
Information Retrieval
WS 2012 / 2013

Lecture 5, Wednesday November 21st, 2012
(Wild d h t l t h)(Wildcard search, error-tolerant search)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

 Organizational

– Your experiences with ES#4 (compression and entropy)

 Wildcard search and error tolerant search Wildcard search and error tolerant search

– Type freib* or fr*rg or fr*b*rg, find freiburg

– Type fraiburk, find freiburg

– New techniques: Permuterm index, k-gram index, edit
di t J d di tdistance, Jaccard distance

– Exercise Sheet 5: implement error-tolerant search using a
k gram index and edit distancek-gram index and edit distance

2

Experiences with ES#4 (compr. / entropy)p

 Summary / excerpts last checked November 21, 15:13

– Exercises 1, 2, and 3 were doable for most

– Tricky to handle floor and ceil correctly thoughTricky to handle floor and ceil correctly though

– Exercise 4 was the hardest for most ... there will be a
master solution + maybe a proof sketch in the end todayy p y

– Most of you don't like proofs it seems ... what a pity !

– There was a mistake on the Elias-Delta slide ... fixed !There was a mistake on the Elias Delta slide ... fixed !

– "Confusing slides" ... please be more explicit !

– Why do we keep changing tutors ? one tutor more nowWhy do we keep changing tutors ? ... one tutor more now

3

Wildcard search 1/2

 Let's start with prefix search

– Example query: bas*

– Locate bas using binary search (on sorted vocabulary)

about
aware
banksLocate bas using binary search (on sorted vocabulary)

– Locate bat using another binary search

– This takes time ~ log2 n where n = #words in vocab

banks
base
based
b– This takes time ~ log2 n, where n = #words in vocab.

– For n = 100 million ≈ 227 … log2 n is 27

One string comparison takes ≈ 1 µsec

bases
basics
basis

– One string comparison takes ≈ 1 µsec

– So a fraction of 1 msec even for large vocabularies

h h b l f

bruno
cache
call

… assuming that the vocabulary fits into memory

Note: 100 million words take up ≈ 1GB (if 10 Bytes/word)

cases
…

4

Wildcard search 2/2

 What if we allow the * in any place

– Example query: ba*s

– Should find banks, bases, basics, and basisShould find banks, bases, basics, and basis

– No longer a range of words!

– Naïve approach: scan all words in the range ba* and– Naïve approach: scan all words in the range ba and
check for each word whether it matches ba*s

– If * is in the beginning, we have to scan the wholeIf is in the beginning, we have to scan the whole
vocabulary, doing a string comparison for each word

– For n = 100 million that would take 100 seconds

5

Permuterm Index 1/3

 For each word, add all "rotations" (not "permutations")

– Before, append a $ to each word ... you will see why

– Example: for base$, these rotations areExample: for base$, these rotations are

base$, ase$b, seba, ebas, $base

– Let each permutation point to the inverted list of the– Let each permutation point to the inverted list of the
original word (the inverted lists are there only once)

– Now for the query ba*s do a prefix search for s$ba*Now for the query ba s do a prefix search for s$ba

– Works for a single * in any position (because we can
always "rotate" that * to the end)

6

Permuterm Index 2/3

 Efficiency in time and space

– The vocabulary size increases by a factor of AVWL + 1

where AVWL = average word length, typically ~ 8where AVWL average word length, typically 8

– A factor of 8 increases log2 n by 3

– So no problem for the locating binary searches– So no problem for the locating binary searches

– But a very large vocabulary might not fit into memory
anymoreanymore

– We would have to use a B-tree then … out of scope for
this lecture

7

Permuterm Index 3/3

 How about more than one * ?

– Example query: in*ma*tik

– Simple trick: first collapse to one * as in in*tikSimple trick: first collapse to one as in in tik

– Solve this query  superset of matches … why?

Will also find intervallarithmetikWill also find intervallarithmetik

– Anyway, the number of matches will be relatively small

So just go over them and filter out the false positives– So just go over them, and filter out the false positives

8

k-Gram Index 1/4

 How to avoid the space blow-up of Permuterm

– Definition: k-grams of a word = all substrings of length k

– We now add a $ also at the beginning of each wordWe now add a $ also at the beginning of each word

– Example: the 3-grams of $informatik$ are

$in inf nfo for orm rma mat ati tik ik$$in, inf, nfo, for, orm, rma, mat, ati, tik, ik$

– For each k-gram store an inverted list of the words
(from our vocabulary) containing it(from our vocabulary) containing it

$in : inaccuracy, inexact, informatik, innovate, …

mat : acclamation informatik informationmat : acclamation, …, informatik, information, …

9

k-Gram Index 2/4

 How to query a k-gram index

– Example query: in*tik

– Generate all k-grams from query: in, tik, ik (k=3)Generate all k grams from query: in, tik, ik (k 3)

– Intersect the inverted lists for these k-grams

Note for ES#5: typically more than two lists now !Note for ES#5: typically more than two lists now !

– All matching words will be included ... why?

But again we can get a superset of results why?– But again, we can get a superset of results ... why?

we would also find indogermanistikpicknik

l ll b ll d– But again, result set will be small and we can just go
over it and filter out the false positives

10

k-Gram Index 3/4

 Space efficiency

– # of k-grams per word is AVWL – k + 3 ≈ AVWL on average

– In the inverted lists, we store words ids, not stringsIn the inverted lists, we store words ids, not strings

– And have an Array<String> for mapping ids  words

– Storing all words costs n · AVWL bytes (done anway)– Storing all words costs n · AVWL bytes (done anway)

– Storing all inverted k-gram lists costs 4 · n · AVWL bytes

provided we use 4 bytes per word idprovided we use 4 bytes per word id

11

k-Gram Index 4/4

 Time efficiency

– Intersection of m inverted lists of total volume N

takes time Θ(N · log m)takes time Θ(N log m)

– Time for post-filtering depends on the specificity of the
query; typically only few candidate (and final) matchesq y; yp y y ()

– Compare: Time for producing candidates with Permuterm
was Θ(log n), where n = #words

12

Error-tolerant search 1/3

 Let's consider mistakes on the side of the query

– Example query: innformaton retrievl

– Should find matches for: information retrievalShould find matches for: information retrieval

– We need an algorithm for approximate word matching:

Given a query word (e g retrievl) find all similar wordsGiven a query word (e.g. retrievl), find all similar words
in a given vocabulary

– We need a measure of similarity between words !We need a measure of similarity between words !

13

Edit distance 1/5
Vladimir

Levenshtein
*1935 Russia

 Also known as Levenshtein distance (1965)

*1935, Russia

– Definition: for two words / strings x and y

ED(x, y) := minimal number of tra'fo's to get from x to yED(x, y) : minimal number of tra fo s to get from x to y

– Transformations allowed are:

insert(i c) : insert character c at position iinsert(i, c) : insert character c at position i

delete(i) : delete character at position i

replace(i c) : replace character at position i by creplace(i, c) : replace character at position i by c

14

Edit distance 2/5

 Some notation

– The empty word is denoted by ε

– The length (#characters) of x is denoted by |x|The length (#characters) of x is denoted by |x|

– Substrings of x are denoted by x[i..j], where 1 ≤ i ≤ j ≤ |x|

 Some simple properties Some simple properties

– ED(x, y) = ED(y, x)

– ED(x, ε) = |x|

– ED(x, y) ≥ abs(|x| - |y|) abs(z) = z ≥ 0 ? z : -z

– ED(x, y) ≤ ED(x[1..n-1], y[1..m-1]) + 1 n = |x|, m = |y|

15

Edit distance 3/5

 Recursive formula

– For |x| > 0 and |y| > 0, ED(x, y) is the minimum of

(1a) ED(x[1..n], y[1..m-1]) + 1(1a) ED(x[1..n], y[1..m 1]) + 1

(1b) ED(x[1..n-1], y[1..m]) + 1

(1c) ED(x[1 n-1] y[1 m-1]) + 1 if x[n] ≠ y[m](1c) ED(x[1..n-1], y[1..m-1]) + 1 if x[n] ≠ y[m]

(2) ED(x[1..n-1], y[1..m-1]) if x[n] = y[m]

For |x| = 0 we have ED(x y) = |y|– For |x| = 0 we have ED(x, y) = |y|

– For |y| = 0 we have ED(x, y) = |x|

16

Edit distance 4/5

 Proof sketch

– Consider a sequence of k = ED(x, y) tra'fo's from x to y

– Turn it into a monotone sequence, that is:Turn it into a monotone sequence, that is:

Positions of operations never decrease, and, except for
successive deletions, strictly increase ... why possible?, y y p

– Consider the last tra'fo σk : z  y in this sequence:

If σk appends a char to z ... then ED(x, y) = (1a)If σk appends a char to z ... then ED(x, y) (1a)

If σk removes last char of z ... then ED(x, y) = (1b)

If σ replaces last char of z then ED(x y) = (1c)If σk replaces last char of z ... then ED(x, y) = (1c)

If σk leaves last char of z as is ... then ED(x, y) = (2)

17

Edit distance 5/5

 Dynamic programming algorithm

– Takes time and space Θ(|x| · |y|)

18

Error-tolerant search 2/3

 Approximate word matching

– Definition: Given a query word w, a vocabulary V, and a
treshold δ ... find all words v in V with ED(w, v) ≤ δ

– Naive algorithm: compute ED(w, v) for each word in V

– Need around 1µs / ED computation ... see Exercise 5.4 !µ p

– That's 1 second for each 1M words in the vocabulary

– Note: from the Linux command line, you can do:Note: from the Linux command line, you can do:

agrep -2 –w retrievl wikipedia-sentences.vocabulary.txt

The -2 means δ = 2 the –w means whole word matchThe -2 means δ = 2, the w means whole word match

19

Error-tolerant search 2/3

 Using a Permuterm index

– Consider x and y with ED(x, y) ≤ δ

– Intuitively: if x and y are not too short, they will have aIntuitively: if x and y are not too short, they will have a
substring of significant length in common

– Lemma: there exist rotations x' of x and y' of y such that y y
x' and y' have a common prefix of size

ceil(max(|x|, |y|) / δ) - 1

20

Error-tolerant search 2/3

 Using a k-gram index slide corrected: 23Nov12 00:39

– Consider x and y with ED(x, y) ≤ δ

– Intuitively: if x and y are not too short, they will have one
or more k-grams in common

– Lemma: let x' and y' be x and y with k-1 # padded left and
right then the number of common k grams of x' and y' isright, then the number of common k-grams of x' and y' is
commk(x',y') ≥ max(|x|,|y|) – 1 – (δ – 1) · k

– Proof sketch: consider the longer string, which hasProof sketch: consider the longer string, which has
max(|x|,|y|) + k – 1 k-grams (because of the padding);
then one tra'fo (insert/delete/replace) "affects" at most k
k d h δ t 'f ff t t t δ k kk-grams, and hence δ tra'fos affect at most δ·k k-grams

– Example: |x| = 5, |y| = 4, k = 3, δ = 2, commk(x',y') ≥ 1

' ##SILLY## k g ams ##S #SI SIL ILL LLY LY# Y##x' = ##SILLY## k-grams: ##S #SI SIL ILL LLY LY# Y##

y' = ##BILL## k-grams: ##B #BI BIL ILL LL# L##
21

Error-tolerant search 2/3
Paul Jaccard

 Jaccard distance

Paul Jaccard
*1868 Sainte-Croix

†1944 Zürich

– Actually, a k-gram index would more naturally give all
words within a given Jaccard distance

– Definition: the Jaccard co-efficient of two sets A and B
is defined as J(A, B) = |A n B| / |A u B|

– Definition: the (k-gram) Jaccard distance of two strings x
and y is defined as Jk(x, y) = J(A, B)

where A and B are the sets of k-grams of x and y (no # or $)

– But does not capture intuitive word similarity well

– Example 1: J2("weigh", "weihg") = 2/6 = 1/3 too low

– Example 2: J2("aster", "terase") = 3/6 = 1/2 too high

22

Advanced stuff 1/2

 Generalized edit distance

– Some changes in words happen more easily than others

– Example 1: ED("weigh", "weihg") = 2Example 1: ED(weigh , weihg) 2

ED("weigh", "eight") = 2

– Example 2: ED("chebyshev" "tschebyscheff") = 5– Example 2: ED(chebyshev , tschebyscheff) = 5

ED("chebyshev", "webster") = 5

Generalized edit distance: have individual costs for– Generalized edit distance: have individual costs for
different substring transformations, for example:

cost("ch"  "tsch") = 0 1cost(ch  tsch) = 0.1
cost("v"  "w") = 0.1
cost("x"  "u") = 1

23

Advanced stuff 2/2

 Query suggestion

– Example query: innformaton retrievl

– Answer: Did you mean "information retrieval" ?Answer: Did you mean information retrieval ?

– Simple solution: find the most frequent similar word for
each query word ... would work for the example aboveq y p

– But what about: freiberger münster

– Problem: freiberger is also a correct word, but mostProblem: freiberger is also a correct word, but most
probably freiburger was meant here

– Ideas: check which combination of words retrieves most
hits ... or occurs most often in the query logs ... or both

24

References

 In the Raghavan/Manning/Schütze textbook
Section 3: Tolerant Retrieval, in particular

Section 3.2: Wildcard queriesq

Section 3.3: Spelling correction

 Relevant Wikipedia articlesRelevant Wikipedia articles
http://en.wikipedia.org/wiki/N-gram

http://en.wikipedia.org/wiki/Approximate string matchinghttp://en.wikipedia.org/wiki/Approximate_string_matching

http://en.wikipedia.org/wiki/Levenshtein_distance

http://en.wikipedia.org/wiki/Jaccard indexhttp://en.wikipedia.org/wiki/Jaccard_index

25

26

