DISTANCE LEARNING FOR RELATION EXTRACTION WITHOUT LABELLED DATA

By Toby Peoples 181213

Introduction

- New approach for extracting relational data from unstructured text without the need of labelled data.
- Mike Mintz, Steven Bills, Rion Snow, Dan Jurafsky, Stanford University
- Relation Extraction
 'the task of recognizing the assertion of a particular relationship between two or more entities in text' (Banko & Etzioni, 2008)
 - 'Kevin Shields was born in New York''
- Applications; inform ation retrieval, text sum marization, question answering

• Previous Approaches have typically relied on relatively sm all datasets

3

- Many used little or no inform ation
- More recent approaches use deeper syntactic inform ation
- Sim ilar is the effective method of Wu and Weld(2007)

- Previous learning paradigm s
 - Supervised approaches
 - Purely unsupervised inform ation extraction
 - Bootstrap learning

- Supervised approaches
 - Sentences in a corpus are first hand labeled
 - ACE system s then extract features: lexical, syntactic, sem antic
 - Supervised classifiers label the relation
- Disadvantages
 - Labeling: tim e consum ing, expensive, few relations, sm all corpus, does not scale, dom ain-dependent
 - Labeled on a particular corpus, biased towards text dom ain.

5

- Unsupervised approaches
 - Extracts strings of words between entities
 - Can use very large amounts of data
- Disadvantages
 - Resulting relations not easy to map
 - Results questionable: Supervised subcom ponents (NER, tagger, parser)

• Bootstrapping

- Use a very sm all num ber of seed instances or patterns.
- Seeds used with a large corpus in an iterative fashion.
- Resulting patterns often suffer from low precision and sem antic drift (loss of relevance).

7

Distant Supervision

- Com bines som e of the advantages of the previous approaches
- An extension of the paradigm used by Snow et al(2005), by using WordNet to extract hypernym relations between entities.
- The algorithm uses a large sem antic database called Freebase

Term inology

- 'Relation' refers to an ordered, binary relation between entities
- Relation instances' refers to individual ordered pairs.
- Exam ple, the person-nationality relation holds between the entities nam ed 'Stephin Merritt' and 'United States', (Stephin Merritt, United States)

Freebase

- A large sem antic database
 - Contains 116 m illion instances of 7,300 relations between 9 m illion entities.
 - Data in Freebase is collected from a variety of sources.
 Wikipedia, NNDB, MusicBrainz, SEC.
 - Freebase also contains the reverses of m any of its relations, these are m erged.
 eg (book-author v. author-book)

Freebase

Relation name	Size	Example
/people/person/nationality	281,107	John Dugard, South Africa
/location/location/contains	253,223	Belgium, Niljen
/people/person/profession	208,888	Dusa McDuff, Mathematician
/people/person/place_of_birth	105,799	Edwin Hubble, Marshfield
/dining/restaurant/cuisine	86,213	Mac Ayo's Mexican Kitchen. Mexican

11

The Freebase relations that are used, with their size and an instance of each relation.

- Training step
 - Entities are identified in sentences using a nam ed entity tagger.
 - Sentence containing two freebase entities, features are extracted from that sentence and are added to the feature vector for the relation.
- Exam ple
 - Text 'Footscray is a suburb 5 km west of Melbourne, Victoria, Australia.''
 - Freebase / location / australian_suburb
 / location / citytown
 - Training Data (Footscray Melbourne)
 Label: Suburb, Feature X is a Y

- Testing Step
 - Entities again identified using the nam ed entity tagger.
 - Every pair of entities in a sentence is considered a potential relation instance.
 - Example, a pair of entities in 10 sentences and each sentence has 3 features extracted from it, the entity pair will have 30 associated features.
 - Each entity pair is run through feature extraction.
 - Regression classifier predicts a relation name for each entity pair.

- Testing Step
 - Location contains relation, (Virginia, Richm ond) & (France, Nantes). 'Richm ond, the capital of Virginia.' and Henry's Edict of Nantes helped the Protestants of France'

- One of the main advantages of the architecture is its ability to combine information from many different mentions of the same relation.
 - (Coen Brothers, The Big Lebowski)
 - '[The Coen Brothers]'s film [the big Lebowski] is inspired by the work of Raym ond Chandler.
 - "Tim Bevan co-produced the cult film [the big Lebowski], directed by [The Coen Brothers]...
- The first sentence, while providing evidence for film director, could instead be evidence for film - writer or film - producer.

Features

- Features are based on standard lexical and syntactic features from the literature.
 - Lexical
 - Syntactic
 - Nam ed Entity Tag
 - Feature Conjunction

Lexical features

- The sequence of words between the two entities
- The part-of-speech tags of these words
- A flag indicating which entity came first in the sentence
- A window of k words to the left of Entity 1 and their part-of-speech tags
- A window of k words to the right of Entity 2 and their part-of-speech tags

Lexical features

Feature type	Left window	NE1	Middle	NE2	Right window
Lexical	[]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[]
Lexical	[Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[,]
Lexical	[#PAD#, Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[, Missouri]
Syntactic	[]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	[]
Syntactic	[Edwin Hubble $\Downarrow_{lex-mod}$]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	[]
Syntactic	[Astronomer $\Downarrow_{lex-mod}$]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	[]
Syntactic	[]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	$[\Downarrow_{lex-mod},]$
Syntactic	[Edwin Hubble $\Downarrow_{lex-mod}$]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	$[\Downarrow_{lex-mod},]$
Syntactic	[Astronomer $\Downarrow_{lex-mod}$]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	$[\Downarrow_{lex-mod},]$
Syntactic	[]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	$[\Downarrow_{inside} Missouri]$
Syntactic	[Edwin Hubble $\Downarrow_{lex-mod}$]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	$[\Downarrow_{inside} Missouri]$
Syntactic	[Astronomer $\Downarrow_{lex-mod}$]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	$[\Downarrow_{inside} Missouri]$

Features for 'Astronom er Edwin Hubble was born in Marshfield, Missouri'.

Syntactic features

- Features based on syntax
- Each sentence is parsed with the broad-coverage dependency parser MINIPAR
- A dependency parse consists of a set of words ('Edwin Hubble', Missouri') and chunks, linked by directional dependencies ('pred', 'lex-m od')
- For each sentence a dependency path between each pair of entities is extracted.
- Dependency path consists of series of dependencies, directions and words/chunks representing a traversal of the parse.

Syntactic features

Figure 1: Dependency parse with dependency path from 'Edwin Hubble' to Marshfield' highlighted in boldface.

Syntactic features

- Consists of the conjunction of:
 - A dependency path between the two entities
 - For each entity, one window' node that is not part of the dependency path
- A window node is a node connected to one of the two entities and not part of the dependency path.

Nam ed entity tag features

- Every feature contains additionally, named entity tags for the two entities.
- The tagger provides each word with a label from {person, location, organization, m iscellaneous, none}.

Feature conjunction

- Each feature consists of the conjunction of several attributes of the sentence, plus the nam ed entity tags.
- For two features to m atch, all of their conjuncts m ust m atch exactly.
 This yields low recall but high precision features.

Feature Type	Left Window	NE1	Middle	NE2	Right Window
Lexical	[#PAD#, Astronomer]	PER	[was/VERBborn/V ERB in/CLOSED]	LOC	[, Missouri]
Syntatic	[EdwinHubble ⊎lex-mod]	PER	[îs was ⊎pred born ⊎mod in ⊎pcomp−n]	LOC	[⊎inside Missouri]

- For unstructured text the Freebase Wikipedia Extraction is used.
- The dum p consists of approxim ately 1.8 m illion articles, an average of 14.3 sentences per article, 601,600,703 words.
- For experiments half of the articles are used:
 - 800,000 for training
 - 400,000 for testing

Training and testing

- For held-out evaluation experiments, half of the instances of each relation are not used in training.
- Later used to com pare against newly discovered instances.
- For hum an evaluation experiments, all 1.8 m illion relation instances are used in training.
- Only relation instances not appear in training data are extracted, i.e. not already in Freebase.

Parsing and chunking

- Dependency parsed by $M \mathbb{N} \mathbb{P} AR$ to produce a dependency graph.
- Consecutive words with the sam e nam ed entity tag are 'chunked', so that Bradford/PERSON Cox/PERSON becom es [Bradford Cox]/PERSON.
- Chunking is restricted by the dependency parse of the sentence(i.e., no chunks across subtrees).

- System needs negative training data for the purposes of constructing the classifier.
- A feature vector in the training phase is built for an 'unrelated' relations.
- A multi-class logistic classifier returns a relation name and a confidence score
- Afterwards can be ranked with by confidence score and used to generate a list of the n m ost likely new relation instances.

Relation	Feature type	Left window	NE1	Middle	NE2	Right window
/architecture/structure/architect	LEX		ORG	, the designer of the	PER	
	SYN	designed \uparrow_s	ORG	\uparrow_s designed $\Downarrow_{by-subj}$ by \Downarrow_{pcn}	PER	\uparrow_s designed
/book/author/works_written	LEX		PER	s novel	ORG	
	SYN		PER	\Uparrow_{pcn} by \Uparrow_{mod} story \Uparrow_{pred} is \Downarrow_s	ORG	
/book/book_edition/author_editor	LEX		ORG	s novel	PER	
	SYN		PER	\uparrow_{nn} series \downarrow_{gen}	PER	
/business/company/founders	LEX		ORG	co - founder	PER	
	SYN		ORG	\uparrow_{nn} owner \downarrow_{person}	PER	
/business/company/place_founded	LEX		ORG	- based	LOC	
	SYN		ORG	\uparrow_s founded \Downarrow_{mod} in \Downarrow_{pcn}	LOC	
/film/film/country	LEX		PER	, released in	LOC	
	SYN	opened \uparrow_s	ORG	\uparrow_s opened \Downarrow_{mod} in \Downarrow_{pcn}	LOC	\uparrow_s opened

Exam ples of high-weight features for several relations. Key: SYN = syntactic feature; LEX = lexical feature; = reversed; NE# = nam ed entity tag of entity.

- Labels are evaluated in two ways:
 - Autom atically by holding out part of the data during training, and com paring newly discovered relation instances.
 - Manually, having hum ans who look at each positively labelled entity pair.
 - Both evaluations allow a precise calculation for the best N instances.

- Held out Evaluation
 - Suffers from false negatives.
 - Gives a rough m easure of precision without requiring expensive hum an evaluation.
 - Useful for param eter setting.
 - Substantial in provem ent in precision over either of these feature sets on its own.

The perform ance of the classifier on held-out Freebase relation data

- Hum an evaluation
 - Perform ed by evaluators on Am azon's Mechanical Turk service.
- Three experiments were run:
 - one using only syntactic features;
 - one using only lexical features;
 - one using both syntactic and lexical features.

Relation name		100 instances			1000 instances		
		Lex	Both	Syn	Lex	Both	
/film/director/film	0.49	0.43	0.44	0.49	0.41	0.46	
/film/writer/film	0.70	0.60	0.65	0.71	0.61	0.69	
/geography/river/basin_countries	0.65	0.64	0.67	0.73	0.71	0.64	
/location/country/administrative_divisions	0.68	0.59	0.70	0.72	0.68	0.72	
/location/location/contains	0.81	0.89	0.84	0.85	0.83	0.84	
/location/us_county/county_seat	0.51	0.51	0.53	0.47	0.57	0.42	
/music/artist/origin	0.64	0.66	0.71	0.61	0.63	0.60	
/people/deceased_person/place_of_death	0.80	0.79	0.81	0.80	0.81	0.78	
/people/person/nationality	0.61	0.70	0.72	0.56	0.61	0.63	
/people/person/place_of_birth	0.78	0.77	0.78	0.88	0.85	0.91	
Average	0.67	0.66	0.69	0.68	0.67	0.67	

Estim ated precision on hum an-evaluation experiments of the highest-ranked 100 and 1000 results per relation, using stratified samples.

Sum m ary

- Distant supervision extracts high-precision patterns for a reasonably large num ber of relations.
- The combination of syntactic and lexical features provides better perform ance than either feature set on its own.
- Syntactic features consistently outperform lexical features.

Questions?

Thank you for your attention, Any questions?