
SEMINAR: INFORMATION EXTRACTION!
TOPIC: TEXTRUNNER & KNOWITALL

Haixing Gu

Part I: Overview of KNOWITAll!

!

Part II: TEXTRUNNER!

!

Part III: A Short Introduction to O-CRF

Part I: Overview of KNOWITALL!
Motivation

Traditional Information Extraction (IE) !

focus on satisfying precise , narrow, pre-specified requests from
small homogeneous corpora.!

e.g. extract location and time of seminars from a set of
announcement!

!

KNOWITALL system!

automate the process of extracting large collections of facts from
the Web in an unsupervised , domain-independent, and scalable
manner.

Bootstrapping uses the two inputs to produce a set of extraction
rules and discriminator phrases and then trains the discriminators.!

Extractor sends queries to search engines and applies extraction
rules to extract information from resulting Web pages.!

Assessor utilizes discriminators to compute the probability that each
extraction is correct and adds it to the knowledge base.

Part I: Overview of KNOWITALL!
Structure

Figure 1

Information focus: a set of predicates that represent classes or
relationships.!

The predicates also give one or more labels for each class!

Rule templates: a set of domain-independent extraction patterns

Part I: Overview of KNOWITALL!
Input

Figure 2

Figure 4
Figure 3

Part I: Overview of KNOWITALL!
Bootstrapping

Use the labels to instantiate extraction rules for the predicate.!

Labels are the surface form in which a class may appear in an actual
sentence.!

Keywords will be sent to search engines as queries.

Figure 6Figure 5

Part I: Overview of KNOWITALL!
Bootstrapping

Generate a set of discriminator phrases for the predicate based on
class labels and on keywords in extraction rules. !

Then train them!

!

Use queries and extraction rules to find some candidate seeds for
each predicate. !

Each seed must have a minimum number of hit counts for the
instance itself.!

We have now: untrained seeds & untrained discriminators

Figure 7

Part I: Overview of KNOWITALL!
Bootstrapping

Compute PMI(c, u) for each seed c and each untrained discriminator
u. !

PMI: pointwise mutual information!

!

!

Rank Candidate seeds by average PMI and select the best m seeds. !

m/2 seeds are used to find the PMI threshold for each discriminator
and the other half are used to estimate conditional probabilities.!

We have now: trained seeds & untrained discriminators

Equation 1

I: instance, e.g. New York!
D: discriminator, e.g. <I> is a city

Part I: Overview of KNOWITALL!
Bootstrapping

Select the best k discriminators.!

We have now: trained seeds & trained discriminators!

Repeat the process to train again the selected seeds and
discriminators!

We have now: retrained seeds & retrained discriminators

Figure 8

Part I: Overview of KNOWITALL!
Extractor

Receive the Extraction Rules from Bootstrapping and sends the
keywords to a search engine as queries.!

Match the rule to sentences in Web pages returned for the query.!

If all constraints are met, the Extractor creates one or more
extractions.!

e.g. 1: He has visited almost all major European cities such as London, Paris,
and Berlin.!

e.g. 2: Detailed maps and information for several cities such as airport maps,
city and downtown maps.

Part I: Overview of KNOWITALL!
Assessor

Assess the likelihood that the Extractor ’s conjectures are correct.!

Compute the PMI between each extracted instance and the retained
discriminators.!

These PMI statistics are treated as features that are input to a Naive
Bayes Classifier (NBC).

Equation 2

Part I: Overview of KNOWITALL!
Analysis

Advantages!

domain-independent!

Does not require any manually-tagged training data!

shortcoming!

Require large numbers of search engine queries and Web page
downloads, which means inefficient.!

Experimental results!

Will be shown along with TEXTRUNNER

Part II: TEXTRUNNER!
Motivation

Goal: Build an OpenIE(OIE) system!

OIE: domain-independent, readily scales to the diversity and size
of the Web corpus!

idea: retain KNOWITALL’s benefits but eliminates its inefficiencies!

implementation: TEXTRUNNER

Part II: TEXTRUNNER!
Structure

Self-Supervised Learner: output a classifier that labels candidate
extractions as trustworthy or not, extractions take the form of the tuple t =
(ei, ri,j, ej)!
Single-Pass Extractor: generate candidate tuples from each sentence and
send them to the classifier!
Redundancy-Based Assessor: assign a probability to each retained tuple

Figure 9

Part II: TEXTRUNNER!
Self-Supervised Learner

Parse several thousand sentences to obtain their dependency graph
representations. [Klein and Manning, 2003]!

For each parsed sentence, find all base noun phrases constituent ei !

base noun phrases: e.g. “to be solved problem” ➤ “problem”!

For each pair (ei, ej), locate a relation ri,j in the tuple t!

e.g. Tokyo is the capital of Japan. ➤ Relation: CapitalOf(X, Y)

Part II: TEXTRUNNER!
Self-Supervised Learner

Label t as positive if certain constraints on the syntactic structure
shared by ei and ej are met.!

e.g. Path from ei to ej should cross no sentence-like boundaries!

Before the trading of wild animals was abandoned, many
species disappeared forever. !

t(trading, is abandoned, species) ➤ negative!

Map each tuple to a feature vector representation!

Use these features as input to a Naive Bayes Classifier

Part II: TEXTRUNNER!
Single-Pass Extractor

Tag each word in each sentence with its most probable part-of-speech.
(maximum-entropy models)!

Use these tags to find entities by identifying noun phrases(noun-phrase
chunker[Ratnaparkhi, 1998])!

The chunker also provides a probability with which each word is
believed to be part of the entity. !

These probabilities are subsequently used to discard tuples
containing entities found with small probability.!

Find relations by examining the text between the noun phrases and
eliminating non-essential phrases.!

e.g. “definitely developed” ➤ “developed”!

Present candidate tuple t to the classifier. If t is labeled as trustworthy, it
will be extracted and stored.

Part II: TEXTRUNNER!
Redundancy-Based Assessor

Merge tuples where both entities and normalized relations are
identical and count the number N of distinct sentences from which
each extraction was found.!

“Little Jack is reading a book.”!

“Jack has read a lot of comic books.”!

“Jack will read another new book.”!

➤ t(Jack, read, book) N = 3!

Use N to assign a probability to each tuple using the probabilistic
model used in KNOWITALL system.

Part II: TEXTRUNNER!
Query Processing

Each relation found during tuple extraction is assigned to a single
machine.!

Every machine computes an inverted index[Lucene: text search
engine library]!

We use Lucene because:!

Given documents, Lucene can compute an inverted index
for us!

Lucene is

Part II: TEXTRUNNER!
Analysis

Traditional IE system: O(R・D) where R: number of relations, D:
number of documents!

TEXTRUNNER: tuple extraction in O(D) where & O(TlogT) time to sort,
count and assess the set of T tuples found by the system!

TEXTRUNNER extracts facts at an average speed of 0.036 CPU
seconds, by dependency parser is 3 sec. !

TEXTRUNNER is more than 80 times faster!

18 sentences in one Web page ——> 0.65 CPU sec. per page!

9 million Web pages ——> less than 68 CPU hours!

Divide the corpus into 20 chunks ——> less than 4 CPU hours!

5 additional CPU hours to merge and sort the tuples.

Part II: TEXTRUNNER!
Experimental Results

TEXTRUNNER VS KNOWITALL (extracting from 9 million Web pages)!
TEXTRUNNER ’s average error rate is 33% lower than
KNOWITALL’s!
TEXTRUNNER: 85 CPU hours to perform all relations in the
corpus at once !

 KNOWITALL: 6.3 hour per relation

Figure 10 Figure 11

Global Statistics on Facts(tuples) Learned!

restrict our analysis to a subset of tuples with high probability!

the probability is at least 0.8!

the tuple’s relation is supported by at least 10 distinct sentences!

top 0.1% relations will be not considered!

our estimations(manually estimated):!

correctness of facts!

number of distinct facts

Part II: TEXTRUNNER!
Experimental Results

Estimating the Correctness of Facts!

randomly select 400 filtered tuples.!

judge whether the relation was well-formed!

e.g. well formed: located in; not well formed: of securing!

judge to see if the arguments were reasonable for the relation!

e.g. well formed: (Shibuya, located in, Tokyo)!

 not well formed: (23, located in, Tokyo)!

judge each concrete and abstract tuple as true or false!

concrete: (Tesla, invented, coil transformer)!

abstract: (Einstein, derived, theory)

Part II: TEXTRUNNER!
Experimental Results

Part II: TEXTRUNNER!
Experimental Results

Figure 12

Part II: TEXTRUNNER!
Experimental Results

Estimating the Number of Distinct Facts!

Further merge the relations (91%)!

e.g. “invented” “was invented by”!

Find clusters of concrete tuples, !

e.g. cluster1: (A,{r1, r2,…, rn},B) !

only one third tuples belongs to clusters!

randomly sampled 100 cluster and manually determine how
many distinct facts existed within each cluster ——> three
quarter!

——> 2/3 + 1/3 ・3/4 , so almost 92% of the tuples are distinct

Part III: A Short Introduction to O-CRF!
Motivation

95% extraction patterns can be grouped as shown in Table 1!

—> relation-independent extraction is feasible!

!

!

!

!
TEXTRUNNER uses Naive Bayes Classifier(NBC)!

Predict relation of a single variable!

Graphical models such as Conditional Random Fields(CRF) can model multiple,
interdependent variables!

So we use CRF instead of NBC

Table 1

Part III: A Short Introduction to O-CRF!
Training

Apply a phrase chunker to documents to get noun phrases
candidates ei!

if ei - ej < maxDistance then pij = pair(ei, ej)!

ENT: entity!

Tokens in the context are treated as possible relations!

B-REL: start of a relation!

I-REL: continuation of a relation!

O: not believed to be part of a relation Figure 13

Part III: A Short Introduction to O-CRF!
Extraction

Perform entity identification using a phrase chunker!

Use CRF to label relations!

Apply RESOLVER Algorithm[Yates and Etzioni, 2007] to find
relation synonyms

Part III: A Short Introduction to O-CRF!
Experimental Results

!

O-CRF achieves both double the recall and increased precision
relative to O-NB

Table 2

Reference

Etzioni, O., Cafarella, M., Downey, D., Popescu, A., Shaked, T., Soderland, S.,
Weld, D.S. and Yates, A. (2004) Unsupervised named-entity extraction from
the Web: An experimental study!

Banko, M., Cafarella, M., Soderland, S., Broadhead, M. and Etzioni, O (2007)
Open Information Extraction from the Web!

Banko, M and Etzioni, O (2008) The Tradeoffs Between Open and Traditional
Relation Extraction

The End
Thanks for Attention

!

Questions ?

Appendix!
Inverted Index

a simple example of inverted index:!

if we search “panda eat”, then {0, 2} ∩ {0, 1} = {0}

Tuple Ei Ri,j Ej

T[0] panda eat bamboo

T[1] tiger eat meat

T[2] child like panda

panda 0, 2

eat 0, 1

bamboo 0

tiger 1

meat 1

child 2

like 2

Appendix!
Precision and Recall

e.g. there’re 5 black and 5 white balls in a box!

Task: take out all the black ones!

if I have taken out 4 black and 4 white!

Precision: 4/8 = 0.5!

recall: 4/5 = 0.8

