QO
- @
30 o -
human -8 s "QE) -S‘_-) |
£ 2 threshold anti @ 7 severa
ica = entit verb @
SUPETVISE heterogeneous y 2w 9 Science

output

domain-specific "G form

clustering computer -precisio'heca"

INfTOrmMatioNTextRunner

target .

~ mirExtractions algorithm |

ents
University

time

-
5]

M

g QUERY =f— parser -
Freiburg2igops ~aiz i OpeniE G
boundary-"g‘Germany @) %
B S L

<{

SEMINAR: INFORMATION EXTRACTION
TOPIC: TEXTRUNNER & KNOWITALL

Haixing Gu

Part |: Overview of KNOWITAII

Part |I: TEXTRUNNER

Part Ill: A Short Introduction to O-CRF

Part |: Overview of KNOWITALL
Motivation

Traditional Information Extraction (IE)

focus on satisfying precise , narrow, pre-specified requests from
small homogeneous corpora.

e.g. extract location and time of seminars from a set of
announcement

KNOWITALL system

automate the process of extracting large collections of facts from
the Web in an unsupervised , domain-independent, and scalable
manner.

Part |: Overview of KNOWITALL
Structure

|

Bootstrapping l

5 x

Result URLs Hit counts

Information focus
Rule templates

)

Extraction rules Search Discriminators TFq gure 1
"\ Engine /_
Result URLs \ / Hit counts
v R

- _ , Assessed Knowledge
' Extractor —p Extractions —ﬂ Assessor -

|

’ Extractions Base

Bootstrapping uses the two inputs to produce a set of extraction
rules and discriminator phrases and then trains the discriminators.

Extractor sends queries to search engines and applies extraction
rules to extract information from resulting Web pages.

Assessor utilizes discriminators to compute the probability that each
extraction is correct and adds it to the knowledge base.

Part |: Overview of KNOWITALL

Input

Information focus: a set of predicates that represent classes
relationships.

The predicates also give one or more labels for each class

Rule templates: a set of domain-independent extraction patterns

Predicate: City
labels: “city”, “town”

Predicate: Country

labels: “country”, “nation”

Predicate: Film
labels: “film”, “movie”

Predicate: MovieActor
labels: “actor”, “movie star”

Predicate: capitalOf(City,Country) Predicate: starsIn(MovieActor Film)

relation labels: “capital of™
class-1 labels: “city”, “town™

relation labels: “stars in™, “star of™
class-1 labels: “actor”, “movie star”

class-2 labels: “country”, “nation™ class-2 labels: “film”, “movie”

F igure 2
Predicate: Classl
Pattern: NP1 “such as™ NPList2
Constraints: head(NP1)= plural(label(Class1)) &
properNoun(head(each(NPList2)))
Bindings: Class1(head(each(NPList2)))

F igure 3

NP “and other” <classl >

NP “or other” <classl >
<classl > “especially” NPList
<class1> “including” NPList
<class1 > “such as” NPList
“such” <class1> “as” NPList
NP “is a” <classl >

NP “is the” <classl >

<classl > “is the” <relation> <class2>
<classl > " <relation> <class2>

Tigure 4

or

Part |; Overview of KNOWITALL

Bootstrapping
: : Predicate: CeoOf(Person,Company)
Predicate: City Pattern: NP1 “” P2 NP3
Pattern: NP1 *“such as” NPList2

Constraints: properNoun(NP1)
P2 = “CEQO of”
NP3 ="Amazon”

Bindings: CeoOf(NP1 NP3)

A Keywords: “CEO of Amazon”

Constraints: head(NP1)= “cities”

properNoun(head(each(NPList2)))
Bindings: City(head(each(NPList2)))
Keywords: “cities such as”

F igure 5 F igure 6

Use the labels to instantiate extraction rules for the predicate.

Labels are the surface form in which a class may appear in an actual
sentence.

Keywords will be sent to search engines as queries.

Part |: Overview of KNOWITALL
Bootstrapping

Generate a set of discriminator phrases for the predicate based on
class labels and on keywords in extraction rules.

Discriminator for: City

Then train them city X

Discriminator for: CeoOf(Person,Company)
“XCEOof Y”

F igure 7

Use queries and extraction rules to find some candidate seeds for
each predicate.

Each seed must have a minimum number of hit counts for the
instance itself.

We have now: untrained seeds & untrained discriminators

Part |: Overview of KNOWITALL
Bootstrapping

Sompute PMI(c, u) for each seed ¢ and each untrained discriminator

PMI: pointwise mutual information

| Hits(D + I)| I: instance, e.g. New York
| Hits(7)| D: discriminator, e.g. <I> is a city

PMI(I, D) =
‘Fquation 1
Rank Candidate seeds by average PMI and select the best m seeds.

m/2 seeds are used to find the PMI threshold for each discriminator
and the other half are used to estimate conditional probabilities.

We have now: trained seeds & untrained discriminators

Part |: Overview of KNOWITALL
Bootstrapping

Select the best k discriminators.

We have now: trained seeds & trained discriminators

Repeat the process to train again the selected seeds and
discriminators

We have now: retrained seeds & retrained discriminators

Discriminator: <I> is a city Discriminator: cities such as <[>
Learned Threshold T: 0.000016 Learned Threshold T: 0.0000053
P(PMI > T | class) =0.83 P(PMI > T | class) =0.75

P(PMI > T | =class) =0.08 P(PMI > T | =class) = 0.08

Discriminator: <I> and other towns Discriminator: cities including <I>

Learned Threshold T: 0.00000075 Learned Threshold T: 0.0000047

P(PMI > T | class) =0.83 P(PMI > T | class) =0.75

P(PMI = T | =class) = 0.08 P(PMI = T | =class) =0.08 ‘Figure 8

Discriminator: cities <[>
Learned Threshold T: 0.00044
P(PMI = T | class) =091
P(PMI = T | =class) =0.25

Part |: Overview of KNOWITALL
Extractor

Predicate: City

Pattern: NP1 “such as” NPList2

Constraints: head(NP1)= “cities”
properNoun(head(each(NPList2)))

Bindings: City(head(each(NPList2)))

Keywords: “cities such as”

Receive the Extraction Rules from Bootstrapping and sends the
keywords to a search engine as gueries.

Match the rule to sentences in Web pages returned for the query.

If all c_onstraints are met, the Extractor creates one or more
extractions.

e.g. 1. He has visited almost all major European cities such as London, Paris,
and Berlin.

e.g. 2: Detailed maps and information for several cities such as airport maps,
city and downtown maps.

Part |; Overview of KNOWITALL
Assessor

Assess the likelihood that the Extractor 's conjectures are correct.

Compute the PMI between each extracted instance and the retained
discriminators.

These PMI statistics are treated as features that are input to a Naive

Bayes Classifier (NBC).

P@)[1; P(fil9)
P[] P(fil®)+P(=d)[]; P(fi| ~9)

P@| i, forenns fa) =

iEcluation 2

Part |I: Overview of KNOWITALL
Analysis

Advantages

domain-independent

Does not require any manually-tagged training data
shortcoming

Require large numbers of search engine queries and Web page
downloads, which means inefficient.

Experimental results

Will be shown along with TEXTRUNNER

Part |I: TEXTRUNNER

Goal: Build an OpenlE(OIE) system

OIE: domain-independent, readily scales to the diversity and size
of the Web corpus

Idea: retain KNOWITALL’s benefits but eliminates its inefficiencies

Implementation: TEXTRUNNER

Part |I: TEXTRUNNER

e -

/
(small o::or < \ SeLf-SuPervLsed,l
K P | Learner | (No‘we Baye

_“SQMPL“.,/ - | Class;fter)
v . . ‘] s —
\ o corpus/—. Single-Pass —’K tuPLe.s) _—

— “ Extractor | T— ‘ l:rusf:uoorl:knj Fq
] igure 9
_ !:uples »

|

/ — ——— - —
/ \ . Redundanc "
tuples with |« | e 7
. - Based Assessor |
probability D

o~

. Sea— e

Self-Supervised Learner: output a classifier that labels candidate

extractions as trustworthy or not, extractions take the form of the tuple t =
(ei, ri,j, €j)

Single-Pass Extractor: generate candidate tuples from each sentence and
send them to the classifier

Redundancy-Based Assessor: assign a probability to each retained tuple

Part |I: TEXTRUNNER

Parse several thousand sentences to obtain their dependency graph
representations. [Klein and Manning, 2003]

For each parsed sentence, find all base noun phrases constituent ei
base noun phrases: e.g. “to be solved problem” » “problem”
For each pair (el, €j), locate a relation ri,j in the tuple t

e.g. Tokyo is the capital of Japan. » Relation: CapitalOf(X, Y)

Part |I: TEXTRUNNER

Label t as positive if certain constraints on the syntactic structure
shared by ei and g] are met.

e.g. Path from ei to ej should cross no sentence-like boundaries

Before the trading of wild animals was abandoned, many
species disappeared forever.

t(trading, is abandoned, species) » negative
Map each tuple to a feature vector representation

Use these features as input to a Naive Bayes Classifier

Part |I: TEXTRUNNER

Tag each word in each sentence with its most probable part-of-speech.
(maximum-entropy models)

Use these tags to find entities by identifying noun phrases(noun-phrase
chunker[Ratnaparkhi, 1998])

The chunker also provides a probability with which each word is
believed to be part of the entity.

These probabilities are subsequently used to discard tuples
containing entities found with small probability.

Find relations by examining the text between the noun phrases and
eliminating non-essential phrases.

e.g. “definitely developed” » “developed”

Present candidate tuple t to the classifier. If t is labeled as trustworthy, it
will be extracted and stored.

Part |I: TEXTRUNNER

Merge tuples where both entities and normalized relations are
Identical and count the number N of distinct sentences from which
each extraction was found.

“Little Jack is reading a book.”

“*Jack has read a lot of comic books.”
“*Jack will read another new book.”

» t(Jack, read, book) N =3

Use N to assign a probability to each tuple using the probabilistic
model used in KNOWITALL system.

Part |I: TEXTRUNNER

Each relation found during tuple extraction is assigned to a single
machine.

Every machine computes an inverted index[Lucene: text search
engine library]

We use Lucene because:

Given documents, Lucene can compute an inverted index
for us

Lucene is Free & Open source!

Part |I: TEXTRUNNER

Traditional IE system: O(R - D) where R: number of relations, D:
number of documents

TEXTRUNNER: tuple extraction in O(D) where & O(TlogT) time to sort,
count and assess the set of T tuples found by the system

TEXTRUNNER extracts facts at an average speed of 0.036 CPU
seconds, by dependency parser is 3 sec.

TEXTRUNNER is more than 80 times faster

18 sentences in one Web page ——> 0.65 CPU sec. per page
9 million Web pages — —> less than 68 CPU hours

Divide the corpus into 20 chunks — —> less than 4 CPU hours

5 additional CPU hours to merge and sort the tuples.

Part II: TEXTRUNNER
Experimental Results

TEXTRUNNER VS KNOWITALL (extracting from 9 million Web pages)

TEXTRUNNER ’s average error rate is 33% lower than
KNOWITALL'’s

TEXTRUNNER: 85 CPU hours to perform all relations in the
corpus at once

KNOWITALL: 6.3 hour per relation

(<proper noun>>, acquired, <proper noun>>)
(<proper noun>>, graduated from, <proper noun>)
(<proper noun>>, is author of, <proper noun>) Average Correct
(<proper noun>>, is based in, <proper noun>>) Error rate | Extractions
(<proper noun>>, studied, <noun phrase>)

(<proper noun>>, studied at, <proper noun>) TEXTRUNNER 12% 11,476
(< proper noun>>, was developed by, <proper noun>) p—
(<proper noun>>, was formed in, <year>) KNOWITALL 18% 11,631

(<proper noun>>, was founded by, <proper noun>>)
(< proper noun>>, worked with, <proper noun>)

Tigure 10 Tigure 11

Part |I: TEXTRUNNER

Global Statistics on Facts(tuples) Learned
restrict our analysis to a subset of tuples with high probability
the probability is at least 0.8
the tuple’s relation is supported by at least 10 distinct sentences
top 0.1% relations will be not considered
our estimations(manually estimated):
correctness of facts

number of distinct facts

Part |I: TEXTRUNNER

Estimating the Correctness of Facts
randomly select 400 filtered tuples.

judge whether the relation was well-formed

e.g. well formed: located in; not well formed: of securing
judge to see if the arguments were reasonable for the relation
e.g. well formed: (Shibuya, located in, Tokyo)
not well formed: (23, located in, Tokyo)
judge each concrete and abstract tuple as true or false
concrete: (Tesla, invented, coil transformer)

abstract: (Einstein, derived, theory)

Part |I: TEXTRUNNER
Experimental Results

Tuples
11.3 million

With Well-Formed Relation
9.3 million

With Well-Formed Entities
7.8 million

Abstract
6.8 milion
79.2%
corroct

Concrete
1 million
88.1%

-

Tigure 12

Part |I: TEXTRUNNER

Estimating the Number of Distinct Facts
Further merge the relations (91%))

e.g. “invented” “was invented by”

Find clusters of concrete tuples,

e.g. cluster1: (A{r1, r2,..., rn},B)

only one third tuples belongs to clusters

randomly sampled 100, cluster and manu determine _how

|l
gwuaar} erd stinct facts existed within each ca\u%ter — —> three

——>2/3+1/3 - 3/4 , so almost 92% of the tuples are distinct

Part lll: A Short Introduction to O-CR
Motivation

=

95% extraction patterns can be grouped as shown in Table 1

—> relation-independent extraction is feasible

Table 1

TEXTRUNNER uses Naive Bayes Classifier(NBC)

Predict relation of a single variable

Simplified
Relative Lexico-Syntactic
Frequency = Category Pattern
37.8 Verb E, Verb E»
X established Y
22.8 Noun+Prep E;1 NP Prep E:
X settlement with Y
16.0 Verb+Prep E; Verb Prep E;
XmoveditoY
9.4 Infinitive E,toVerbE,
X plans to acquire Y
5.2 Modifier E, Verb E; Noun
X is Y winner
1.8 Coordinate,, | E, (and|,-|:) E; NP
X-Y deal
1.0 Coordinate,, | E; (and),) E, Verb
X, Y merge
0.8 | Appositive | E,NP(,)?E,

X hometown : Y

Graphical models such as Conditional Random Fields(CRF) can model multiple,

Interdependent variables

So we use CRF instead of NBC

=

Part Ill; A Short Introduction to O-CF

Apply a phrase chunker to documents to get noun phrases

candidates el

if ei - ej < maxDistance then pij = pair(ei, €j)

ENT: entity

Tokens in the context are treated as possible relations

, awriter

B-REL: start of a relation

|I-REL: continuation of a relation

O: not believed to be part of a relation

in|Prague , wrote "

F igure 13

The Metamorphosis| . "

=

Part Ill: A Short Introduction to O-CF

Perform entity identification using a phrase chunker
Use CRF to label relations

Apply RESOLVER Algorithm[Yates and Etzioni, 2007] to find
relation synonyms

Part Ill: A Short Introduction to O-CRF

Experimental Results

O-CRF achieves both double the recall and increased precision
relative to O-NB

O-CRF O-NB
Category P R F1 P R F1
Verb 939 65.1 769 | 100 38.6 55.7

Noun+Prep | 89.1 360 51.3 | 100 9.7 55.7
Verb+Prep | 95.2 500 656 | 952 253 40.0
Infinitive 95.7 468 629 | 100 255 40.6
Other 0 0 0 0 0 0

All 88.3 452 598 | 86.6 232 36.6

Table 2

Reference

Etzioni, O., Cafarella, M., Downey, D., Popescu, A., Shaked, T., Soderland, S.,
Weld, D.S. and Yates, A. (2004) Unsupervised named-entity extraction from
the Web: An experimental study

Banko, M., Cafarella, M., Soderland, S., Broadhead, M. and Etzioni, O (2007)
Open Information Extraction from the Web

Banko, M and Etzioni, O (2008) The Tradeoffs Between Open and Traditional
Relation Extraction

The End
%W%J{éémaw@

Appendix
Inverted Index

a simple example of inverted index:

if we search “panda eat”, then {0, 2} n {0, 1} ={0}

panda
Tuple Ei Ri,j Ej ot
T[0] panda eat bamboo » ETIEE
tiger
T[1] tiger eat meat o
T[2] child ike panda child

like

0, 2

0, 1

Appendix

|{relevant documents} N {retrieved documents}|

precision = |{retrieved documents}|

[{relevant documents} N {retrieved documents}|
recall =

|{relevant documents}|

e.g. there’re 5 black and 5 white balls in a box
Task: take out all the black ones

if | have taken out 4 black and 4 white
Precision: 4/8 = 0.5

recall: 4/5 =0.8

