is e-Healthcare
	e-Health Challenges

	Related Work
	Evaluation Criteria
	HYDRA
	Software Architecture of HYDRA
	Healthcare Scenario of HYDRA
	Conclusion

	SODA
	The SODA Ecosystem
	Conclusion

	Task Computing
	Task Computing Architecture
	Conclusion

	Gaia
	Gaia Architecture
	Conclusion

	SCALLOPS
	Vision of SCALLOPS
	Healthcare Scenario of SCALLOPS
	Conclusion

	Comparative Analysis

	Semantic Medical Devices Space
	Philosophy of SMDS
	Overall Architecture of SMDS
	Storage Layer
	Middleware Layer
	Implementation Layer

	Micro OWL Querying and Reasoning System
	SCENT - Semantic Device Language for N-Triples
	EBNF Syntax of SCENT Query Language
	Semantics of SCENT Query Language
	Comparison between SCENT and SPARQL Expressiveness

	SCENTRA - The SCENT Resolution Algorithm
	Example

	OR - A Micro OWL Querying and Reasoning System
	Semantics of OR Expressiveness
	Description of the OWL-Lite- Axioms

	Architectural Details of OR
	The Query Processor
	The Inference Engine

	Comparative Analysis of OR
	Scalability Issues of OR

	Semantic Medical Device Discovery Protocol
	Requirements for Semantic Discovery Protocol
	Advantages of using URIs

	Overall Workflow of SMDDP Protocol
	SMDDP Request Message Format
	SMDDP Response Message Format
	SMIDDEL: A Schema for SMDDP Response Messages

	Overall Analysis of SMDPP
	Performance Evaluation
	Comparative Analysis

	Implementation
	Programming Languages
	Java (J2SE 1.5)
	Microsoft Visual C#.NET

	Hardware Platforms
	Gumstix
	Viliv Promotion Pack S5 Net-Tablet PC
	Vodafone VPA-4

	Runtime Environments
	JamVM
	Mysaifu JVM
	GNU Classpath
	CSOAP Web Services Server
	Jetty Web Server
	HyperSQL Database

	Software Libraries
	SAWSDL4J API
	Bouncy Castle Cryptography API
	Piccolo XML Parser
	RDF Filter for SAX2
	RXTX - A Communication Library

	Software Tools/IDEs
	Microsoft Visual Studio 2005
	Eclipse IDE
	Protégé
	Radiant

	Experimental Evaluation
	Testbed Medical Devices
	Blood Cancer Markers Analyzer - SmartHEALTH Device
	Pulse Oximeter - Masimo Rainbow
	Urine Analyzer - Urisys 1100
	Blood Coagulation Meter - CoaguChek S
	Vital Signs Monitor - VITALMAX 4000 CL
	Weight Scale - SOEHNLE-Professional 7700
	Digital Blood Pressure Monitor - A&D Medical UA-767PC

	Testbed Health Information Systems
	Laboratory Information System
	Hospital Information System
	SmartHEALTH Information System

	Testbed Pervasive Healthcare Scenarios
	Cancer Diagnosis - Laboratory Scenario
	Cancer Treatment - Hospital Scenario
	Cancer Follow-up and Monitoring - Home-care Scenario

	Conclusions

	Conclusion and Outlook
	List of Figures
	List of Tables
	UML Class Diagrams of SMDS Software Framework
	List of Test Queries
	SCENT Rules Definition
	Graphical Gateway Application
	Bibliography

