Information Retrieval WS 2012 / 2013

Lecture 11, Wednesday January 23rd, 2013 (SVMs = Support Vector Machines)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Organizational

- Your results + experiences with Ex. Sheet 10 (Naïve Bayes)
- Oral exams are on March 5 + 6 (Tuesday + Wednesday)
- Support Vector Machines (SVMs)
 - Another linear classifier, just like Naïve Bayes
 - But different objective function + harder to optimize
 - Some more linear algebra ... you will love it
 - Play around with SVM Light software
 - Exercise Sheet 11: Compare SVMs with Naïve Bayes with respect to linear separability and classification accuracy

Experiences with ES#10 (Naive Bayes)

- Summary / excerpts last checked January 23, 14:45
 - Theory was clear and not too hard to implement
 - Confusion about multiple labels and choice of training set
 - Great observation: better compare the $\log \Pr(C = c \mid doc)$ Reason: They easily become ≤ -1000 , and the $\exp(...)$ of any such value is 0 on a typical machine, and all such classes then become indistinguishable → hurts prediction quality badly
 - Ignoring stop-words helps a bit, but not much
 - Another promising idea from you: consider only words that strongly discriminate between classes in the training set

REIBURG

Your results for ES#10 (Naive Bayes)

- For our dataset (38.115 docs, 18 classes)
 - Reading time: on the order of 10 seconds
 - Training time: on the order of 1 second
 - Prediction time: on the order of a few seconds
 - Bottom line 1: Naive Bayes is definitely efficient !
 - Quality around 50%
 - With non-exp-trick 60% and more
 - Bottom line 2: Without having seen other methods,
 it's hard to tell whether this is good or bad or so-so

Linear Classifiers 1/6

FREIBURG

Informally

- Assume the objects are points in d dimensions
- Let's assume we have only two classes for now
- A linear classifier tries to separate the data points by a (d-1)-dimensional hyperplane ... definition on next slide
 - For d = 2 this means: try to separate by a **straight line**
- Predictions are made based on which side of the hyperplane / straight line the object lies on
- Note: points in the training set may not be separable

W, 21,..., 2d-1 Jama base of Rd

- Formal definition of a hyperplane
 - A hyperplane H in \mathbb{R}^d if defined by an anchor point $a \in \mathbb{R}^d$, and linearly independent $h_1, ..., h_{d-1}$ and consists of all linear combinations $a + \sum_i a_i h_i$ for arbitrary $a_1, ..., a_{d-1} \in \mathbb{R}$
 - **Lemma:** For each such H, there exists $\psi \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $H = \{ x \in \mathbb{R}^d : w \bullet x = b \}$ We have to show XEH => W·X = b

=": $\times eH = \times = \alpha + \sum d_i \cdot \lambda_i = 0 \text{ because } w \perp \lambda_i$ $=) w \cdot x = w \cdot \alpha + \sum d_i \cdot w \cdot \lambda_i = w \cdot \alpha = :b$

E: XERd, W.X=b, muite X-a= L.W+ Edi. Di $\Rightarrow w \cdot (\alpha + d \cdot w + \sum d_i \cdot k_i) = b$ $(because w, k_1, \dots, k_{d-1}$ Som a base) $w \cdot \alpha + \lambda \cdot |w|^2 + \sum d_i \cdot k_i \cdot w \implies \lambda \cdot |w|^2 = 0$ $\Rightarrow \lambda = 0 \quad \Rightarrow$

Linear Classifiers

- Distance from a point to a hyperplane
 - Let $H = \{ x \in \mathbb{R}^d : w \bullet x = b \}$ be a hyperplane in \mathbb{R}^d
 - Then the distance of a point $x \in \mathbb{R}^d$ to H is $|w \cdot x b| / |w|$
 - The sign of $\mathbf{w} \bullet \mathbf{x} \mathbf{b}$ says on which side of H lies \mathbf{x}

$$CASE 1: \times = \times + v \cdot w_{0}, v > 0$$

$$(w points from x towards H)$$

$$\times = W \cdot x' = w \cdot x + v \cdot w \cdot w_{0} = b$$

$$\times = W \cdot x' = w \cdot x + v \cdot w \cdot w_{0} = b$$

$$\Rightarrow v = -\frac{w \cdot x - b}{|w|} = |w| \cdot w_{0} \cdot w_{0} = |w|$$

$$CASE 2: \times = \times - v \cdot w_{0}, v > 0$$

$$(w points from x away from H)$$

$$\Rightarrow v = \frac{w \cdot x - b}{|w|}$$

Linear Classifiers 4/6

- Two-class Naïve Bayes (**NB**) is a linear classifier
 - Recall how **NB** predicts the probability of a class C for d $Pr(C \mid d) = Pr(C) \cdot \Pi_{i=1,\dots,|d|} \ Pr(w_i \mid C), \ |d| = \# words \ in \ d$ where w_i is the i-th word of d
 - We can equivalently write this as $Pr(C \mid d) = Pr(C) \cdot \Pi_{i=1,...,|V|} \ Pr(w_i \mid C)^{fi}, \ V = \text{vocabulary}$ where w_i is the i-th word in V, and fi = #occ of w_i in d
 - Lemma: For two classes A and B, define $b \in \mathbb{R}$ and $w \in \mathbb{R}^{|V|}$ $b = -\log(\Pr(A) / \Pr(B)), \ w_i = \log(\Pr(w_i \mid A) / \Pr(w_i \mid B))$ Then **NB** predicts A for x if $w \cdot x - b > 0$, and B otherwise

Linear Classifiers 5/6

- Proof of Lemma = Jeature vector for doc
 - **NB** predicts A for x if w x b > 0, and B otherwise

$$b = -\log(Pr(A) / Pr(B)), w_i = \log(Pr(w_i | A) / Pr(w_i | B))$$

$$P_{r}(A|doc) = P_{r}(A) \frac{1}{11} P_{r}(w_{c}|A) \frac{1}{2} / P$$

$$P_{r}(B|doc) = P_{r}(B) \frac{1}{11} P_{r}(w_{c}|B) \frac{1}{2} / P$$

$$P_{r}(B|doc) = P_{r}(B) \frac{1}{11} P_{r}(w_{c}|B) \frac{1}{2} / P$$

$$P_{r}(B|doc) = P_{r}(B) \frac{1}{2} P_{r}(w_{c}|B) + \sum_{i=1}^{r} \frac{1}{2} e^{-b} \frac{1}{2} e^{-b} = w_{c}$$

$$= w \cdot X - b$$

Linear Classifiers

The toy example from our last lecture again:

Doc 1: aba class A Doc 2: baabaaa class A Doc 3: bbaabbab class B Doc 4: abbaa class A Doc 5: abbb class B Doc 6: bbbaab class B

$$M_{A} = 3$$
, $M_{B} = 3$
 $M_{A} = 10$, $M_{A} = 6$
 $M_{B}A = 5$, $M_{B}B = 12$
 $P_{A}(A) = \frac{1}{2}$ $P_{A}(B) = \frac{1}{2}$
 $P_{A}(A) = \frac{1}{2}$ $P_{A}(A|B) = \frac{1}{3}$
 $P_{A}(A|A) = \frac{1}{3}$ $P_{A}(A|B) = \frac{1}{3}$
 $P_{A}(A|A) = \frac{1}{3}$ $P_{A}(A|B) = \frac{1}{3}$

nene doc Maxa, Mbxb

Pr(Aldoc) = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{3} \cd Pr (B) doc) = 3. (3) ma. (3) mb/P $P_{N}(B|doc) = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^{N_{0}} \cdot \left(\frac{2}{3}\right)^{N_{0}} \cdot \left(\frac{2}{3}\right)^{N_{0$

Fealure rectors

(Ma, Mb) ER2

Support Vector Machines 1/7

Intuition

- Place the separating hyperplane H such that on both sides, there is a margin r > 0 as large as possible to the points
- In \mathbb{R}^2 this means: try to separate the point sets with not just a line, but a "band" of width 2r, with r > 0 as large as possible
- Points on the margin boundary are called support vectors

Support Vector Machines 2/7

Derivation of formal optimization problem

- Let $x_1, ..., x_m \in \mathbb{R}^d$ be the objects from the training set
- Let $y_i = +1$ if x_i is in class A, $y_i = -1$ if x_i is in class B
- Let $H = \{ x \text{ in } \mathbb{R}^d : w \bullet x = b \}$ be a separating hyperplane, such that $w \bullet x_i b > 0$ for x_i from A, and < 0 for x_i from B
- Then $dist(x_i, H) = y_i \cdot (w \cdot x_i b) / |w|$ (see slide 7)
- This gives rise to the following maximization problem: Maximize 2r, such that $y_i \cdot (w \cdot x_i - b) / |w| \ge r$ for all i
- We can equivalently formulate this as ... proof on next slide Minimize $|w|^2$, such that $y_i \cdot (w \cdot x_i - b) \ge 1$ for all i
- This is a well-known kind of optimization problem ... slide 14

Support Vector Machines 3/7

- Proof of equivalence of | 2 = 2 r is the midth | 3 the morgin / band | 5 the morgin /
 - Maximize 21, such that $y_i \cdot (w \cdot x_i b) / |w| \ge r$ for all $i \le v \cdot (w \cdot x_i b) / |w| \ge r$

mox 2π o.t. $y_{i'}(w \cdot x_{i} - b) \ge 1$ for all i $0 \le 2\pi$ o.t. $y_{i'}(w \cdot x_{i} - b) \ge \pi$. $|w| \ne i$ $|w| = m \times \frac{2\pi}{|w|}$ o.t. $|y_{i'}(w \cdot x_{i} - b) \ge \pi$. $|w| \ne i$ $|w| = m \times \frac{2\pi}{|w|}$ o.t. $|y_{i'}(w \cdot x_{i} - b) \ge \pi$. $|w| = \pi$ $|y_{i'}(w \cdot x_{i} - b) \ge \pi$

Support Vector Machines 4/7

- We now have a quadratic optimization problem
 - The $|w|^2 = w \cdot w$ is a quadratic objective function
 - The $y_i \cdot (w \cdot x_i b) \ge 1$ are **linear** constraints
 - There are established numerical methods for this kind of problem, but the details are beyond the scope of this course
 - Similar as for the SVD, we will use third-party software
- SVM Light Software
 - Solve this optimization problem
 - Download from http://svmlight.joachims.org
 - I will show to download and install it, then let's apply it to our toy example (the 6 documents, with words a and b)

Support Vector Machines 5/7

- So far complete linear separation or nothing
 - The optimization problem can be easily extended to incorporate outliers = objects in the training set that lie inside of the margin or even on the wrong side of it:

Minimize $|w| / 2 + C \cdot \Sigma_i \xi_i$

such that $y_i \cdot (w \cdot x_i - b) / |w| \ge 1 - \xi_i$ for all i

where $\xi_i > 0$ and the C > 0 is a user-defined parameter

In SVM Light,

Pre C can be set

with the - c

ontian.

Set to samething

very longe to

disallow outlier

Support Vector Machines 6/7

- Multi-Class Support Vector Machines
 - Assume we have an arbitrary number of k classes again
 - Option 1: Build k classifiers, one for each class, with the
 i-th one doing the classification: Class i OR not Class i

Drawback: Need to "vote" when more than one class wins

- Option 2: Build $k \cdot (k-1) / 2$ classifiers, one for each subset of two classes

Drawback: For large k, that's a lot of classifiers!

 Option 3: Extend the SVM theory to be able to deal with more than two classes directly

Drawback: optimization problem becomes more complex

Support Vector Machines 7/7

- What if the data is not at all linearly separable
 - ... even when allowing for a few outliers
 - Standard trick: map objects to a different vector space,
 where they become (almost) linearly separable again
 - For SVMs, this can be done particularly efficiently, with the so-called "kernel" trick ... see machine learning lecture

Further reading

Textbook Chapter 15: Support vector machines
 http://nlp.stanford.edu/IR-book/pdf/15svm.pdf

Wikipedia

- http://en.wikipedia.org/wiki/Linear classifier
- http://en.wikipedia.org/wiki/Support vector machine

SVM Light Software

http://svmlight.joachims.org