
Information Retrieval
WS 2012 / 2013

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 6, Wednesday November 28th, 2012
(Error-tolerant prefix search, Web application)

Overview of this lecture

 Organizational

– Your experiences with ES#5 (approximate matching)

 A search engine web application

– We will build a toy web app together today

– You will learn about and see applied:

HTML, DOM, CSS, JavaScript, jQuery, jQuery UI, AJAX, JSON
/ JSONP, socket communication, …

– How to combine prefix search and error-tolerant search

– Exercise Sheet 6: Build a web app for error-tolerant prefix
completion + search as you type

It won't be hard with what I show you in the lecture today !

2

Experiences with ES#5 (approx. matching)

 Summary / excerpts last checked November 28, 16:00

– Interesting exercise / topic

– "Impressed with my own code / felt like a magician"

– To intersect or to merge: that is the question ... wrong ins-
tructions first, sorry, intersect works only for prefix search

– Lecture / slides did not make it clear how to put it all together
... sorry, was clarified later in the forum though

– Took more time than expected for many, partly because of
the intersect / merge confusion

– "I love proofs" ... yes !!!

– Part of video cut off ... sorry, new equipment, we try to fix it

– Afraid of the exam, are there old exams? ... on the Wiki
3

Results for ES#5 (approx. matching)

 Summary

– Construction of 3-gram index took around 1 second

Number of words ≈ 300K

– Average query time: a few milliseconds

– Average ED computation time: around 1 microsecond

– Average number of matches: 28

... with one error allowed for every five characters

– Note: naive algorithm (one ED computation for each of
the 300K words) would take ~ 300 milliseconds

4

Error-tolerant prefix search 1/3

 How to combine the two

– Note: when typing only part of the word, we don't want
approximate matches with the full word, but with a prefix

– Example: uniwe should match university and universe

– But ED(uniwe, university) = 6 and ED(uniwe, universe) = 4

– Solution: use the prefix edit distance

– Definition: PED(x, y) = miny' prefix of y ED(x, y')

– Examples:

PED(uniwe, university) = ED(uniwe, unive) = 1

PED(uniwe, universe) = ED(uniwe, unive) = 1

5

Error-tolerant prefix search 2/3

 How to compute the PED

– Recall the dynamic programming algorithm for
computing ED(x, y)

– On the way to the final solution, it computes ED(x', y')
for all pair of prefixes x' of x and y' of y

– In particular, the last row of the table contains ED(x, y')
for all prefixes y' of y

– So PED(x, y) is just the minimum of the last row

6

Error-tolerant prefix search 3/3

 How many k-grams in common ?

– Assume that PED(x, y) ≤ δ

– Let x' be x with k-1 # padded to the left only, same for y'

– Then the number of k-grams x' and y' have in common is

≥ |x| – k · δ

– Note: For δ = 1, this is ≥ 1 only for |x| > k

– Proof sketch: consider x, which has exactly |x| k-grams

then one tra'fo (insert/delete/replace) "affects" at most k
k-grams, and hence δ tra'fos affect at most δ·k k-grams

7

Components of a search web app

 Backend

– Your code to process and answer queries (in Java or C++)

– Additional code to listen to queries on a given port

– And to send the result in a form suitable for the frontend

 Frontend

– Code that runs on the client's browser (in JavaScript)

– Registers events, like typing a character in the search field

– Sends queries to the backend

– Visualizes results sent from backend

8

Technologies needed 1/2

 On the side of the backend

– Socket communication

Listen for requests on a given port

Parse request string

Sent back answer string

– In C++ easy with boost::asio (asio = asynchronous IO)

– In Java easy with java.net.Socket / java.net.ServerSocket

– See code examples in the SVN ... under lectures/lecture-06

9

Technologies needed 2/2

 On the frontend side (very briefly, see references for details)

– HTML: for a web page that holds the map

– DOM: the elements of the HTML page

– CSS: the layout of the elements of the HTML page

– JavaScript: code loaded and run along with the web page

– jQuery: JavaScript library with lots of useful functions

– jQuery UI: JavaScript library for all kinds of useful UI
components

– AJAX: sending queries from the client to a server and
receiving results asynchronously

– JSON/JSONP: a string containing JavaScript code

10

Search web application demo

 We will now write a complete web app together

– A page with a standard search field

– Get suggestions after each keystroke

– Send queries to the backend, receive the results
asynchronously, and then display them

– This will contain all the technological elements from the
last two slides ... which you also need for Ex. Sheet 6

11

References

 JavaScript and CSS
– http://www.w3schools.com/js/default.asp

– http://www.w3schools.com/css/default.asp

 jQuery, jQuery UI, Autocomplete
– http://jquery.com

– http://jqueryui.com

– http://jqueryui.com/autocomplete

 AJAX, JSON, JSONP, ...
– http://en.wikipedia.org/wiki/Ajax_(programming)

– http://en.wikipedia.org/wiki/JSON

– http://en.wikipedia.org/wiki/JSONP

12

13

