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Introduction
● New approach for extracting relational data from  unstructured text 

without the need of labelled data.

● Mike Mintz, Steven Bills, Rion Snow, Dan Jurafsky, Stanford University

● Relation Extraction
 “the task of recognizing the assertion of a particular relationship 
between two or m ore entities in text” (Banko & Etzioni, 2008)

– “Kevin Shields was born in New York”

● Applications; inform ation retrieval, text sum m arization, question 
answering
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Previous Work

● Previous Approaches have typically relied on relatively sm all datasets

● Many used little or no inform ation

● More recent approaches use deeper syntactic inform ation

● Sim ilar is the effective m ethod of Wu and Weld(2007)
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Previous Work

● Previous learning paradigm s

– Supervised approaches

– Purely unsupervised inform ation extraction

– Bootstrap learning
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Previous Work

● Supervised approaches

– Sentences in a corpus are first hand labeled

– ACE system s then extract features: lexical, syntactic, sem antic

– Supervised classifiers label the relation

● Disadvantages

– Labeling: tim e consum ing, expensive, few relations, sm all 
corpus,does not scale, dom ain-dependent

– Labeled on a particular corpus,biased towards text dom ain.
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● Unsupervised approaches

– Extracts strings of words between entities 

– Can use very large am ounts of data

● Disadvantages

– Resulting relations not easy to m ap

– Results questionable: Supervised subcom ponents (NER, tagger, 
parser)

Previous Work
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● Bootstrapping

– Use a very sm all num ber of seed instances or patterns.

– Seeds used with a large corpus in an iterative fashion. 

– Resulting patterns often suffer from  low precision and 
sem antic drift (loss of relevance). 

Previous Work
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● Com bines som e of the advantages of the previous approaches

● An extension of the paradigm  used by Snow 
et al(2005), by using WordNet to extract hypernym  relations between 
entities. 

● The algorithm  uses a large sem antic database called Freebase

Distant Supervision
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Term inology

● 'Relation' refers to an ordered, binary relation between entities

● ‘Relation instances' refers to individual ordered pairs.

● Exam ple,the person-nationality relation holds between the entities 
nam ed 'Stephin Merritt' and 'United States', (Stephin Merritt,United 
States)
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Freebase
● A large sem antic database

– Contains 116 m illion instances of 7,300 relations between 9 
m illion entities.

– Data in Freebase is collected from  a variety of sources. 
Wikipedia, NNDB, MusicBrainz, SEC.

– Freebase also contains the reverses of m any of its relations, 
these are m erged.
e.g (book-author v. author-book)
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Freebase

The Freebase relations that are used, with their 
size and an instance of each relation.

Relation name Size Example

/people/person/nationality 281,107 John Dugard, South Africa

/location/location/contains 253,223 Belgium, Niljen

/people/person/profession 208,888 Dusa McDuff, 
Mathematician

/people/person/place_of_birth 105,799 Edwin Hubble, Marshfield

/dining/restaurant/cuisine 86,213 Mac Ayo's Mexican 
Kitchen, Mexican
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Architecture
● Training step

– Entities are identified in sentences using a nam ed entity 
tagger.

– Sentence containing two freebase entities,features are 
extracted from  that sentence and are added to the feature 
vector for the relation.

● Exam ple

– Text “Footscray is a suburb 5 km  west of Melbourne, Victoria, 
Australia.”

– Freebase /location/australian_suburb
 /location/citytown

– Training Data (Footscray,Melbourne)
Label: Suburb, Feature X is a Y
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Architecture
● Testing Step

– Entities again identified using the nam ed entity tagger.

– Every pair of entities in a sentence is considered a potential 
relation instance.

– Exam ple,a pair of entities in 10 sentences and each sentence 
has 3 features extracted from  it, the entity pair will have 
30 associated features.

– Each entity pair is run through feature extraction.

– Regression classifier predicts a relation nam e for each entity 
pair.
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Architecture

● Testing Step

– Location-contains relation,(Virginia,Richm ond) & 
(France,Nantes). 'Richm ond, the capital of Virginia.' and 
‘Henry’s Edict of Nantes helped the Protestants of France’
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Architecture

● One of the m ain advantages of the architecture is its ability to 
com bine inform ation from  m any different m entions of the sam e 
relation.

– (Coen Brothers, The Big Lebowski)

– “[The Coen Brothers]'s film  [the big Lebowski] is inspired by 
the work of Raym ond Chandler.

–  “Tim  Bevan co-produced the cult film   [the big Lebowski], 
directed by [The Coen Brothers]...

● The first sentence, while providing evidence for film -director,could 
instead be evidence for film -writer or film -producer. 
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Features

● Features are based on standard lexical and syntactic features from  
the literature.

– Lexical

– Syntactic

– Nam ed Entity Tag

– Feature Conjunction
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 Lexical features

● The sequence of words between the two entities

● The part-of-speech tags of these words

● A flag indicating which entity cam e first in the sentence

● A window of k words to the left of Entity 1 and their part-of-speech 
tags

● A window of k words to the right of Entity 2 and their part-of-speech 
tags
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 Lexical features

Features for ‘Astronom er Edwin Hubble was born in Marshfield, 
Missouri’.
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Syntactic features

● Features based on syntax

● Each sentence is parsed with the broad-coverage dependency parser 
MINIPAR

● A dependency parse consists of a set of words ('Edwin 
Hubble','Missouri')and chunks,linked by directional 
dependencies('pred','lex-m od')

● For each sentence a dependency path between each pair of entities is 
extracted.

● Dependency path consists of series of dependencies, directions and 
words/chunks representing a traversal of the parse.



  20

Syntactic features

Figure 1: Dependency parse with dependency path from  ‘Edwin Hubble’ to 
‘Marshfield’ highlighted in boldface.
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Syntactic features

● Consists of the conjunction of:

–  A dependency path between the two entities

–  For each entity, one ‘window’ node that is not part of the 
dependency path

● A window node is a node connected to one of the two entities and not 
part of the dependency path.
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Nam ed entity tag features

● Every feature contains additionally,nam ed entity tags for the two 
entities.

● The tagger provides each word with a label from  {person, location, 
organization, m iscellaneous, none}.
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Feature conjunction
● Each feature consists of the conjunction of several attributes of the 

sentence, plus the nam ed entity tags.

● For two features to m atch,all of their conjuncts m ust m atch exactly. 
This yields low-recall but high-precision features.

Feature 
Type

Left Window NE1 Middle NE2 Right Window

Lexical [#PAD#, 
Astronomer]

PER [was/VERBborn/V
ERB in/CLOSED]

LOC [, Missouri]

Syntatic [EdwinHubble 
lex−mod ]⇓

PER [ s was pred ⇑ ⇓
born mod in ⇓

pcomp−n ]⇓

LOC [ inside ⇓
Missouri]
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Experim ents
● For unstructured text the Freebase Wikipedia Extraction is used.

● The dum p consists of approxim ately 1.8 m illion articles,an average of 
14.3 sentences per article, 601,600,703 words.

● For experim ents half of the articles are used: 

– 800,000 for training 

– 400,000 for testing
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Experim ents

Training and testing

● For held-out evaluation experim ents, half of the instances of each 
relation are not used in training.

● Later used to com pare against newly discovered instances. 

● For hum an evaluation experim ents, all 1.8 m illion relation instances 
are used in training.

● Only relation instances not appear in  training data are extracted, i.e. 
not already in Freebase.
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Experim ents

Parsing and chunking

● Dependency parsed by MINIPAR to produce a dependency graph.

● Consecutive words with the sam e nam ed entity tag are ‘chunked’, so 
that Bradford/PERSON Cox/PERSON becom es [Bradford Cox]/PERSON.

● Chunking is restricted by the dependency parse of the sentence(i.e., no 
chunks across subtrees). 
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Experim ents

● System  needs negative training data for the purposes of constructing 
the classifier. 

● A feature vector in the training phase is built for an ‘unrelated’ 
relations.

● A m ulti-class logistic classifier returns a relation nam e and a 
confidence score

● Afterwards can be ranked with by confidence score and used to  
generate a list of the n m ost likely new relation instances.



  28

Experim ents

Exam ples of high-weight features for several relations. Key: SYN = syntactic feature; 
LEX = lexical feature; = reversed; NE# = nam ed entity tag of entity.
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Evaluation

● Labels are evaluated in two ways: 

– Autom atically,by holding out part of the data during training, 
and com paring newly discovered relation instances.

– Manually,having hum ans who look at each positively labelled 
entity pair.

– Both evaluations allow a precise calculation for the best N 
instances.
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Evaluation

● Held out Evaluation

– Suffers from  false negatives. 

– Gives a rough m easure of precision without requiring 
expensive hum an evaluation.

– Useful for param eter setting.

– Substantial im provem ent in precision over either of these 
feature sets on its own.
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Evaluation

The perform ance of the classifier on held-out Freebase 
relation data
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Evaluation

● Hum an evaluation

– Perform ed by evaluators on Am azon’s Mechanical Turk service.

●  Three experim ents were run: 

– one using only syntactic features; 

– one using only lexical features; 

– one using both syntactic and lexical features. 
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Evaluation

Estim ated precision on hum an-evaluation experim ents of the highest-ranked 100 
and 1000 results per relation, using stratified sam ples.
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Sum m ary

● Distant supervision extracts high-precision patterns for a reasonably 
large num ber of relations.

● The com bination of syntactic and lexical features provides better 
perform ance than either feature set on its own.

● Syntactic features consistently outperform  lexical features.
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Questions?

Thank you for your attention,
Any questions?
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