
Information Retrieval
WS 2012 / 2013

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 3, Wednesday November 7th, 2012
(List intersection: fancy algorithms + lower bounds)

Overview of this lecture

 Organizational
– Your experiences with Exercise Sheet 2 (Ranking)

 List intersection
– Key algorithm in every search engine

– Some algorithm engineering tips

– Fancier algorithms + runtime analysis

– Matching lower bound

– Exercise Sheet 3:
Implement the asymptotically optimal algorithm
Is it really faster than the simple linear-time algorithm?
Some optional theoretical tasks, good for exam preparation

2

Experiences with ES2 (ranking)

 Summary / excerpts last checked November 7, 15:43

– Feasible in reasonable time for most

– Manual relevance assessment is quite time-consuming

– Wiki table for comparing results please, like last semester

Ok, we will have one again for this exercise !

– Some of you are quite passionate about the coding

Great, I hope you become addicted to it !

– Lecture pen too thick / too many colors ... let's see today

– How to write unit tests ... I'll live code an example today

– More coding, less theory please ... ok, ok

– Great recordings / streamed from iPhone to TV ... yeah!

3

Your results for ES2 (ranking)

 Some interesting observations

– Binary (k = 0, b = 0) was clearly the worst

– In the tf.idf list, some linguists and other theory guys

Many occurrences of either "relativity" or "theory" can boost the score

– Albert Einstein was top for tf.idf, but not even in the top-
10 for BM25 with standard settings

BM25 favors short articles that are mainly about rel. theo.

To get AE at the top, a global document score (like the PageRank for web
pages) would be more appropriate ... later lecture

4

List Intersection 1/5

 Let's first revisit the linear-time algorithm ...

– ... and see what we can improve there

– Java: ArrayList<Integer> much worse than native int[]

– C++: vector<int> is as good as int[] with option –O3

– Minimize the number of branches within small-bodied loops

– Note 1: hard to predict / understand some of the effects
To understand what is really going on, look at the machine code (in
C++) or byte code (Java) ... see seminar Java vs. C++ on Wiki

– Note 2: when comparing algorithms, always repeat each run
at least 3 times, to make caching effects transparent

5

List Intersection 2/5

 Algorithmic improvement 1

– Call the smaller list A, and the longer list B

– Search the elements from A in B, using binary search

k = #elements in A, n = #elements in B

– This has time complexity Θ(k · log n)

6

List Intersection 3/5

 Algorithmic improvement 2

– Observation: when we have located element A[i] in B,
that is, we have found j with B[j-1] < A[i] ≤ B[j] ...

... then for all elements A[i'] with i' > i, it suffices to look
at elements B[j'] with j' ≥ j

– Time complexity in the best case is Θ(log n)

– Time complexity in the worst case is Θ(k · log n)

– Time complexity in the average case is Θ(k · log n/k)

7

List Intersection 4/5

 Algorithmic improvement 3

– Goal: when elements A[i] and A[i+1] are located at
postions j1 and j2 in B, then, with d:= j2 – j1 ("gap") ...

... spend only time Θ(log d) to locate element A[i+1]

– Idea: first do an exponential search, to get an upper
bound on the range, then a binary search as before

8

List Intersection 5/5

 Time complexity of this algorithm

– Let d1, ..., dk be the gaps between the locations of the
k elements of A in B

d1 = from beginning to first location

– Note that Σi di ≤ n = the number of elements in B

– Then the time complexity is O(Σi log di)

– Goal: find a formula that is independent of the di

– Idea: maximize Σi log di under the constraint Σi di ≤ n

– This is called optimization with side constraints or
Lagrangian optimization ... next slide

9

Lagrangian Optimization

 By example of the task from the previous slide
(there is an optional theoretical exercise, where you can
practice the technique for yourself)

10

Skip Pointers

 A heuristic approach to increase performance

– Idea: place pointers at "strategic" positions in the list,
which allow to "skip" large parts during intersection

– Question: where to place how many pointers?

11

Lower bounds 1/5

 Let's first look at both union and intersection

– For list union, the simple linear-time algorithm has a
time complexity of Θ(k + n)

This is optimal, because the result of the union contains
k + n elements, and every algorithm has to output them

– For list intersection, the exponential-binary-search
algorithm has a time complexity of Θ(k · log (n/k))

Exercise (optional): prove that k · log (n/k) never worse
than n + k (and usually much better, e.g. for k = const)

But maybe we can do even better?

(Note: the output size is at most k for intersection)

12

Lower bounds 2/5

 Recall: lower bound for comparison-based sorting

– There are n! possible outputs

– The algorithm has to distinguish between all of them

– Each comparison distinguishes between two cases

– Hence we need at least log2 n! comparisons

– By Stirling’s formula (n/e)n ≤ n! ≤ nn

– Hence log2 n! ~ n · log n

– Hence every comparison-based sorting algorithm has a
running time of Ω(n · log n)

– Note: not true for non-comparison based algorithms

For example, 0-1 sequences can be sorted by counting

13

Lower bounds 3/5

 Similar argument for intersecting two lists A and B

– As before, k = #elements in A, n = #elements in B

– How many different ways are there to locate the k
elements from A within the n elements from B

– Observation: each such way corresponds to a tuple
(j1,…, jk) where 0 ≤ j1 ≤ … ≤ jk ≤ n

ji is simply the location of the i-th element of A in B
location 0 means before the first element
location i > 0 means after the i-th element

How many such tuples are there?

14

Lower bounds 4/5

 There is a similar quantity which is easy to count

– The number of tuples (i1,…, ik) where 1 ≤ i1 < … < ik ≤ m

– This is just the number of size-k subsets of {1,…,m}

– Their number is just m over k = m! / (k! · (m – k)!) ≥ (m/k)k

– Let us relate this to the number we are interested in:

The number of tuples (i1,…, ik) where 0 ≤ i1 ≤ … ≤ ik ≤ n

15

Lower bounds 5/5

 Now it's easy to derive the lower bound

– By the previous arguments, the number of ways to
locate the k elements from A in the n element of B is

m over k ≥ (m/k)k, where m = n + k

– With the same argument as in the sorting lower bound,
any comparison-based algorithm hence has to make

log2 (m over k) ≥ log2 (m/k)k comparisons

– This is k · log2(1+n/k) and hence Ω(k · log2(n/k))

16

References

 In the Raghavan/Manning/Schütze textbook
Section 2.3: Faster intersection with skip pointers

 Relevant Papers
A simple algorithm for merging two linearly ordered sets
F.K. Hwang and S. Lin SICOMP 1(1):31–39, 1980

A fast set intersection algorithm for sorted sequences
R. Baeza-Yates CPM, LNCS 3109, 31–39, 2004

 Relevant Wikipedia articles
http://en.wikipedia.org/wiki/Lagrange_multiplier

17

18

