Information Retrieval
WS 2012 / 2013

Lecture 1, Wednesday October 24t", 2012
(Introduction, Organizational, Inverted Index)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg



Overview of this lecture

m Introduction

— Demos + what you will learn in this course
m Organizational

— Style of the course

— Course Systems: Wiki, Forum, Daphne, SVN, Jenkins, ...
— Exercises + Exam

m And then let's start

— Inverted Index (INV) ... we will implement one together
— How to answer arbitrary keyword queries with an INV

— Exercise Sheet #1: implemented a mini search engine
that answers two-keyword queries based on an INV



Demos + what you will learn

m Demos

— CompleteSearch ... fast search-as-you-type search
— Broccoli ... fast and easy-to-use semantic search

— At the end of the course you will know how to build
something like this

— In particular, you will learn something about:

index construction, list intersection, ranking, web
applications for search, compression, prefix search, error-
tolerant search, some machine learning and natural
language processing stuff, ontologies, ...



Style of this course

= What I will do

— Explain the basics, often by example
— Underlying theory, wherever needed

— Give implementation advice + provide code skeletons

= What you will do

— Implement basic algorithms and data structures
— Do some experiments
— Some theoretical tasks ... but not too many

— Maybe have a look at some of the relevant research papers



Course systems

= All linked from the Wiki page for the course:

— Daphne is our course management system

— There is an SVN repository for your submissions, in
particular for your code

— There is a Forum for asking questions

— All the course materials will be put online: the lecture
recordings, the slides, the exercise sheets, and any code
we write in the lectures

— We also provide Jenkins, a continuous build system that
automatically checks the code you commit to our SVN



Exercises + Exam

m There will be one exercise sheet per week

— 80% Implementation, 20% theory on average

— You can work on the sheets alone or in groups of 2 people

— Submit the code to our SVN ... see URL on your Daphne page
— Follow our Coding Standards ... see next slide

— You can get 20 points per exercise sheet

— The exercise sheets are key to a real understanding
m Exam in the end
— You need 50% of the points to be admitted

— The date of the exam has not been fixed yet, stay tuned ...



Our Coding Standards

m Please follow these guidelines when writing code

— Write your programs in C++ or in Java

— Document each class and each non-trivial method
— Your code must conform to our style checkers

— Write a unit test for every non-trivial function

— Use a standardized Makefile / build.xml file

— You find a comprehensive example on

https://daphne.informatik.uni-freiburg.de/CodingStandards

— Check your submissions on our build system Jenkins

— I will walk you through an example in this lecture



How much work is it / ECTS points

m ECTS points = working time

— You get 6 ECTS points for this lecture

— That is 6 x 30 = 180 hours of work for the whole course
60 hours for the exam + preparation
120 hours for the lectures + exercise sheets
There are 12 lectures with exercise sheets
That's about 10 hours per week for this course
That's about 8 hours per exercise sheet

— Note: when you have done all the exercise sheets
(yourself) you are pretty much fit for the exam, without
much more preparation needed



Keyword Search

m Problem definition

— Given a collection of text documents ... e.g. the web

— Given a keyword query ... e.g. uni freiburg

— Return all documents that contain all keywords

— Refinements: (will be dealt with in later lectures)
Rank the docs so that the most relevant ones come first
Also return docs that contain only some of the keywords
Also return docs that contain variations of the keywords

Make suggestions for related / better queries



Inverted Index 1/2

m Why do we need an index for search?

— Naive solution: given a query, iterate over all the
documents, and identify those that match

— That is, similar to what the un*x grep command does
— Actually not so bad for small text collections:

A modern computer can scan through 1 GB of text
in about one second

Query times of < 100 milliseconds feel interactive
— But already for 1 TB it would be 20 minutes ...
— Current web: = 50 billion pages / 250 TB of text

Source: www.worldwidewebsize.com ... assuming 50 KB / page

10



Inverted Index 2/2

m Basic idea of an inverted index

— For each word, pre-compute and store the sorted list
of ids of documents / records containing that word

uni 13, 57, 114, 257, 987, 1345, 2078, ...
freiburg 5, 23, 57, 257, 512, 773, 1345, 3012, ...
— These lists are called inverted lists

— Then the list of ids of the matching documents / records
is simply the intersection of the inverted lists of the
keywords from the given query

11



List Intersection 1/2

m For two lists

— An interleaved left-to-right scan does it in linear time
R R N PR VIR

uni 13, 57 114, 257 987, 1345 2078, .
freiburg 5, 23, 57 257 512,773, 1345 3012, .
NP N

Ao A Jast 1 §3- | 257, A34T, ...

12



List Intersection 2/2

m For more than two lists

— Also maintain an index for each of the lists
— Always advance index with currently smallest element

— Maintain elements at current index positions in a priority
queue (PQ)
— Time O(N - log k), where N = total #elements, k = #lists

each element is looked at exactly once
getMin on a PQ with k elements takes time O(log k)

— There are more sophisticated algorithms ... later lecture

13



Parsing / Tokenization

m We need to break the text into "words"

— Conceptually simple: just define a set of characters that
belong to words and a set of characters that don't

— Words are then maximal sequences of word characters
— In reality it's a bit more complicated
AL E  IRE Y OFEFEIZOETHESIHO SRS Y
Donaudampfschifffahrtskapitangesellschaftsvorsitzender
ich schwAqJre bei*M meiner MAghre

— For now, let's stick with the simple approach

— More about UTF8 and language-stuff in a later lecture ...

14



Inverted Index Construction 1/3

= Approach 1: map from words to inverted lists

— In (pseudo-) code: Map<String, Array<int>>

— Construction then goes as follows:
Iterate over all word occurrences in all records
Maintain record ids in increasing order

For each word occurrence, add id of current record
to respective inverted list (create it, if new word)

— Let's code this together now !

— Along with that, I will show you a bit about Daphne, our
coding standards, SVN, our style checker, Jenkins, ...

15



Inverted Index Construction 2/3

m Approach 2: one big sort

— Store lists in an  Array<Array<int>>

— Consider these two example records
Record 1: uni freiburg ist doof
Record 2: uni freiburg gar nicht doof

— Then let the parser output the following, and then sort it:

16



Inverted Index Construction 3/3

m Comparison of the two approaches

— Let N be the total number of all words in all records
(that is, all word occurrences, not the #distinct words)
— The map-based approach takes ©(N) operations
— The sort-based approach takes O(N - log N) operations
— Looks like a clear win, but in reality it's not so clear:
The map-based approach has bad locality:

The inverted list entry for two subsequent words are
written in two completely different places in memory

When the data is so large that the lists have to reside
on disk during construction, this is even worse

— More about the importance of locality in a later lecture ...

17



Zipf's Law

m How long are the inverted lists?

— Let N; be the frequency = number of occurrences of the
i-th most frequent word

— Then itturnsout that: N;= €-1 /1 for some constant €
for most text collections and most (word-based) languages
— This empirical observation is called Zipf's Law
(after George Kingsely Zipf, 1902-1950, American linguist)

— Let's verify that law on our test collection ...

18



References

m Text book
Introduction to Information Retrieval
C. Manning, P. Raghavan, H. Schitze
Available online under http://nlp.stanford.edu/IR-book

Good, up-to-date, comprehensive information on the basics

m Wikipedia articles relevant for this lecture

http://en.wikipedia.org/wiki/Inverted index

http://en.wikipedia.org/wiki/Merge algorithm

http://en.wikipedia.org/wiki/Zipf's law

Wikipedia articles on basic algorithms stuff are quite good !

19



[
Ddngdijad
“ZD

20



