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Overview of this lecture

m Organizational
— Your results + experiences with Ex. Sheet 10 (Naive Bayes)

— Oral exams are on March 5 + 6 (Tuesday + Wednesday)

m Support Vector Machines (SVMs)
— Another linear classifier, just like Naive Bayes
— But different objective function + harder to optimize
— Some more linear algebra ... you will love it
— Play around with SVM Light software

— Exercise Sheet 11: Compare SVMs with Naive Bayes with
respect to linear separability and classification accuracy



Experiences with ES#10 (Naive Bayes)

m Summary / excerpts last checked January 23, 14:45

— Theory was clear and not too hard to implement
— Confusion about multiple labels and choice of training set
— Great observation: better compare the log Pr(C = c | doc)

Reason: They easily become < —1000 , and the exp(...) of any
such value is 0 on a typical machine, and all such classes then
become indistinguishable — hurts prediction quality badly

— Ignoring stop-words helps a bit, but not much

— Another promising idea from you: consider only words that
strongly discriminate between classes in the training set



Your results for ES#10 (Naive Bayes)

m For our dataset (38.115 docs, 18 classes)

— Reading time: on the order of 10 seconds

— Training time: on the order of 1 second

— Prediction time: on the order of a few seconds

— Bottom line 1: Naive Bayes is definitely efficient !
— Quality around 50%

— With non-exp-trick 60% and more

— Bottom line 2: Without having seen other methods,
it's hard to tell whether this is good or bad or so-so



Linear Classifiers 1/6

m Informally

— Assume the objects are points in d dimensions
— Let's assume we have only two classes for now

— A linear classifier tries to separate the data points by a
(d-1)-dimensional hyperplane ... definition on next slide

For d = 2 this means: try to separate by a straight line

— Predictions are made based on which side of the
hyperplane / straight line the object lies on

— Note: points in the training set may not be separable
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Linear Classifiers 3/6

m Distance from a point to a hyperplane
—LetH={xeRY:wex=b}bea hyperplane in RY

— Then the distance of a point x e R9to His |[w @ x —b| / |w|

— The sign of w e x — b says on which side of H lies x
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Linear Classifiers 4/6

m Two-class Naive Bayes (NB) is a linear classifier

— Recall how NB predicts the probability of a class C for d
Pr(C [ d) = Pr(C) - M=y 14 Pr(w; | C), [d| = #words in d
where w; is the i-th word of d

— We can equivalently write this as
Pr(C | d) = Pr(C) - Mi=, .y Pr(w;| O, V = vocabulary
where w; is the i-th word in V, and fi = #occ of w; in d

— Lemma: For two classes A and B, define b e R and w € R!V!
b = —log(Pr(A) / Pr(B)), w; = log(Pr(w; | A) / Pr(w; | B))
Then NB predicts A for x if w e x — b > 0, and B otherwise



Linear Classifiers 5/6

m Proof of Lemma ?ﬁi@g\l Ao S Shoe

— NB predicts A for x if w e x — b > 0, and B otherwise
b = —log(Pr(A) / Pr(B)), w; = log(Pr(w; | A) / Pr(w; | B))
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Linear Classifiers 6/6

m The toy example from our last lecture again:
/\/\ = 5 I /V\%:(S
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Support Vector Machines 1/7

m [ntuition

— Place the separating hyperplane H such that on both sides,
there is a margin r > 0 as large as possible to the points

— In R? this means: try to separate the point sets with not just
a line, but a "band" of width 2r, with r > 0 as large as possible

— Points on the margin boundary are called support vectors
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Support Vector Machines 2/7

m Derivation of formal optimization problem

— Let Xy, ..., X, € RY be the objects from the training set
— Lety, = +1if x;isin class A, y;, = -1 if x; is in class B

—LetH={xinRY:w e x=b} be a separating hyperplane,
such that w e x;, — b > 0 for x; from A, and < 0 for x; from B

— Then dist(x;, H) =y, - (w e xi—b) / |w| (see slide 7)

— This gives rise to the following maximization problem:
Maximize 2r, such that vy, - (w e x,—b) / |w| = r for all i

— We can equivalently formulate this as ... proof on next slide
Minimize |w|?, such thaty, - (w e x,—b) > 1 for all i

— This is a well-known kind of optimization problem ... slide 14



Support Vector Machines 3/7
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Support Vector Machines 4/7

m We now have a quadratic optimization problem

— The |w|? = w e w is a quadratic objective function
— The vy, - (w e x,—Db) = 1 are linear constraints

— There are established numerical methods for this kind of
problem, but the details are beyond the scope of this course

— Similar as for the SVD, we will use third-party software
= SVM Light Software

— Solve this optimization problem

— Download from http://svmlight.joachims.org

— I will show to download and install it, then let's apply it to
our toy example (the 6 documents, with words a and b)
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Support Vector Machines 5/7

m So far complete linear separation or nothing

— The optimization problem can be easily extended to
incorporate outliers = objects in the training set that lie
inside of the margin or even on the wrong side of it:

Minimize [w| /2 + C - % §
such thaty,- (wex,—Db)/|w|=1-¢& foralli

where § > 0and the C > 0 i§a user-defined parameter
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Support Vector Machines 6/7

m Multi-Class Support Vector Machines

— Assume we have an arbitrary number of k classes again

— Option 1: Build k classifiers, one for each class, with the
i-th one doing the classification: Classi OR not Class i

Drawback: Need to "vote" when more than one class wins

— Option 2: Build k - (k= 1) / 2 classifiers, one for each
subset of two classes

Drawback: For large k, that's a lot of classifiers !

— Option 3: Extend the SVM theory to be able to deal with
more than two classes directly

Drawback: optimization problem becomes more complex
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Support Vector Machines 7/7

m What if the data is not at all linearly separable

— ... even when allowing for a few outliers

— Standard trick: map objects to a different vector space,
where they become (almost) linearly separable again

— For SVMs, this can be done particularly efficiently, with
the so-called "kernel" trick ... see machine learning lecture



References

m Further reading

— Textbook Chapter 15: Support vector machines
http://nlp.stanford.edu/IR-book/pdf/15svm.pdf

m Wikipedia

— http://en.wikipedia.org/wiki/Linear classifier

— http://en.wikipedia.org/wiki/Support vector machine

= SVM Light Software
— http://svmlight.joachims.org
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