Information Retrieval
WS 2012 / 2013

Lecture 5, Wednesday November 21st, 2012
(Wildcard search, error-tolerant search)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

= Organizational

— Your experiences with ES#4 (compression and entropy)

m Wildcard search and error tolerant search
— Type freib* or fr*rg or fr*b*rg, find freiburg
— Type fraiburk, find freiburg

— New techniques: Permuterm index, k-gram index, edit
distance, Jaccard distance

— Exercise Sheet 5: implement error-tolerant search using a
k-gram index and edit distance

Experiences with ES#4 (compr. / entropy)

m Summary / excerpts last checked November 21, 15:13

— Exercises 1, 2, and 3 were doable for most
— Tricky to handle floor and ceil correctly though

— Exercise 4 was the hardest for most ... there will be a
master solution + maybe a proof sketch in the end today

— Most of you don't like proofs it seems ... what a pity !

— There was a mistake on the Elias-Delta slide ... fixed !

— "Confusing slides" ... please be more explicit !

— Why do we keep changing tutors ? ... one tutor more now

Wildcard search 1/2

m Let's start with prefix search
— Example query: bas*
— Locate bas using binary search (on sorted vocabulary)

— Locate bat using another binary search

— This takes time ~ log, n, where n = #words in vocab. E:EZS
— For n = 100 million = 227 ... log, n is 27 basics
— One string comparison takes ~ 1 psec oot ‘Jgrisr:f)
— So a fraction of 1 msec even for large vocabularies Ci;ne

... assuming that the vocabulary fits into memory cases

Note: 100 million words take up =~ 1GB (if 10 Bytes/word)

Wildcard search 2/2

m What if we allow the * in any place
— Example query: ba*s
— Should find banks, bases, basics, and basis
— No longer a range of words!

— Naive approach: scan all words in the range ba* and
check for each word whether it matches ba*s

— If * is in the beginning, we have to scan the whole
vocabulary, doing a string comparison for each word

— For n = 100 million that would take 100 seconds

Permuterm Index 1/3

m For each word, add all "rotations" (not "permutations")

— Before, append a $ to each word ... you will see why
— Example: for base$, these rotations are
base$, ase$b, seba, ebas, $base

— Let each permutation point to the inverted list of the
original word (the inverted lists are there only once)

— Now for the query ba*s do a prefix search for s$ba*

— Works for a smgle *in any position (because we can
always "rotate" that * to the end)

Permuterm Index 2/3

m Efficiency in time and space

— The vocabulary size increases by a factor of AVWL + 1
where AVWL = average word length, typically ~ 8

— A factor of 8 increases log, n by 3

— So no problem for the locating binary searches

— But a very large vocabulary might not fit into memory
anymore

— We would have to use a B-tree then ... out of scope for
this lecture

Permuterm Index 3/3

= How about more than one * ?
— Example query: in*ma*tik
— Simple trick: first collapse to one * as in in*tik
— Solve this query — superset of matches ... why?
Will also find intervallarithmetik
— Anyway, the number of matches will be relatively small

— So just go over them, and filter out the false positives

o ok /Qﬂwi)w\
vl

k-Gram Index 1/4 S N

m How to avoid the space blow-up of Permuterm

— Definition: k-grams of a word = all substrings of length k
— We now add a $ also at the beginning of each word
— Example: the 3-grams of $informatik$ are

$in, inf, nfo, for, orm, rma, mat, ati, tik, ik$

— For each k-gram store an inverted list of the words
(from our vocabulary) containing it

$in : inaccuracy, inexact, informatik, innovate, ...

mat : acclamation, ..., informatik, information, ...
M \/\{W'O\Q)&&QQ : /34’0"3 WM\AO{/; ,/\/\CWXY AM%/

k-Gram Index 2/4 Ot s 0T
L ADVA —
La—8— S/\AAL’\;CESET—
m How to query a k-gram index =2 S Los,
L5 ;@T,ﬂ
— Example query: in*tik Ly o © Wﬁ@gi\
bL{ B
_ Generate all k-grams from query: $in, tik, ik (k=3) N~/
o= L

— Intersect the inverted lists for these k-grams
Note for ES#5: typically more than two lists now !

— All matching words will be included ... why?

— But again, we can get a superset of resuits ... why?
we would also find indogermanistikpicknik

— But again, result set will be small and we can just go
over it and filter out the false positives

10

k-Gram Index 3/4

m Space efficiency
— # of k-grams per word is AVWL — k + 3 = AVWL on average

— In the inverted lists, we store words ids, not strings

— And have an Array<String> for mapping ids — words

— Storing all words costs n - AVWL bytes (done anway)

— Storing all inverted k-gram lists costs 4 - n - AVWL bytes

provided we use 4 bytes per word id

11

k-Gram Index 4/4

m Time efficiency

— Intersection of m inverted lists of total volume N
takes time O(N - log m)

— Time for post-filtering depends on the specificity of the
query; typically only few candidate (and final) matches

— Compare: Time for producing candidates with Permuterm
was O(log n), where n = #words

12

Error-tolerant search 1/3

m Let's consider mistakes on the side of the query

— Example query: innformaton retrievl
— Should find matches for: information retrieval
— We need an algorithm for approximate word matching:

Given a query word (e.g. retrievl), find all similar words
in a given vocabulary

— We need a measure of similarity between words !

13

Vladimir

Edit distance 1/5 Levenshtein

19595, RUSSidA

m Also known as Levenshtein distance (1965)

— Definition: for two words / strings x and y

ED(X, y) := minimal number of tra'fo's to get from x to y
— Transformations allowed are:

insert(i, ¢) : insert character c at position i

delete(i) : delete character at position i

replace(i, ¢) : replace character at position i by c
B0 ARD
BRARD
AR E RD

TBRE AD

REPLACE (2 R)
REPLACE (3 E)
REPLACE (4 ,A)

14

Edit distance 2/5

m Some notation

— The empty word is denoted by €
— The length (#characters) of x is denoted by |x|

— Substrings of x are denoted by x[i..j], where 1 <i <j < [X|
m Some simple properties

— ED(X, y) = ED(y, x)

— ED(X, €) = |X|

— ED(X, y) = abs(|x]| - |y|) abs(z)=z=207?z: -z

— ED(X, y) < ED(x[1..n-1], y[1..m-1]) + 1 n=|x|, m=]|y|

15

Edit distance 3/5

m Recursive formula

— For |x| > 0and |y| > 0, ED(x, y) is the minimum of
[1..n], y[1.m-1]) + 1

(1a)
(1b)
(1c)
(2)

ED(x
ED(x
ED(x
ED(x

[1..n-1]
[1..n-1]

[1..n-1]

r Y
Y
r Y

1.m]) +1
[1.m-1]) + 1 if x[n] # y[m]
1..m-1]) if x[n] = y[m]

— For |x| = 0 we have ED(x, y) = |y|

— For |y| = 0 we have ED(X, y) = |x|

16

Edit distance 4/5

m Proof sketch

— Consider a sequence of k = ED(x, y) tra'fo's from x to y
— Turn it into @ monotone sequence, that is:

Positions of operations never decrease, and, except for
successive deletions, strictly increase ... why possible?

— Consider the last tra'fo o, : z = y in this sequence:
If o, appends a char to z ... then ED(x, y) = (1a)
If o, removes last char of z ... then ED(x, y) = (1b)
If o, replaces last char of z ... then ED(x, y) = (1c)

If o, leaves last char of z as is ... then ED(X, y) = (2)

17

Sfﬁu C o A= \}

i i \ \
Edit distance 5/5 ook $o O (o[l 1
/ s 3 Vs _ B
AMoA Anee g G]
m Dynamic programming algorithm
— Takes time and space O(|x| - |y|) f MMOWM/C '
TN Ol &= Koonnn ®
I N LN
"~ 3%*\2&%&%63 pr oL
Rl 3 23 33 ol dn
s 4 g ~ 3 zﬁ /MNONOTONE
O&W%

o el §5'S

18

Error-tolerant search 2/3

m Approximate word matching

— Definition: Given a query word w, a vocabulary V, and a
treshold 0 ... find all words v in V with ED(w, v) < 0

— Naive algorithm: compute ED(w, v) for each word in V
— Need around 1ps / ED computation ... see Exercise 5.4 |
— That's 1 second for each 1M words in the vocabulary

— Note: from the Linux command line, you can do:

agrep -2 —w retrievl wikipedia-sentences.vocabulary.txt

The -2 means 0 = 2, the —w means whole word match

19

Error-tolerant search 2/3

m Using a Permuterm index
— Consider x and y with ED(x, y) < 0

— Intuitively: if x and y are not too short, they will have a
substring of significant length in common

— Lemma: there exist rotations x' of x and y' of y such that
x' and y' have a common prefix of size

ceil(max(|x|, |yl) / 0) - 1
o = 2

AT Cang
3 9&/(4.923 - 922

- —Q— —
L Dy 23

20

Error-tolerant search 2/3

m Using a k-gram index slide corrected: 23Nov12 00:39

— Consider x and y with ED(x, y) < 0

— Intuitively: if x and y are not too short, they will have one
or more k-grams in common

— Lemma: let x' and y' be x and y with k-1 # padded left and
right, then the number of common k-grams of x' and y' is
comm(x',y) = max(|x]|,|lyl)—-1-(@-1)-k

— Proof sketch: consider the longer string, which has
max(|x|,|y|) + k=1 k-grams (because of the padding);
then one tra'fo (insert/delete/replace) "affects" at most k
k-grams, and hence 0 tra'fos affect at most 0-k k-grams

— Example: [x] =5, |y| =4, k=3, 0 =2, commy(x,y) =1
X' = ##SILLY## k-grams: ##S #SI SIL ILL LLY LY# Y##
y' = ##BILL## k-grams: ##B #BI BIL ILL LL# L##

Error-tolerant search 2/3

Daiil Ia~~aeA
Fdul JdCCdlU

*1868 Sainte-Croix
m Jaccard distance 11944 Zirich

— Actually, a k-gram index would more naturally give all
words within a given Jaccard distance

— Definition: the Jaccard co-efficient of two sets A and B
is defined as J(A, B) = |[An B| / |A u B|

— Definition: the (k-gram) Jaccard distance of two strings x
and y is defined as J,(x, y) = J(A, B)

where A and B are the sets of k-grams of xandy (no # or $)
— But does not capture intuitive word similarity well
— Example 1: J,("weigh", "weihg") = 2/6 = 1/3 too low
— Example 2: J,("aster”, "terase") = 3/6 = 1/2 too high

22

Advanced stuff 1/2

m Generalized edit distance

— Some changes in words happen more easily than others

— Example 1: ED("weigh", "weihg") = 2
ED("weigh", "eight") = 2
— Example 2: ED("chebyshev", "tschebyscheff") = 5

ED("chebyshev", "webster") = 5
— Generalized edit distance: have individual costs for
different substring transformations, for example:
cost("ch" — "tsch") = 0.1
cost("v" = "w") = 0.1
COSt(IIXII - llull) — 1

23

Advanced stuff 2/2

m Query suggestion
— Example query: innformaton retrievl
— Answer: Did you mean "information retrieval” ?

— Simple solution: find the most frequent similar word for
each query word ... would work for the example above

— But what about: freiberger minster

— Problem: freiberger is also a correct word, but most
probably freiburger was meant here

— Ideas: check which combination of words retrieves most
hits ... or occurs most often in the query logs ... or both

24

References

m In the Raghavan/Manning/Schitze textbook
Section 3: Tolerant Retrieval, in particular
Section 3.2: Wildcard queries
Section 3.3: Spelling correction

m Relevant Wikipedia articles
http://en.wikipedia.org/wiki/N-gram

http://en.wikipedia.ora/wiki/Approximate string matchin

LR L | Nl BEE §

http://en.wikipedia.org/wiki/Levenshtein distance

http://en.wikipedia.org/wiki/Jaccard index

25

[
odndgaildd
“ZD

26

