
Information Retrieval
WS 2012 / 2013

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 7, Wednesday December 5th, 2012
(PHP, Cross-Site Scripting, Cookies, UTF-8)

Overview of this lecture

 Organizational

– Your experiences with ES#6 (search web application)

 More web app stuff + UTF-8

– Dynamic contents with PHP: very short intro

– At one point in the last lecture it said in the JS console:
Origin http://... not allowed by Access-Control-Allow Origin
What does that mean and how can it be fixed?

– Cookies: ingredients and recipes

– UTF-8: background and specification

– Exercise Sheet 7: Extend your web app from ES#6 by
some tasty cookies + allow for corrupt UTF-8

Experiences with ES#6 (search web app)

 Summary / excerpts last checked December 5, 15:36

– Nice / awesome / fascinating exercise + see it all work together

– But many of you also had a hard time with the web stuff

– Why was www code from lecture not provided? ... It was !

– Annoying bugs ate a hole lot of time ... sleep first !

– "I feel that no-one is reading what I write here" ... I do !

– Annoying due to wrong formula in the script ... I told you

– Please send a mail to all if something major is fixed ... OK !

– C programmers sacrifice usability for useless performance gains

– Tutor overly strict with points ... I told them please not to be

– Page numbers on the left please ... impossible, sorry
3

PHP (PHP: Hypertext Preprocessor)

 A full-featured (interpreted) programming language

– Especially suited for outputting HTML pages with variable
elements (e.g. depending on URL parameters)

<!DOCTYPE html>
<html><body><p>
<?php for ($i = 1; i < $GET_["n"]; i++) print "$i, "; ?>
</p></body></html>

– Syntax-wise it's a mixture of Perl and C and C++

– Quite a "dirty" language: no variable types, weak object-
orientation and unit testing (like in Perl), inconsistencies, ...

– Not recommended for large / complex projects !

– Still most popular language for tasks like the above though

4

Same-origin policy 1/2

 When communicating with a server:

– Domain of client and server URL must be the same, e.g.

Web page: http://stromboli.uni-freiburg.de/demo.html

Server script: http://stromboli.uni-freiburg.de/demo.php?...

– Javascript can be loaded from arbitrary locations though, e.g.

<script src="http://code.jquery.com/jquery-1.8.3.js"></script>

– This can be used to circumvent the same-origin policy:

script = document.createElement("script");
script.src = "http://etna.uni-freiburg.de/demo.php?...";
document.body.appendChild(script)

This works! And will execute the JS output by demo.php?...

5

Same-origin policy 2/2

 Problem: script loading and exec. is asynchronous

– In our example: we don't know when the demo.php?...
has loaded and the produced JS has finished execution

– Idea: let demo.php?... produce JavaScript that calls a
function, with the result as argument

callback([2, 3, 5, 7, 9, 11, 13, 17, 19])

– Now all we need is a function callback in our original
JavaScript, and process the result there

– This is exactly the mechanism behind JSONP, and the
kind of code that gets executed in jQuery when writing

$.ajax({url: "http://...", dataType: "jsonp"})

6

Cross-site scripting (XSS)

 Most frequent security vulnerability of web apps

– Principle: inject JavaScript into web page

Let's look at a simple example in our example code

– Example 1: send someone a mail with a link

...index.php?user=guest<script>alert("Got you!")</script>

or, more sophisticated, with parameters ASCII encoded

...index.php?%75%73%65%72%3d%67%75%65%73...

– Example 2: post to forum with some script in it

I have a question on Exercise Sheet 7.
<script>... JS code to send me user info by mail ...</script>

Note: The <script>...</script> will not show on the website,
but code will be executed by any client viewing the post7

Cookies 1/3

 Specification
– 1 cup of butter

– 1 cup of white sugar

– 1 cup of brown sugar

– 2 eggs

– 2 TSPs vanilla extract

– 3 cups of white flour

– 1 TSP baking soda

– 2 cups of chocolate

– 1 cup of walnuts

 Implementation advice
– Preheat oven to 450°K

– Cream butter + sugar

– Beat in eggs one at a time

– Add vanilla + baking soda

– Stir in flour, chocolate, nuts

– Drop by large spoonfuls
onto ungreased pans

– Bake for ≈ 600K msecs

– Eat in O(1) time

8

Cookies 2/3

 Alternative use in web pages

– A string stored along with the web page, but on the
client's computer ... can be different for different clients !

– String contains an (almost) arbitrary sequence of key-value
pairs, separated by semi-colons, for example

username=cookie_monster; preference=kekse

– Read and set in JavaScript via document.cookie

var cookies = document.cookie.split(";");
for (var i = 0; i < cookies.length; i++) {
var args = cookies.replace(/\s/g,"").split("=");
if (args[0] == "username") alert("Welcome " + args[1]);

}

9

Cookies 3/3

 Types of cookies

– The first type is called chocolate chip cookie

Accidentally developed by Ruth Wakefield in 1930

– The second type is called session cookie

This lasts as long your browser is open

– If you specify an expiry date you get a persistent cookie

username=cookie_monster;
expires=Wed, 05 Dec 2012, 17:45:00 GMT

– Cookies from other domains are called third-party cookies

Check Resources Cookies in your JavaScript Console

10

UTF-8 1/4

 What is UTF and why do we need it?

– UTF = Unicode Transformation Format

– A standard for encoding all the characters of the world

– Extends the long-standing ASCII / ISO-8859-1

(which can only differentiate between 256 characters)

 How to encode so many different characters?

– 1 byte is obviously not enough

– 2 bytes are also not enough (≤ 65,536 different characters)

– So take 4 bytes per character this is what UTF-32 does

– But the size of strings now quadruples compared to ASCII !

– And so does the time to process these strings ...
11

UTF-8 2/4

 UTF-8 is a variable-byte encoding that realizes all of
the following

– ASCII compatible = a string of characters with ASCII
codes < 128 is the same in ASCII as in UTF-8

– Frequent special characters (like ä, á, å) need two bytes,
only very rare characters (old scripts) need four bytes

the € symbol needs three bytes though: 226 130 172

– Easy to decode / convert to UTF-32

– In particular: no need to decode from left to right, can
decode starting from anywhere within a string

12

UTF-8 3/4

 Here is the encoding Unicode UTF-8

– Case 1: Unicode in [0, 127] = xxxxxxx (7 bits)

 UTF-8 code is 0xxxxxxx (1 byte)

– Case 2: Unicode in [128, 2047] = yyyxxxxxxxx (11 bits)

 UTF-8 code is 110yyyxx 10xxxxxx (2 bytes)

– Case 3: Unicode in [2048, 65535] = yyyyyyyyxxxxxxxx (16 bits)

 UTF-8 code is 1110yyyy 10yyyyxx 10xxxxxx (3 bytes)

– Case 4: Unicode in [65536, 221 - 1] = zzzzzyyyyyyyyxxxxxxxx (21)

 UTF-8 code is 11110zzz 10zzyyyy 10yyyyxx 10xxxxxx

– Could continue with 5-byte and 6-byte sequences,
but UTF-8 stops here, due to RFC 3629

13

UTF-8 4/4

 Some observations

– In a multi-byte UTF-8 character all bytes are ≥ 128, and
vice versa such bytes occur only for multi-byte characters

– The number of leading 1s in the first byte of a multi-byte
character encodes the length of the sequence

– The concatenation of the remaining bits (except for the 0
that follows the leading 1s) are called the code point

– For every Unicode in [0, 221 - 1] there is exactly one UTF-8
multi-byte sequence

– But vice versa not all multi-byte sequences are valid UTF-8

– For example 1100000x 10xxxxxx is not valid

14

References

 PHP
– http://en.wikipedia.org/wiki/PHP

– http://php.net/manual/en/index.php

 Cross-Site Scripting (XSS)
– http://en.wikipedia.org/wiki/Cross-site_scripting

 Cookies
– http://en.wikipedia.org/wiki/HTTP_cookie

– http://www.w3schools.com/js/js_cookies.asp

 UTF-8
– http://en.wikipedia.org/wiki/UTF-8

– http://www.utf8-chartable.de
15

16

