Information Retrieval
WS 2012 / 2013

Lecture 3, Wednesday November 7th, 2012
(List intersection: fancy algorithms + lower bounds)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

m Organizational

— Your experiences with Exercise Sheet 2 (Ranking)

m List intersection

— Key algorithm in every search engine
— Some algorithm engineering tips
— Fancier algorithms + runtime analysis
— Matching lower bound
— Exercise Sheet 3:
Implement the asymptotically optimal algorithm

Is it really faster than the simple linear-time algorithm?
Some optional theoretical tasks, good for exam preparation

Experiences with ES2 (ranking)

m Summary / excerpts last checked November 7, 15:43

— Feasible in reasonable time for most

— Wiki table for comparing results please, like Iz

Ok, we will have one again for this exercise !
— Some of you are quite passionate about the coding

Great, I hope you become addicted to it ! -
— Lecture pen too thick / too many colors ... let's see today
— How to write unit tests ... I'll live code an example today

— More coding, less theory please ... ok, ok

— Great recordings / streamed from iPhone to TV ... yeah!

Your results for ES2 (ranking)

m Some interesting observations
— Binary (k = 0, b = 0) was clearly the worst
— In the tf.idf list, some linguists and other theory guys
Many occurrences of either "relativity" or "theory" can boost the score

— Albert Einstein was top for tf.idf, but not even in the top-
10 for BM25 with standard settings

BM25 favors short articles that are mainly about rel. theo.

To get AE at the top, a global document score (like the PageRank for web
pages) would be more appropriate ... later lecture

List Intersection 1/5

m Let's first revisit the linear-time algorithm ...

— ... and see what we can improve there

— Java: ArraylList<Integer> much worse than native int[]

— C++: vector<int> is as good as int[] with option —03

— Minimize the number of branches within small-bodied loops

— Note 1: hard to predict / understand some of the effects
To understand what is really going on, look at the machine code (in
C++) or byte code (Java) ... see seminar Java vs. C++ on Wiki

— Note 2: when comparing algorithms, always repeat each run
at least 3 times, to make caching effects transparent

List Intersection 2/5

M /3(7\’-%1‘1—0K
m Algorithmic improvement 1 o ool

— Call the smaller list A, and the longer list B
— Search the elements from A in B, using binary search
k = #elements in A, n = #elements in B

— This has time complexity O(k - log n)

N .

9 = o —e—-o—e -

A B

/EJJU&Z rv\crvb/JD Sq‘a’a\wa LD A

List Intersection 3/5

NN s

& < —

m Algorithmic improvement 2 E g

— Observation: when we have located element A[i] in B,
that is, we have found j with B[j-1] < A[i] < BJ[j] ...

... then for all elements A[i'] with i’ > i, it suffices to look
at elements B[j'] with j' = j

— Time complw
A b

504 e 3A.nf¢
— Time complex'!%'!n the worst case is O(k - log n) 2 /o aXammanaAa
7A‘ S —-—5 &YQ/MA‘ /
— Vi < e
\L — Time complexity in the average case is 8f«—togT/K) = Low, 7
\A«Aml/sxxw . = ‘Qo?.)z”‘ - A
,92"1 ' AA
R N
=0 ~— <X M PROVEMEIT

(B ;

List Intersection 4/5

m =E

m Algorithmic improvement 3 Lo 3 .*31

— Goal: when elements A[i] and A[i+1] are located at
postions j; and j, in B, then, with d:=j, —j; ("gap") ...
... spend only time O(log d) to locate element A[i+1]

PE——nm———-

— ldea: first do an exponential search, to get an upper
bound on the range, then a binary search as before

3
4/1\,(5‘3@
L
o T 2 2. <
A4 R —— X
X

< : Cv\rc)lad?"l
/Rmék%mﬂwvwaoamiﬂ,m%“ & +A)
= 05 . mact 2. (Rog 2A = Qog +

Sxp. Asowh A+24 w20 = (& o3 294

Sad

List Intersection 5/5

TC—"%H . .

m Time complexity of this algorithm

— Let dy, ..., d; be the gaps between the locations of the
k elements of A in B

d; = from beginning to first location
— Note that 2; d; < n = the number of elements in B
— Then the time complexity is O(Z; log d;)
— Goal: find a formula that is independent of the d,
— Idea: maximize Z; log d; under the constraint 2, d, < n

— This is called optimization with side constraints or

Lagrangian optimization g, - Nextslide
RESULT S Roqd & 8 fog & = S Roq o
=1 e = =3 Sz D S

Lagrangian Optimization T\/“x‘i

o0
' - zm
m By example of the task from the previous slide _, . o
(there is an optional theoretical exercise, where you can o0 =9 24
practice the technigue for yourself) %
rrox & e s ,iJQ.$M
L= N C=A
% - I)
L= 2aa = AEITm
L= v
| { Pe _ TODO A
92 . Fa;-m=0 > ZHEM g,
3'7\ L= - o 0
\ A azd‘:l
Ay QE’.-#¢/A=.0 = oy = -
Oy *4

, +o M .
— ol ok mequmﬂwaekw MIN
=) 3 'Tb‘DO'f'-(’.Q.l.u’LN\M"" ALY

: L a M
—) V’J 43 ’{ TODO 2! CHECK “Bor 0ER S
10

Skip Pointers

m A heuristic approach to increase performance

— ldea: place pointers at "strategic" positions in the list,
which allow to "skip" large parts during intersection

— Question: where to place how many pointers?

A A2, 33, S3I,.
2 14,2 32,4,5,5,
o N /
A22AD - -
= SWKif SWiIP PONTER

2,2 .3 (O

11

Lower bounds 1/5

m Let's first look at both union and intersection

— For list union, the simple linear-time algorithm has a
time complexity of O(k + n)

This is optimal, because the result of the union contains
k + n elements, and every algorithm has to output them

— For list intersection, the exponential-binary-search
algorithm has a time complexity of O(k - log (n/k))

Exercise (optional): prove that k - log (n/k) never worse
than n + k (and usually much better, e.g. for k = const)

But maybe we can do even better?

(Note: the output size is at most k for intersection)

12

AADOOAIDDOA

Lower bounds 2/5 AAAAD ©0 00

m Recall: lower bound for comparison-based sorting

— There are n! possible outputs

— The algorithm has to distinguish between all of them
— Each comparison distinguishes between two cases

— Hence we need at least log, n! comparisons

— By Stirling’s formula (n/e)" < n! <n"

— Hence log, n! ~n-logn

— Hence every comparison-based sorting algorithm has a
running time of Q(n - log n)

— Note: not true for non-comparison based algorithms

For example, 0-1 sequences can be sorted by counting

13

Lower bounds 3/5

m Similar argument for intersecting two lists A and B

— As before, k = #elements in A, n = #elements in B

— How many different ways are there to locate the k
elements from A within the n elements from B

— Observation: each such way corresponds to a tuple
(j].""’ _]k) where 0 < _]1 <..=<S _]k <n

Jj is simply the location of the i-th element of A in B
location 0 means before the first element
location i > 0 means after the i-th element

How many such tuples are there?

THE ANSWER (M;;k) Z (%)9(

L oo (%‘ >9L = % Roqg %

14

Lower bounds 4/5

m There is a similar quantity which is easy to count
— The number of tuples (iy,..., i) where 1 < iy < ... <i . <m
— This is just the number of size-k subsets of {1,...,m}
— Their number is just m over k = m! / (k! - (m = k)!) = (m/k)K
— Let us relate this to the number we are interested in:

The number of tuples (iy,..., i) where 0 <i; < ... < <n

15

Lower bounds 5/5

= Now it's easy to derive the lower bound

— By the previous arguments, the number of ways to
locate the k elements from A in the n element of B is

m over k > (m/k)X, where m = n + k

— With the same argument as in the sorting lower bound,
any comparison-based algorithm hence has to make

log, (m over k) > log, (m/k)¥ comparisons
— This is k - log,(1+n/k) and hence Q(k - log,(n/k))

16

References

m In the Raghavan/Manning/Schutze textbook
Section 2.3: Faster intersection with skip pointers

m Relevant Papers

A simple algorithm for merging two linearly ordered sets
F.K. Hwang and S. Lin SICOMP 1(1):31-39, 1980

A fast set intersection algorithm for sorted sequences
R. Baeza-Yates CPM, LNCS 3109, 31-39, 2004

m Relevant Wikipedia articles
http://en.wikipedia.org/wiki/Lagrange multiplier

17

|
Ddngdiljad
“ZD

18

