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Overview of this lecture

 Organizational
– Your results and experiences with ES#3 (List Intersection)

 Compression
– Important to save (index) space

– But also to save query time !

– We will see some compression schemes relevant for IR

– Analyze entropy = information content

– Shannon's source coding theorem / optimal codes
– Exercise Sheet 4:

Prove a variety of interesting properties about coding 
schemes and their entropy
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Experiences with ES#3 (list intersection)

 Summary / excerpts       last checked November 14, 16:08

– Confusion about random list generation ... sorry!

– Stuff about code optimization was very interesting

– Math.pow in java is *really* slow ... just use gap *=2

– Some of the Java people had space problems

– Binary search can start from last exp-search jump point

– Some were excited about their code improvements

– Others were frustrated that they didn't achieve more

– Live coding was nice again / unit test was helpful

– Thanks again for great tutor feedback

– How to autocomplete in Vim ... see my .vimrc on the Wiki
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Results for ES#3 (list intersection)

 Main observations + discussion

– For R=5 hard to make ExpBin faster

most: ExpBin a bit slower;  few: much slower;  few: faster

– For R=50 ExpBin usually faster

most: somewhat faster;  few: a lot faster;  few: slower

– Reason: ExpBin algorithmically better, but more complex 
code (larger constant factor + harder to optimize m.code)

– Also Simple is faster for R=50 than for R=5

– Reason: long runs can be skipped in single while loop

– Some Java codes were faster than the fastest C++ codes

– Reason: are you sure your code is correct?
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Compression

 Motivation
– Index lists can be very large for large text collections

– May have to be stored on disk

– Compression then obviously saves space

– But also query time:

Reading an inverted list from disk takes time

Typical disk read rate: 50 – 100 MB / second

– Assume 50 MB / sec and an inverted list of size 50 MB

Then reading that list from disk takes 1 second

If we compress it to 10 MB, reading takes 0.2 second

We need to decompress it then, but even if that takes 
0.3 seconds, we have still gained a factor of two !
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Compressing inverted lists

 Example of an inverted list of document ids

3, 17, 21, 24, 34, 38, 45, …, 11876, 11899, 11913, …

– Numbers can become very large … so we need 4 bytes
to store each, for web search even more

– But we can also store the list like this

+3, +14, +4, +3, +10, +4, +7, …, +12, +23, +14, …

– This is called gap encoding

– Works as long as we process the lists from left to right

– Now we have a sequence of mostly small numbers

– We need a scheme to store small numbers in few bits
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Universal encoding

 Encode small (positive) integers in few bits

– Ideally: use log2 x bits to encode x ϵ N

– We certainly can't do better than that

log2 n bits needed to differentiate between n numbers

– We can't even get ≤ 2 · log2 x bits ... see Exercise 4.3 !
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Prefix-free codes

 For our purposes, codes should be prefix-free

– That is: no encoding of a symbol must be a prefix of an 
encoding of some other symbol

– Assume the following code   (which is not prefix-free)

A encoded by 1,  B encoded by 11

now what does the sequence 1111 encode?

could be AAAA or ABA or BAA or AAB or BB

– For a prefix-free code, decoding is unambiguous

– And so are all the codes we will consider in this lecture 
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Elias encodings   1/2

 Elias-Gamma encoding, from 1975

– Write x in binary, and prepend floor(log2 x) zeros

– Prefix-free, intuitively because the initial zeros tell us how 
long the binary representation of x is ... Exercise 4.1 

– Code for x uses ≈ 2 log2 x bits ... exact length: Exercise 4.2

– Let's look at the Elias-Gamma codes of 1, 2, 3, 4, 5, ... 
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Elias encodings   2/2

 Elias-Delta encoding, also from 1975

– Write x in binary, prepend Elias-Gamma code of floor(log2 x) + 1

– Prefix-free for basically the same reason ... Exercise 4.1

– This requires log2 x + O(log log x) bits

– Let's look at the Elias-Delta codes of 1, 2, 3, 4, 5, ... 
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Entropy encoding

 What if the numbers are not in sorted order

– Or not numbers at all but just symbols

C  C  B  A  D  B  B  A  B  B  C  B  B  C  B  D 

– Give each number a code corresponding to its frequency

– Frequencies in our example:  A: 2  B: 8   C: 4  D: 2

– A prefix-free code:  B  1  C  01  D  0010  A  0001

Requires:  8 · 1 + 4 · 2 + 2 · 4 + 2 · 4 = 32 bits

That is: 2 bits / symbol on average

Better than the obvious 3-bit code

– How do we know if / when we have reached the optimum?
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Entropy   1/7

 Definition

– Intuitively: the information content of a message = 
the optimal number of bits to encode that message

– Formally: defined for a discrete random variable X

– Without loss of generality range of X = {1, ..., m}

Think of X as generating the symbols of the message

– Then the entropy of X is written and defined as

H(X) = - Σi pi log2 pi where pi = Prob(X = i)
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Entropy   2/7

 Shannon's famous source coding theorem (1948)

– Let X be a random variable with finite range

– For an arbitrary prefix-free (PF) encoding C
let LC(x) be the length of the code for x ϵ range(X)

(1) For any PF encoding C it holds:   E LC(X) ≥ H(X)

(2) There is a PF encoding C with:    E LC(X) ≤ H(X) + 1

where E denotes the expectation

– Intuitively: no code can be better than the
entropy, and there always is a code which is
almost as good
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Entropy   3/7

 Proof of the source coding theorem

– Denote by Li the length of the code for the i-th symbol

– The following lemma is key for the source coding theorem:

(1) Given a PF code with lengths Li  Σi 2-Li ≤ 1

(2) Given Li with Σi 2-Li ≤ 1   exists PF code with length Li

Σi 2-Li ≤ 1 is known as "Kraft's inequality"
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Entropy   4/7

 Proof of Lemma, part (1)

Given a PF code with lengths Li  Σi 2-Li ≤ 1
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Entropy   5/7

 Proof of Lemma, part (2)

Given Li with Σi 2-Li ≤ 1   exists PF code with length Li
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Entropy   6/7

 Proof of source coding theorem, part (1)

For any PF encoding C it holds:   E LC(X) ≥ H(X)
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Entropy   7/7

 Proof of source coding theorem, part (2)

There is a PF encoding C with:    E LC(X) ≤ H(X) + 1
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Optimality of Elias-Gamma

 Elias encoding

– Elias code lengths satisfy Li ≤ 2 log2 i + 1

– Let pi = 1 / i2 for i ≥ 2, and p1 such that Σi pi = 1

That is, numbers i ≥ 2 occur with probability 1 / i2

– Recall  E L(X) = Σi pi Li  and  H(X) = – Σi pi log2 pi

– Then we have E L(X) ≤ H(X) + 1
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Golomb encoding   1/2

 A slightly more involved encoding from 1966

– Comes with a parameter M, called modulus

– Write positive integer  x as  q · M + r

– Where  q = x div M and  r = x mod M

– The code for x is then the concatenation of:

(1) the quotient q written in unary with 0s

(2) a single 1 (as a delimiter)

(3) the remainder r written in binary
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Golomb encoding   1/2

 Analysis

– Golomb codes are optimal for gap-encoding inverted list

You should prove this yourself in Exercise 4.4

– Typically not used in practice, however !

– Reason: the additional decompression effort usually 
does not outweigh the slight improvement in space, 
compared to simpler schemes
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Variable-Byte Encoding

 A very simple scheme often used in practice

– Use whole bytes, in order to avoid the (computationally 
expensive) bit fiddling needed for the previous schemes

– Use one bit of each byte to indicate, whether this is the 
last byte in the current code or not

– This is also used for the UTF-8 encoding ... later lecture
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