
Information Retrieval
WS 2012 / 2013

Lecture 2, Wednesday October 31st, 2012
(V t S M d l R ki P i i /R ll)(Vector Space Model, Ranking, Precision/Recall)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

 Organizational
– Your experiences with Exercise Sheet 1 (inverted index)

 How to rank resultsHow to rank results
– Vector Space Model

– Ranking formulasRanking formulas

– How to compute

– How to evaluateHow to evaluate

– Exercise Sheet 2: compare three ranking formulas
with respect to their precision and recall

 Some slides left from last lecture
– Index construction via sortingg

2

Experiences with ES1 (inverted index)p ()

 Summary / excerpts last checked October 31, 14:15

– Setup time (SVN, Junit / Gtest, ...) for the newbies

– Lack of programming practice for manyLack of programming practice for many

– Implementation advice / header files were useful

– In Java need to set –Xmx=2G or more (heap size)– In Java, need to set –Xmx=2G or more (heap size)

– Save to file for INV would be useful ... indeed!

Various battles with the style checkers– Various battles with the style checkers

– Live programming useful / Prof. Bast coded like a beast

h l h f– Lecture: I sat in the last row ... that sums it up for me

3

Rankingg

 Motivation

– Problem: queries often return many documents,
typically more than one wants to (or even can) look at

In web search, often millions of documents

– Solution: rank the documents by relevance to the y
query, and show the most relevant ones first

Plus some paging capabilities (next page of results)

– Problem: how to measure relevance of a document /
record to a given query?

In a computable way, of course

4

Vector Space Modelp

 Basic Idea

– View documents (and queries) as vectors in a vector space

– Each dimension corresponds to a word from the vocabularyEach dimension corresponds to a word from the vocabulary

– Here is an example

Document 1: uni freiburg is in freiburgDocument 1: uni freiburg is in freiburg
Document 2: uni karlsruhe is in karlsruhe
Document 3: freiburg is in germany

5

Vector Space Modelp

 Possible entries in a document / query vector

– Binary = put a 1 if the word occurs, and a 0 otherwise

Problem: no difference between important andProblem: no difference between important and
insigificant words

– Term frequency (tf) = number of times the word occursq y ()

Problem: words like "the" are very frequent but carry no
particular meaning

– tf.idf = Multiply tf with inverse document frequency

df = number of documents containing the word

idf = log2 (N/df), where N = total number of documents

tf.idf = tf · idf

6

Vector Space Modelp

 Similarity between two documents

– Cosine similarity: sim(d1, d2) = cos angle(d1, d2)

This is 1 if vectors are the same, 0 if no word in commonThis is 1 if vectors are the same, 0 if no word in common

Advantage: favorable properties for mathematic analysis

– Dot product: d1 ● d2 = sum of products of components– Dot product: d1 ● d2 = sum of products of components

Advantage: easy to compute efficiently ... later slide

From linear algebra: d d |d | |d | cos angle(d d)– From linear algebra: d1 ● d2 = |d1| · |d2| · cos angle(d1, d2)

– Therefore, if the vectors are length normalized (|·| = 1) then

d d ldot product = cosine similarity

7

Okapi BM25 1/2p

 BM25 = Best Match 25, Okapi = an IR system

– This tf.idf style formula has consistently outperformed
other formulas in standard benchmarks over the years

BM25 score = tf* · log2 (N / df), where

tf* = tf · (k + 1) / (k · (1 – b + b · DL / AVDL) + tf)() (())

tf = term frequency, DL = document length, AVDL =
average document length

Often good: k = 1.75 and b = 0.75 (tuning parameters)

Binary: k = 0, b = 0; Normal tf.idf: k = ∞, b = 0

– There is "theory" behind this formula ... see references

– Next slide: simple reason why the formula makes senseNext slide: simple reason why the formula makes sense

8

Okapi BM25 2/2p

 Why BM25 makes sense

– Start with the simple formula tf · idf

– Replace tf by tf* = tf · (k + 1) / (k + tf)Replace tf by tf tf (k + 1) / (k + tf)

tf* = 0 if and only if tf = 0

tf* increases as tf increasestf increases as tf increases

tf*  k + 1 as tf  infinity

Normalize by the length of the document– Normalize by the length of the document

full normalization: alpha = DL / AVDL

l l h (b) b /some normalization: alpha = (1 – b) + b · DL / AVDL

replace tf* by tf* / alpha

9

Ranking — Computation 1/4g p

 Conceptually:

– For a query q and each document d, compute sim(q, d)

– Sort the documents by sim(q, d)Sort the documents by sim(q, d)

– Output the first k in the sorted sequence, for some k

– This looks like we have to do something for each– This looks like we have to do something for each
document

– This is exactly what we wanted to avoid with an indexThis is exactly what we wanted to avoid with an index

– Can we also compute this based on an index?

10

Ranking — Computation 2/4g p

 Based on an index

– In each inverted list, along with each doc id, also write
the score for the corresponding word occurrence

– Let's do this for our example, using tf.idf scores

Document 1: uni freiburg is in freiburgg g
Document 2: uni karlsruhe is in karlsruhe
Document 3: freiburg is in germany
Document 4: karlsruhe is in germanyDocument 4: karlsruhe is in germany

11

Ranking — Computation 3/4g p

 List intersection / union with scores

– In principle, we can use the same algorithm as before

– But when writing a doc id to the result list, also write theBut when writing a doc id to the result list, also write the
sums of the scores from the individual lists

– We have a choice between list "union" and "intersect"

With intersect (so-called boolean retrieval), this computes
the dot-products for docs containing all query words

With union (so-called and-ish retrieval), this effectively
computes all the non-zero dot-products

12

Ranking — Computation 4/4g p

 Sorting by ranks

– Let n be the length of the result list (# of doc ids)

– Then a full sort would take time Θ(n · log n)Then a full sort would take time Θ(n log n)

– Typically only the top-k hits need to be displayed

– Then a partial sort is sufficient: get the k largest– Then a partial sort is sufficient: get the k largest
elements, for a given k

– A variant of Quicksort achieves time Θ(n + k · log k)A variant of Quicksort achieves time Θ(n + k log k)

– Running k rounds of HeapSort gives Θ(n + k · log n)

– For constant k these are both Θ(n)For constant k these are both Θ(n)

– In C++ there is std::sort and std::partial_sort

In Java there is Collections sort but no partial sort method– In Java there is Collections.sort but no partial sort method

13

Ranking — Evaluation 1/6g

 How to evaluate the quality of a ranking

– Pick a set of queries

– For each query, identify the ground truth = all relevantFor each query, identify the ground truth all relevant
documents for that query

Note: this is a very time-consuming job, especially for y g j , p y
large document collections

– For each query, compare the computed results list with
the list of relevant documents for that query

For the exercise sheet, just do a manual inspection of
th t 10 hitthe top-10 hits

Note that this is not the way to go in practice, because
you have to redo that inspection after each code changeyou have to redo that inspection after each code change

14

Ranking — Evaluation 2/6g

 Precision and Recall (ranking-unaware version)

– Let tp = the number of relevant documents in the result
list (true positives)

– Let fp = the number of non-relevant documents in the
result list (false positives)

– Let fn = the number of relevant documents missing from
the result list (false negatives)

– Note: then tp + fp = number of documents in result list,
and tp + fn = number of relevant documents

Th i i i d fi d t / (t f)– Then precision is defined as tp / (tp + fp)

and recall is defined as tp / (tp + fn)

– F-measure = harmonic mean of precision and recall

15

Ranking — Evaluation 3/6g

 Precision and Recall (ranking-aware version)

– The definitions on the previous slide are invariant under
different ordering of the docs in the result list

– Here are some ranking-aware measures

Precision@k = the precision among the first k docsp g

Precision@R = the precision among the first R docs,
where R is the number of relevant documents

Let k1 < ... < kR be the ranks of the relevant docs in the
result list (rank missing docs randomly or worst-case)

Average precision = average of P@k1, ..., P@kR

– For a set of queries, the MAP = mean average precision
is the average (over all queries) of the average precisions

16

Ranking — Evaluation 4/6g

 Precision-recall curve

– Average precision is just a single number

– For a complete picture of the quality of the ranking, plotFor a complete picture of the quality of the ranking, plot
a precision-recall curve

– If the x-axis is normalized, these can also be averaged , g
over several queries

17

Ranking — Evaluation 5/6g

 More refined measures

– Sometimes relevance comes in more than one shade, e.g.

0 = not relevant, 1 = somewhat rel, 2 = very relevant0 not relevant, 1 somewhat rel, 2 very relevant

– Then a ranking that puts the very relevant docs at the top
should be preferredp

Cumulative gain CG@k = Σi=1..k reli
Discounted CG DCG@k = rel1 + Σi=2 k reli / log2 iDiscounted CG DCG@k rel1 + Σi=2..k reli / log2 i

– Problem: CG and DCG are larger for larger result lists

– Solution: normalize by maximally achievable valueSolution: normalize by maximally achievable value

iDCG@k = value of DCG@k for ideal ranking

Normalized DCG nDCG@k DCG@k / iDCG@kNormalized DCG nDCG@k = DCG@k / iDCG@k

18

Ranking — Evaluation 6/6g

 Normalized discounted cumulative gain, example

19

Ranking — Evaluationg

 How to obtain the ground truth

– Method 1: Extensive manual search

Infeasible for very large collectionsInfeasible for very large collections

– Method 2: So-called "pooling"

Make a contest and manually inspect only the top-kMake a contest, and manually inspect only the top-k
results from each participant for relevance

Will miss relevant docs, but fair to all participantsWill miss relevant docs, but fair to all participants

– Method 3: Crowd Sourcing

Use services like Amazon Mechanical Turk to distributeUse services like Amazon Mechanical Turk to distribute
this task over a large number of people

Can be combined with methods 1 or 2Can be combined with methods 1 or 2

20

Implementation advicep

 Index construction with tf.idf / BM25 scores

– Elements in inverted lists now must include score

Map<String, Array<Posting>> invertedLists;Map<String, Array<Posting>> invertedLists;

where Posting is a class holding a doc id and a score

– During parse compute only basic tf: when a document– During parse compute only basic tf: when a document
contains a word multiple times, simply add 1 to the score

– Also maintain the doc frequencies and lengths during parsingAlso maintain the doc frequencies and lengths during parsing

Map<String, int> documentFrequencies;
Array<int> documentLengths;g

– After the parsing, go over each inverted list, and compute
the final scores, e.g. BM25

– Also see the code design suggestions on the Wiki
21

References

 In the Raghavan/Manning/Schütze textbook
Section 6: Scoring, term weighting, vector space model

 Relevant PapersRelevant Papers
The Probabilistic Relevance Framework: BM25 and Beyond
S. Robertson and H. Zaragoza FnTIR 2009, 333 – 389 g ,

 TREC conference (benchmarks)
http://trec nist gov/tracks htmlhttp://trec.nist.gov/tracks.html

 Relevant Wikipedia articles
htt // iki di / iki/Ok i BM25http://en.wikipedia.org/wiki/Okapi_BM25
http://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/Discounted_cumulative_gain
http://en.wikipedia.org/wiki/Partial_sorting

22

23

