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Overview of this lecture

 Organizational

– Your results + experiences with Ex. Sheet 12 (Ontologies)

– The official evaluation of this course

 Hypothesis Testing

– How to determine whether an observed effect is what is called 
statistically significant ?

– A must in (not only) information retrieval research

– In particular: the Z-test and Student's T-test

– Exercise Sheet 13:  determine the statistical significance of a 
simple database performance optimization (string ids  int ids)
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Experiences with ES#12   (Ontologies)

 Summary / excerpts        last checked February 6, 16:00

– Good to know / learn / refresh some SQL

– Sadly, I'm too stupid for SQL (out-of-sleep error)

– Took more time than expected

– Exercise seemed far fetched … believe me, it's not

– Jay-Z won award for Best Female Video

– Single index increased speed, but another index (on the same 
table) decreased it again … interesting observation !

Possible explanation: each table can be sorted only according to one column

In a SPARQL-only database, you would sort according to both columns

– Is it allowed to use notes in the exam … YES !
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Official course evaluation

 Please follow the link + instructions on the Wiki

– We are very interested in your feedback

– Please take your time for this

You will get 20 wonderful points !

– Please be honest and concrete

– The free text comments are of particular interest for us

– Please complete it by Friday, February 8

and at the very latest by Sunday, February 10 !
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Hypothesis Testing   1/5

 Motivation

– Typical situation in research: compare the outcome of 
two experiments

In the life sciences:  two studies

In computer science:  two algorithms / methods

– Problem: how much of the observed difference is 
"real", and how much is due to random fluctuations
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Hypothesis Testing   2/5

 Example 1:  Prediction of coin tosses
– Ten predictions in a row, C = correct, W = wrong

CCCCCCCCCC        (all ten predictions are correct)

– Do we believe in this person's ability to predict?

 Hypothesis testing answers this as follows
– Null hypothesis H0 = the person cannot predict = is just 

making random guesses … mathematically:  Pr(C) = ½

– Compute the probability of the observed (or more 
extreme) data assuming that H0 is true

Pr(all ten correct | H0) = 2-10 ≤ 0.001 = 0.1%

– We say that we can reject H0 with probability ≥ 99.9%

means: it's unlikely that the great prediction was mere chance
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Hypothesis Testing   3/5

 Example 1: continuation

– Let's assume, in a different series we get

CCCWCCCWCC         (8 correct, 2 wrong)

– What is the probability now, that this is due to chance?

– Note: it takes some non-trivial interpretation when
formalizing "... of the observed or more extreme data" 
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Hypothesis Testing   4/5

 General terminology

– We start with a hypothesis H (ability to predict coin tosses)

– Null hypothesis H0 = the opposite of H (random guessing)

– Statistical test: compute the probability p of the given or 
"more extreme data" assuming that H0 is true

– Typical outcome: for a given α, say 0.05 = 5%
p ≤ α = 0.05  H0 rejected with significance level 5%

one says: the observed data is statistically significant for H

p > α = 0.05  H0 cannot be rejected

one says: the observed data is not statistically significant for H

– The exact significance level p is often simply called p-value
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Hypothesis Testing   5/5

 Example 2: two series of measurements

– For example, accuracies of two classification methods

A1 :  0.87  0.88  0.87  0.90

A2 :  0.87  0.86  0.85  0.86

– Null hypothesis H0 = the means are equal

– Given H0, what is the probability of observing A1 and A2

– We need assumptions on the underlying prob. distribution

Z-Test: assume normal distribution with fixed variance

T-Test: like Z-test, but also model variance distribution

– The T-Test is more realistic but (slightly) more complex
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Probability distributions   1/4

 General terminology

– Continuous random variable X = range is R

– Probability density function  φ(x) = Pr(X = x)

– Cumulative distribution function  Φ(x) = Pr(X ≤ x)

– Mean of the distribution  μ = E X

– Variance of the distr.  σ2 = E (X – E X)2 = E X2 – (E X)2

σ is often called the standard deviation

– Recall linearity properties of E and var :

E (X + Y) = E X + E Y even if X and Y are dependent

var(X + Y) = var(X) + var(Y) only if X and Y independent

var(a · X) = a2 · var(X)         by var(X) = E X2 – (E X)2 above
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Probability distributions   2/4

 The normal distribution

– There is exactly one for each μ and σ, denoted N(μ, σ2)

– Density function φ(x) = exp(– (x – μ)2/2σ2) / (σ · sqrt(2π))

– Assumed as the underlying distribution in many scenarios

In the life sciences as well as in computer science !

– For hypothesis testing, we need to compute, for a given x

Pr(X ≥ x) = 1 – Pr(X ≤ x)      … the so-called p-value for x

– That's an integral over φ(x), no closed formulas for that

– Either lookup in a table or use tools like Wolfram Alpha

e.g. Wolfram Alpha knows erf(x), where Φ(x) = (1+erf(x/√2))/2

– Lemma: if X has dist N(μ, σ2), then (X – μ) / σ has dist N(0,1)
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Probability distributions   3/4

 The χ2 distribution                χ = small Greek letter "chi"

– Assume Z1, …, Zn randomly picked according to N(0, 1)

– Then the distribution of Z = Z1
2 + … + Zn

2 is defined as:

the χ2 distribution with n degrees of freedom aka χ2(n)

– Why is this a practically relevant distribution ?

Consider measurements X1, …, Xn , each from N(μ, σ2)

Let M = Σ Xi / n be the sample mean,  E M = μ

Let S2 = Σ (Xi – M)2 / n be the sample variance, E S2 = σ2

Then S2 · n / σ2 has a χ2(n) distribution

Intuitively: the variance of a series of measurements
has a χ2 distribution (up to scaling)
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Probability distributions   4/4

 The Student's t-distribution

– Again, let X1, …, Xn be i.i.d. from N(μ, σ2)

– Let M = Σ Xi / n be the sample mean,  E M = μ

– Let S2 = Σ (Xi – M)2 / n be the sample variance, E S2 = σ2

– Then Z = (M – μ) / σ · √n has distribution N(0, 1) … slide 11

– And V = S2 · n / σ2 has distribution χ2(n) … slide 12

– Definition: the (Student's) t-distribution is defined as

the distribution of T = (M – μ) / S · √n with M and S as above

– Note: Z and V depend on σ, but T = Z / sqrt(V/n) does not !

– Intuitively: the deviation from the mean of a series of 
measurements with unknown variance has a t-distribution
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Z-test

 Assumption: underlying normal distribution

– Given two series X1 and X2 of a total of n measurements

– Let M = M1 – M2 be the difference of the sample means

– Let S2 = S12 + S22 be the sum of the sample variances

– The Z-test assumes that σ = S … this is quite unrealistic

– Hypothesis:  E M > 0 (E M < 0 or E M ≠ 0 analogously)

– Assume the null hypothesis:  E M = 0

– Then Z = (M – μ) / σ · √n  has distribution N(0, 1)

– Compute value z of Z for given measurements

– The p-value is Pr(Z ≥ z) ... estimate via table or Wolfram Alpha

http://en.wikipedia.org/wiki/Standard_normal_table
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T-test

 Assumption: underlying t-distribution

– Given two series X1 and X2 of a total of n measurements

– Let M = M1 – M2 be the difference of the sample means

– Let S2 = S12 + S22 be the sum of the sample variances

– The t-test does not need an estimate of σ !

– Hypothesis:  E M > 0 (E M < 0 or E M ≠ 0 analogously)

– Assume the null hypothesis:  E M = 0

– Then T = M / S · √n  has a t-distribution

– Compute value t of T for given measurements 

– The p-value is Pr(T ≥ t) ... estimate via table or Wolfram Alpha

http://en.wikipedia.org/wiki/T-distribution#Table_of_selected_values
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A working example

 Both Z-test and T-Test

– Recall the accuracy measurements from slide 9

A1 :  0.87  0.88  0.87  0.90

A2 :  0.87  0.86  0.85  0.86

– Difference M of sample means is:

– Sum S2 of sample variances is: 

– Value x of M / S · √n is:

– Z-test: estimate for Pr(Z ≥ x) is:

– T-test: estimate for Pr(T ≥ x) is:
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Background for Exercise Sheet 13

 Let's consider a simple database optimization trick

– Replace string ids in the TSV tables by integer ids

– In the SQL CREATE command then say INTEGER for that 
column instead of TEXT

This tells the DB engine to store the values as int s internally

– This seems to save some time, but maybe that is simply 
because the integers are more compact than string

– So repeat the same with hexadecimal ids

– Exercise: determine the statistical significance of the 
performance difference between hex ids and integer ids

try both Z-test and T-test; and try 3 and 10 measurements
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 Wikipedia

– http://en.wikipedia.org/wiki/Statistical_hypothesis_testing

– http://en.wikipedia.org/wiki/P-Value

– http://en.wikipedia.org/wiki/Z-test
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 Two articles by Jacob Cohen

an American statistician and psychologist, 1923 – 1998

The earth is round (p < 0.05)

Things I have learned (so far)

Quite entertaining + instructive !
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