
Information Retrieval
WS 2012 / 2013

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 4, Wednesday November 14th, 2012
(Compression and Entropy)

Overview of this lecture

 Organizational
– Your results and experiences with ES#3 (List Intersection)

 Compression
– Important to save (index) space

– But also to save query time !

– We will see some compression schemes relevant for IR

– Analyze entropy = information content

– Shannon's source coding theorem / optimal codes
– Exercise Sheet 4:

Prove a variety of interesting properties about coding
schemes and their entropy

2

Experiences with ES#3 (list intersection)

 Summary / excerpts last checked November 14, 16:08

– Confusion about random list generation ... sorry!

– Stuff about code optimization was very interesting

– Math.pow in java is *really* slow ... just use gap *=2

– Some of the Java people had space problems

– Binary search can start from last exp-search jump point

– Some were excited about their code improvements

– Others were frustrated that they didn't achieve more

– Live coding was nice again / unit test was helpful

– Thanks again for great tutor feedback

– How to autocomplete in Vim ... see my .vimrc on the Wiki

3

Results for ES#3 (list intersection)

 Main observations + discussion

– For R=5 hard to make ExpBin faster

most: ExpBin a bit slower; few: much slower; few: faster

– For R=50 ExpBin usually faster

most: somewhat faster; few: a lot faster; few: slower

– Reason: ExpBin algorithmically better, but more complex
code (larger constant factor + harder to optimize m.code)

– Also Simple is faster for R=50 than for R=5

– Reason: long runs can be skipped in single while loop

– Some Java codes were faster than the fastest C++ codes

– Reason: are you sure your code is correct?

4

Compression

 Motivation
– Index lists can be very large for large text collections

– May have to be stored on disk

– Compression then obviously saves space

– But also query time:

Reading an inverted list from disk takes time

Typical disk read rate: 50 – 100 MB / second

– Assume 50 MB / sec and an inverted list of size 50 MB

Then reading that list from disk takes 1 second

If we compress it to 10 MB, reading takes 0.2 second

We need to decompress it then, but even if that takes
0.3 seconds, we have still gained a factor of two !

5

Compressing inverted lists

 Example of an inverted list of document ids

3, 17, 21, 24, 34, 38, 45, …, 11876, 11899, 11913, …

– Numbers can become very large … so we need 4 bytes
to store each, for web search even more

– But we can also store the list like this

+3, +14, +4, +3, +10, +4, +7, …, +12, +23, +14, …

– This is called gap encoding

– Works as long as we process the lists from left to right

– Now we have a sequence of mostly small numbers

– We need a scheme to store small numbers in few bits

6

Universal encoding

 Encode small (positive) integers in few bits

– Ideally: use log2 x bits to encode x ϵ N

– We certainly can't do better than that

log2 n bits needed to differentiate between n numbers

– We can't even get ≤ 2 · log2 x bits ... see Exercise 4.3 !

7

Prefix-free codes

 For our purposes, codes should be prefix-free

– That is: no encoding of a symbol must be a prefix of an
encoding of some other symbol

– Assume the following code (which is not prefix-free)

A encoded by 1, B encoded by 11

now what does the sequence 1111 encode?

could be AAAA or ABA or BAA or AAB or BB

– For a prefix-free code, decoding is unambiguous

– And so are all the codes we will consider in this lecture

8

Elias encodings 1/2

 Elias-Gamma encoding, from 1975

– Write x in binary, and prepend floor(log2 x) zeros

– Prefix-free, intuitively because the initial zeros tell us how
long the binary representation of x is ... Exercise 4.1

– Code for x uses ≈ 2 log2 x bits ... exact length: Exercise 4.2

– Let's look at the Elias-Gamma codes of 1, 2, 3, 4, 5, ...

9

*1923 New Jersey
†2001 Massachusetts

Elias encodings 2/2

 Elias-Delta encoding, also from 1975

– Write x in binary, prepend Elias-Gamma code of floor(log2 x) + 1

– Prefix-free for basically the same reason ... Exercise 4.1

– This requires log2 x + O(log log x) bits

– Let's look at the Elias-Delta codes of 1, 2, 3, 4, 5, ...

10

Entropy encoding

 What if the numbers are not in sorted order

– Or not numbers at all but just symbols

C C B A D B B A B B C B B C B D

– Give each number a code corresponding to its frequency

– Frequencies in our example: A: 2 B: 8 C: 4 D: 2

– A prefix-free code: B  1 C  01 D  0010 A  0001

Requires: 8 · 1 + 4 · 2 + 2 · 4 + 2 · 4 = 32 bits

That is: 2 bits / symbol on average

Better than the obvious 3-bit code

– How do we know if / when we have reached the optimum?

11

Entropy 1/7

 Definition

– Intuitively: the information content of a message =
the optimal number of bits to encode that message

– Formally: defined for a discrete random variable X

– Without loss of generality range of X = {1, ..., m}

Think of X as generating the symbols of the message

– Then the entropy of X is written and defined as

H(X) = - Σi pi log2 pi where pi = Prob(X = i)

12

Entropy 2/7

 Shannon's famous source coding theorem (1948)

– Let X be a random variable with finite range

– For an arbitrary prefix-free (PF) encoding C
let LC(x) be the length of the code for x ϵ range(X)

(1) For any PF encoding C it holds: E LC(X) ≥ H(X)

(2) There is a PF encoding C with: E LC(X) ≤ H(X) + 1

where E denotes the expectation

– Intuitively: no code can be better than the
entropy, and there always is a code which is
almost as good

13

*1916 Michigan
†2001 Massachusetts

Entropy 3/7

 Proof of the source coding theorem

– Denote by Li the length of the code for the i-th symbol

– The following lemma is key for the source coding theorem:

(1) Given a PF code with lengths Li  Σi 2-Li ≤ 1

(2) Given Li with Σi 2-Li ≤ 1  exists PF code with length Li

Σi 2-Li ≤ 1 is known as "Kraft's inequality"

14

Entropy 4/7

 Proof of Lemma, part (1)

Given a PF code with lengths Li  Σi 2-Li ≤ 1

15

Entropy 5/7

 Proof of Lemma, part (2)

Given Li with Σi 2-Li ≤ 1  exists PF code with length Li

16

Entropy 6/7

 Proof of source coding theorem, part (1)

For any PF encoding C it holds: E LC(X) ≥ H(X)

17

Entropy 7/7

 Proof of source coding theorem, part (2)

There is a PF encoding C with: E LC(X) ≤ H(X) + 1

18

Optimality of Elias-Gamma

 Elias encoding

– Elias code lengths satisfy Li ≤ 2 log2 i + 1

– Let pi = 1 / i2 for i ≥ 2, and p1 such that Σi pi = 1

That is, numbers i ≥ 2 occur with probability 1 / i2

– Recall E L(X) = Σi pi Li and H(X) = – Σi pi log2 pi

– Then we have E L(X) ≤ H(X) + 1

19

Golomb encoding 1/2

 A slightly more involved encoding from 1966

– Comes with a parameter M, called modulus

– Write positive integer x as q · M + r

– Where q = x div M and r = x mod M

– The code for x is then the concatenation of:

(1) the quotient q written in unary with 0s

(2) a single 1 (as a delimiter)

(3) the remainder r written in binary

20

Solomon Golomb
*1932 Maryland

Golomb encoding 1/2

 Analysis

– Golomb codes are optimal for gap-encoding inverted list

You should prove this yourself in Exercise 4.4

– Typically not used in practice, however !

– Reason: the additional decompression effort usually
does not outweigh the slight improvement in space,
compared to simpler schemes

21

Variable-Byte Encoding

 A very simple scheme often used in practice

– Use whole bytes, in order to avoid the (computationally
expensive) bit fiddling needed for the previous schemes

– Use one bit of each byte to indicate, whether this is the
last byte in the current code or not

– This is also used for the UTF-8 encoding ... later lecture

22

References

 In the Raghavan/Manning/Schütze textbook
Section 5: Index compression

Section 5.3: Postings file compression ... (some codes only)

 Relevant Wikipedia articles
http://en.wikipedia.org/wiki/Elias_gamma_coding

http://en.wikipedia.org/wiki/Elias_delta_coding

http://en.wikipedia.org/wiki/Golomb_coding

http://en.wikipedia.org/wiki/Variable-width_encoding

http://en.wikipedia.org/wiki/Source_coding_theorem

http://en.wikipedia.org/wiki/Kraft_inequality

23

24

