Information Retrieval
WS 2012 / 2013

Lecture 2, Wednesday October 31st, 2012
(Vector Space Model, Ranking, Precision/Recall)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

m Organizational
— Your experiences with Exercise Sheet 1 (inverted index)
m How to rank results

— Vector Space Model
— Ranking formulas

— How to compute

— How to evaluate

— Exercise Sheet 2: compare three ranking formulas
with respect to their precision and recall

m Some slides left from last lecture

— Index construction via sorting

Experiences with ES1 (inverted index)

m Summary / excerpts last checked October 31, 14:15
— Setup time (SVN, Junit / Gtest, ...) for the newbies

— Lack of programming practice for many

— Implementation advice / header files were useful

— In Java, need to set -Xmx=2G or more (heap size)

— Save to file for INV would be useful ... indeed!

— Various batties with the style checkers

— Live programming useful / Prof. Bast coded like a beast

— Lecture: I sat in the last row ... that sums it up for me

Ranking

m Motivation

— Problem: queries often return many documents,
typically more than one wants to (or even can) look at

In web search, often millions of documents

— Solution: rank the documents by relevance to the
query, and show the most relevant ones first

Plus some paging capabilities (next page of results)

— Problem: how to measure relevance of a document /
record to a given query?

In a computable way, of course

Vector Space Mode Ty 2
e — OLW zl.ll
m Basic Idea P =1

NOTE * aollily ey u_.t% 2EROS
— Viéw documents (and queries) as vectors in a vector space

Each dimension corresponds to a word from the vocabulary

— Here is an example

Document 1: uni freiburg is in freiburg R r
Document 2: uni karlsruhe is in karlsruhe 3) b,

Document 3: freiburg is in germany

TocA TDoc2 Doc 5 M
M 2. @) 1 g
Doy O > “1
Bolawds O 9 O ©
‘ A y A O
D
SMVAL 1 1) /l

Vector Space Model

m Possible entries in a document / query vector

— Binary = put a 1 if the word occurs, and a 0 otherwise

Problem: no difference between important and

insigificant words _ ,in::m P -wcower*g -

— Term frequency (tf) = number of times the word occurs

Problem: words like "the" are very frequent but carry no

particular meaning F/,.,..ma Sovee é v o

— tf.idf = Multiply tf with invérse document frequency
df = number of documents containing the word
idf = log, (N/df), where N = total number of documents
tf.idf = tf - idf

i/ s ey PR
ctor Space Model o G Sy S

ANDAA — IYU'-S —

m Similarity between two documents

— Cosine similarity: sim(d,, d,) = cos angle(d,, d,)
This is 1 if vectors are the same, 0 if no word in common
Advantage: favorable properties for mathematic analysis

— Dot product: d1 e d2 = sum of products of components

Mz——;_ Advantage: easy to compute efficiently ... later slide
e — From linear algebra: d; e d, = [d;[,- |d;],- cos angle(d;, d;)

— Therefore, if the vectors are length normalized (|-L= 1) then

dot product = cosine similarity Tac A Quamy
2

24 + 4.4 = 3

AAlspp
AGpoogA

Okapi BM25 1/2 oy Marmndo

m BM25 = Best Match 25, Okapi = an IR syste

— This tf.idf style formula has consistently outperformed
other formulas in standard benchmarks over the years

BM25 score = tf* - log, (N / df), where
tF*=tF-(k+1)/(k -(1-b+ b-DLJ/AVDL) + tf)

tf = term frequency, DL = document length, AVDL =
average document length

Often good: k = 1.75and b = 0.75 (tuning parameters)
Binary: k =0, b = 0; Normal tf.idf: k =00, b =0
— There is "theory" behind this formula ... see references

— Next slide: simple reason why the formula makes sense

Okapi BM25 2/2 A+ A

m Why BM25 makes sense
— Start with the simple formula tf - idf
— Replace tf by tf* = tf - (k + 1) / (k + tf)

o tF*=0ifand only if tf = 0

» tf* increases as tf increases / wd =0
o tf* = k+ 1 as tf — infinity rmo Aol —
2o A oAn

— Normalize by the length of the document
» full normalization: alpha = DL / AVDL
» some normalization: alpha = (1 —b) + b - DL / AVDL
» replace tff by tf* / alpha

Ranking — Computation 1/4

m Conceptually:

— For a query g and each document d, compute sim(q, d)
— Sort the documents by sim(q, d)
— Output the first k in the sorted sequence, for some k

— This looks like we have to do something for each
document

— This is exactly what we wanted to avoid with an index

— Can we also compute this based on an index?

10

Ranking — Computation 2/4

. T
= Based on an index ‘Q":::&Z
— In each inverted list, along with each doc id, also write \
the score for the corresponding word occurrence
— Let's do this for our example, using tf.idf scores . (b;": f(
Document 1: uni freiburg is in freiburg T3 S o
Document 2: uni karlsruhe is in karlsruhe A o
AR .
Document 3: freiburg is in germany A~ to A1

Document 4: karlsruhe is in germany

Jﬂeb'o\- JOCUA
LAANA /l ’ 1)

Ranking — Computation 3/4

m List intersection / union with scores

— In principle, we can use the same algorithm as before

— But when writing a doc id to the result list, also write the
sums of the scores from the individual lists

— We have a choice between list "union" and "intersect"

With intersect (so-called boolean retrieval), this computes
the dot-products for docs containing all query words

With union (so-called and-ish retrieval), this effectively
computes all the non-zero dot-products

r\maa\'ow WW—MW{'WM
Ao anperiasn Py VU TV

12

a0 Maa
o e tomad

Ranking — Computation 4/4 .-« L2

| —_o_

L
— \

m Sorting by ranks

— Let n be the length of the result list (# of doc ids)
— Then a full sort would take time O(n - log n)

— Typically only the top-k hits need to be displayed
— Then a partial sort is sufficient: get the k largest

elements, for a given k A Naq\-n_e;‘- 4o Mm.!’.mb)
\g_/ W

— A variant of Quicksort achieves time O(n + k - log k)
— Running k rounds of HeapSort gives O(n + k - log n)
— For constant k these are both O(n)

— In C++ there is std::sort and std::partial_sort

— In Java there is Collections.sort but no partial sort method

13

Ranking — Evaluation 1/6

= How to evaluate the quality of a ranking
— Pick a set of queries

— For each query, identify the ground truth = all relevant
documents for that query

Note: this is a very time-consuming job, especially for
large document collections

— For each query, compare the computed results list with
the list of relevant documents for that query

For the exercise sheet, just do a manual inspection of
the top-10 hits

Note that this is not the way to go in practice, because
you have to redo that inspection after each code change

14

2.

A

Ranking — Evaluation 2/6 S, © ~vecal®

m Precision and Recall (ranking-unaware version)

— Let tp = the number of relevant documents in the result
list (true positives)

— Let fp = the number of non-relevant documents in the
result list (false positives)

— Let fn = the number of relevant documents missing fro
the result list (false negatives)

— Note: then tp + fp = number of documents in result list,
and tp + fn = number of relevant documents

— Then precision is defined as tp / (tp + fp)
and recall is defined as tp / (tp + fn)

— F-measure = harmonic mean of precision and recall

15

Ranking — Evaluation 3/6

m Precision and Recall (ranking-aware version)

— The definitions on the previous slide are invariant under
different ordering of the docs in the result list

— Here are some ranking-aware measures
Precision@k = the precision among the first k docs

Precision@R = the precision among the first R docs,
where R is the number of relevant documents

Let k; < ... < kg be the ranks of the relevant docs in the
result list (rank missing docs randomly or worst-case)

Average precision = average of P@k;, ..., P@kgp

— For a set of queries, the MAP = mean average precision
is the average (over all queries) of the average precisions

16

Ranking — Evaluation 4/6

m Precision-recall curve

— Average precision is just a single number

— For a complete picture of the quality of the ranking, plot
a precision-recall curve

— If the x-axis is normalized, these can also be averaged
over several queries

WW
10094 — ._,L,d\lo-L
(2R adsnstnt
Gk deen ot Pla
+on)
— reco
A 2 A100%,

| X3 17

Ranking — Evaluation 5/6

m More refined measures

— Sometimes relevance comes in more than one shade, e.g.
0 = not relevant, 1 = somewhat rel, 2 = very relevant

— Then a ranking that puts the very reIevant docs at the top
should be preferred g N

Cumulative gain CG@k = %,_; | rel vty M“‘“’r"

Discounted CG DCG@k = rel; + 2;_, , rel / log, i
— Problem: CG and DCG are larger for larger result lists
— Solution: normalize by maximally achievable value
IDCG@k = value of DCG@k for ideal ranking
Normalized DCG nDCG@k = DCG@k / iIDCG@k

18

Ranking — Evaluation 6/6

m Normalized discounted cumulative gain, example

19

Ranking — Evaluation

m How to obtain the ground truth

— Method 1: Extensive manual search
Infeasible for very large collections
— Method 2: So-called "pooling”

Make a contest, and manually inspect only the top-k

results from each participant for relevance
Will miss relevant docs, but fair to all participants

— Method 3: Crowd Sourcing

Use services like Amazon Mechanical Turk to distribute
this task over a large number of people

Can be combined with methods 1 or 2

20

Implementation advice

m Index construction with tf.idf / BM25 scores

— Elements in inverted lists now must include score
Map<String, Array<Posting>> invertedLists;
where Posting is a class holding a doc id and a score

— During parse compute only basic tf: when a document
contains a word multiple times, simply add 1 to the score

rsin

= T wd

— Also maintain the doc frequencies and lengths during p

-

Map<String, int> documentFrequencies;
Array<int> documentLengths;

— After the parsing, go over each inverted list, and compute
the final scores, e.g. BM25

— Also see the code design suggestions on the Wiki

21

References

m In the Raghavan/Manning/Schitze textbook
Section 6: Scoring, term weighting, vector space model

m Relevant Papers

The Probabilistic Relevance Framework: BM25 and Beyond
S. Robertson and H. Zaragoza FnTIR 2009, 333 — 389

m TREC conference (benchmarks)
http://trec.nist.gov/tracks.html

m Relevant Wikipedia articles

http://en.wikipedia.org/wiki/Okapi BM25
http://en.wikipedia.org/wiki/Precision and recall
http://en.wikipedia.org/wiki/Discounted cumulative gain
http://en.wikipedia.org/wiki/Partial sorting

22

[
odndgaildd
“ZD

23

