

SEMINAR: INFORMATION EXTRACTION TOPIC: TEXTRUNNER & KNOWITALL

Haixing Gu

Part II: TEXTRUNNER

Part III: A Short Introduction to O-CRF

Motivation

- Traditional Information Extraction (IE)
 - focus on satisfying precise , narrow, pre-specified requests from small homogeneous corpora.
 - e.g. extract location and time of seminars from a set of announcement

- KNOWITALL system
 - automate the process of extracting large collections of facts from the Web in an unsupervised, domain-independent, and scalable manner.

Structure

- Bootstrapping uses the <u>two inputs</u> to produce a set of <u>extraction</u> <u>rules</u> and <u>discriminator phrases</u> and then trains the discriminators.
- Extractor sends queries to search engines and applies extraction rules to extract information from resulting Web pages.
- Assessor utilizes discriminators to compute the <u>probability</u> that each extraction is correct and adds it to the knowledge base.

Input

- Information focus: a set of predicates that represent classes or relationships.
 - The predicates also give one or more labels for each class
- Rule templates: a set of domain-independent extraction patterns

Predicat labels: "	te: City 'city", "town"		Predicate: Film labels: "film", "movie"	
Predicat labels: "	te: Country 'country", "natio	on"	Predicate: MovieActor labels: "actor", "movie star"	NP "and other" <class1></class1>
Predicat relation class-1 l class-2 l	te: capitalOf(City labels: "capital o labels: "city", "to labels: "country"	y,Country) of" own" ", "nation"	Predicate: starsIn(MovieActor,Film) relation labels: "stars in", "star of" class-1 labels: "actor", "movie star" class-2 labels: "film", "movie"	NP "or other" <class1> <class1> "especially" NPList <class1> "including" NPList <class1> "such as" NPList</class1></class1></class1></class1>
		Fíg	ure 2	"such" <class1> "as" NPList NP "is a" <class1> NP "is the" <class1></class1></class1></class1>
_	Predicate: Pattern:	Class1 NP1 "suc	ch as" NPL ist2	<class1> "is the" <relation> <class2> <class1> "," <relation> <class2></class2></relation></class1></class2></relation></class1>
	Constraints:	head(NP	1)= plural(label(Class1)) & oun(head(each(NPList2)))	

Class1(head(each(NPList2)))

Bindings:

Bootstrapping

		Predicate:	CeoOf(Person,Company)
Predicate:	City	Pattern:	NP1 "." P2 NP3
Pattern:	NP1 "such as" NPList2	Constraints:	properNoun(NP1)
Constraints:	head(NP1)= "cities"	constraints.	P2 = "CEO of"
	properNoun(head(each(NPList2)))		NP3 = "Amazon"
Bindings:	City(head(each(NPList2)))	Bindings.	CeoOf(NP1 NP3)
Keywords:	"cities such as"	Keywords:	"CEO of Amazon"

Fígure 5

Fígure 6

- Use the labels to instantiate extraction rules for the predicate.
- Labels are the surface form in which a class may appear in an actual sentence.
- Keywords will be sent to search engines as queries.

Bootstrapping

- Generate a set of discriminator phrases for the predicate based on class labels and on keywords in extraction rules.
- Then train them

Discriminator for: City "city X"

Discriminator for: CeoOf(Person,Company) "X CEO of Y"

Fígure 7

- Use queries and extraction rules to find some candidate seeds for each predicate.
 - Each seed must have a minimum number of hit counts for the instance itself.
 - We have now: untrained seeds & untrained discriminators

Bootstrapping

- Compute PMI(c, u) for each seed c and each untrained discriminator
 - PMI: pointwise mutual information

 $PMI(I, D) = \frac{|Hits(D + I)|}{|Hits(I)|}$ I: instance, e.g. New York
D: discriminator, e.g. <l> is a city

Equation 1

- Rank Candidate seeds by average PMI and select the best m seeds.
 - m/2 seeds are used to find the PMI threshold for each discriminator and the other half are used to estimate conditional probabilities.
 - We have now: trained seeds & untrained discriminators

Bootstrapping

- Select the best k discriminators.
 - We have now: trained seeds & trained discriminators
- Repeat the process to train again the selected seeds and discriminators
 - We have now: retrained seeds & retrained discriminators

Discriminator: $\langle I \rangle$ is a city Learned Threshold T: 0.000016 P(PMI > T class) = 0.83 P(PMI > T \neg class) = 0.08	Discriminator: cities such as Learned Threshold T: 0.0000053 P(PMI > T class) = 0.75 P(PMI > T \neg class) = 0.08	
Discriminator: $\langle I \rangle$ and other towns Learned Threshold T: 0.00000075 P(PMI > T class) = 0.83 P(PMI > T \neg class) = 0.08	Discriminator: cities including Learned Threshold T: 0.0000047 P(PMI > T class) = 0.75 P(PMI > T \neg class) = 0.08	Fígure 8
Discriminator: cities Learned Threshold T: 0.00044 P(PMI > T class) = 0.91 P(PMI > T \neg class) = 0.25		

Extractor

Predicate:	City
Pattern:	NP1 "such as" NPList2
Constraints:	head(NP1)= "cities"
	properNoun(head(each(NPList2)))
Bindings:	City(head(each(NPList2)))
Keywords:	"cities such as"

- Receive the Extraction Rules from Bootstrapping and sends the keywords to a search engine as queries.
- Match the rule to sentences in Web pages returned for the query.
- If all constraints are met, the Extractor creates one or more extractions.
 - e.g. 1: He has visited almost all major European cities such as London, Paris, and Berlin.
 - e.g. 2: Detailed maps and information for several cities such as airport maps, city and downtown maps.

Assessor

- Assess the likelihood that the Extractor 's conjectures are correct.
- Compute the PMI between each extracted instance and the retained discriminators.
- These PMI statistics are treated as features that are input to a Naive Bayes Classifier (NBC).

$$P(\phi \mid f_1, f_2, \dots, f_n) = \frac{P(\phi) \prod_i P(f_i \mid \phi)}{P(\phi) \prod_i P(f_i \mid \phi) + P(\neg \phi) \prod_i P(f_i \mid \neg \phi)}$$

Equation 2

Analysis

- Advantages
 - domain-independent
 - Does not require any manually-tagged training data
- shortcoming
 - Require large numbers of search engine queries and Web page downloads, which means inefficient.
- Experimental results
 - Will be shown along with TEXTRUNNER

Motivation

- Goal: Build an **OpenIE**(OIE) system
 - OIE: domain-independent, readily scales to the diversity and size of the Web corpus
 - idea: retain KNOWITALL's benefits but eliminates its inefficiencies
 - implementation: TEXTRUNNER

Structure

- Self-Supervised Learner: output a classifier that labels candidate extractions as trustworthy or not, extractions take the form of the tuple t = (ei, ri,j, ej)
- Single-Pass Extractor: generate candidate tuples from each sentence and send them to the classifier
- Redundancy-Based Assessor: assign a probability to each retained tuple

Self-Supervised Learner

- Parse several thousand sentences to obtain their dependency graph representations. [Klein and Manning, 2003]
- For each parsed sentence, find all base noun phrases constituent ei
 - base noun phrases: e.g. "to be solved problem" ➤ "problem"
- For each pair (ei, ej), locate a relation ri,j in the tuple t
 - e.g. Tokyo is the capital of Japan. ➤ Relation: CapitalOf(X, Y)

Self-Supervised Learner

- Label t as positive if certain constraints on the syntactic structure shared by ei and ej are met.
 - e.g. Path from ei to ej should cross no sentence-like boundaries
 - Before the trading of wild animals was abandoned, many species disappeared forever.
 - t(trading, is abandoned, species) > negative
- Map each tuple to a feature vector representation
- Use these features as input to a Naive Bayes Classifier

Single-Pass Extractor

- Tag each word in each sentence with its most probable part-of-speech. (maximum-entropy models)
- Use these tags to find entities by identifying noun phrases(noun-phrase chunker[Ratnaparkhi, 1998])
 - The chunker also provides a probability with which each word is believed to be part of the entity.
 - These probabilities are subsequently used to discard tuples containing entities found with small probability.
- Find relations by examining the text between the noun phrases and eliminating non-essential phrases.
 - e.g. "definitely developed" ➤ "developed"
- Present candidate tuple t to the classifier. If t is labeled as trustworthy, it will be extracted and stored.

Redundancy-Based Assessor

- Merge tuples where both entities and normalized relations are identical and count the number N of distinct sentences from which each extraction was found.
 - "Little Jack is reading a book."
 - "Jack has read a lot of comic books."
 - "Jack will read another new book."
 - \blacktriangleright t(Jack, read, book) N = 3
- Use N to assign a probability to each tuple using the probabilistic model used in KNOWITALL system.

Query Processing

- Each relation found during tuple extraction is assigned to a single machine.
- Every machine computes an inverted index[Lucene: text search engine library]
 - We use Lucene because:
 - Given documents, Lucene can compute an inverted index for us
 - Lucene is Free & Open source!

Analysis

- Traditional IE system: O(R · D) where R: number of relations, D: number of documents
- TEXTRUNNER: tuple extraction in O(D) where & O(TlogT) time to sort, count and assess the set of T tuples found by the system
- TEXTRUNNER extracts facts at an average speed of 0.036 CPU seconds, by dependency parser is 3 sec.
 - TEXTRUNNER is more than 80 times faster
 - 18 sentences in one Web page -->0.65 CPU sec. per page
 - 9 million Web pages --> less than 68 CPU hours
 - Divide the corpus into 20 chunks --> less than 4 CPU hours
 - 5 additional CPU hours to merge and sort the tuples.

- TEXTRUNNER VS KNOWITALL (extracting from 9 million Web pages)
 - TEXTRUNNER 's average error rate is 33% lower than KNOWITALL's
 - TEXTRUNNER: 85 CPU hours to perform all relations in the corpus at once
 - KNOWITALL: 6.3 hour per relation

```
(<proper noun>, acquired, <proper noun>)
(<proper noun>, graduated from, <proper noun>)
(<proper noun>, is author of, <proper noun>)
(<proper noun>, is based in, <proper noun>)
(<proper noun>, studied, <noun phrase>)
(<proper noun>, studied at, <proper noun>)
(<proper noun>, was developed by, <proper noun>)
(<proper noun>, was formed in, <year>)
(<proper noun>, was founded by, <proper noun>)
(<proper noun>, was founded by, <proper noun>)
(<proper noun>, was founded by, <proper noun>)
(<proper noun>, worked with, <proper noun>)
```

	Average Error rate	Correct Extractions
TEXTRUNNER	12%	11,476
KNOWITALL	18%	11,631

- Global Statistics on Facts(tuples) Learned
 - restrict our analysis to a subset of tuples with high probability
 - the probability is at least 0.8
 - the tuple's relation is supported by at least 10 distinct sentences
 - top 0.1% relations will be not considered
 - our estimations(manually estimated):
 - correctness of facts
 - number of distinct facts

- Estimating the Correctness of Facts
 - randomly select 400 filtered tuples.
 - judge whether the relation was well-formed
 - e.g. well formed: *located in*; not well formed: *of securing*
 - judge to see if the arguments were reasonable for the relation
 - e.g. well formed: (Shibuya, located in, Tokyo)
 - not well formed: (23, located in, Tokyo)
 - judge each concrete and abstract tuple as true or false
 - concrete: (Tesla, invented, coil transformer)
 - abstract: (Einstein, derived, theory)

Experimental Results

Fígure 12

- Estimating the Number of Distinct Facts
 - Further merge the relations (91%)
 - e.g. "invented" "was invented by"
 - Find clusters of concrete tuples,
 - e.g. cluster1: (A,{r1, r2,..., rn},B)
 - only one third tuples belongs to clusters
 - randomly sampled 100 cluster and manually determine how many distinct facts existed within each cluster ——> three quarter
 - ---> $2/3 + 1/3 \cdot 3/4$, so almost 92% of the tuples are distinct

Motivation

- 95% extraction patterns can be grouped as shown in Table 1
 - —> relation-independent extraction is feasible

Table 1

- TEXTRUNNER uses Naive Bayes Classifier(NBC)
 - Predict relation of a single variable
- Graphical models such as Conditional Random Fields(CRF) can model multiple, interdependent variables
- So we use CRF instead of NBC

		Simplified
Relative		Lexico-Syntactic
Frequency	Category	Pattern
37.8	Verb	E1 Verb E2
		X established Y
22.8	Noun+Prep	E1 NP Prep E2
		X settlement with Y
16.0	Verb+Prep	E1 Verb Prep E2
		X moved to Y
9.4	Infinitive	E ₁ to Verb E ₂
		X plans to acquire Y
5.2	Modifier	E ₁ Verb E ₂ Noun
		X is Y winner
1.8	$Coordinate_n$	E ₁ (and , - :) E ₂ NP
		X-Y deal
1.0	$Coordinate_v$	E1 (and), E2 Verb
		X, Y merge
0.8	Appositive	E1 NP (: ,)? E2
		X hometown : Y

Training

- Apply a phrase chunker to documents to get noun phrases candidates ei
- if ei ej < maxDistance then pij = pair(ei, ej)</p>
 - ENT: entity
- Tokens in the context are treated as possible relations
 - B-REL: start of a relation
 - I-REL: continuation of a relation

O: not believed to be part of a relation

Fígure 13

Extraction

- Perform entity identification using a phrase chunker
- Use CRF to label relations
- Apply RESOLVER Algorithm[Yates and Etzioni, 2007] to find relation synonyms

Experimental Results

 O-CRF achieves both double the recall and increased precision relative to O-NB

		O-CRF			O-NB	
Category	P	R	F1	P	R	F1
Verb	93.9	65.1	76.9	100	38.6	55.7
Noun+Prep	89.1	36.0	51.3	100	9.7	55.7
Verb+Prep	95.2	50.0	65.6	95.2	25.3	40.0
Infinitive	95.7	46.8	62.9	100	25.5	40.6
Other	0	0	0	0	0	0
All	88.3	45.2	59.8	86.6	23.2	36.6

Table 2

Reference

- Etzioni, O., Cafarella, M., Downey, D., Popescu, A., Shaked, T., Soderland, S., Weld, D.S. and Yates, A. (2004) *Unsupervised named-entity extraction from the Web: An experimental study*
- Banko, M., Cafarella, M., Soderland, S., Broadhead, M. and Etzioni, O (2007)
 Open Information Extraction from the Web
- Banko, M and Etzioni, O (2008) The Tradeoffs Between Open and Traditional Relation Extraction

Questions ?

Appendix Inverted Index

- a simple example of inverted index:
 - if we search "panda eat", then $\{0, 2\} \cap \{0, 1\} = \{0\}$

uple	Ei	Ri,j	Ej
ТГ01	panda	eat	bamboo
- L - J			
T[1]	tiger	eat	meat
T[2]	child	like	panda

Appendix Precision and Recall

 $\label{eq:precision} \text{precision} = \frac{|\{\text{relevant documents}\} \cap \{\text{retrieved documents}\}|}{|\{\text{retrieved documents}\}|}$

 $\label{eq:recall} \operatorname{recall} = \frac{|\{\operatorname{relevant}\,\operatorname{documents}\} \cap \{\operatorname{retrieved}\,\operatorname{documents}\}|}{|\{\operatorname{relevant}\,\operatorname{documents}\}|}$

- e.g. there're 5 black and 5 white balls in a box
- Task: take out all the black ones
- if I have taken out 4 black and 4 white
- Precision: 4/8 = 0.5
- recall: 4/5 = 0.8