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Overview of this lecture

 Organizational

– Your experiences with ES#7 (cookies, UTF-8)

– Date for the exam !

 Synonyms

– Automatic approach: latent semantic indexing (LSI)

– Based on singular value decomposition (SVD) of the 
term-document matrix

– Effectively compute pairs of related terms

– Exercise Sheet 8: create term-document matrix from 
our example collection, and get related terms via LSI



Experiences with ES#7 (cookies, UTF-8)

 Summary / excerpts        last checked December 12, 15:54

– Confusion in Java, some file readers autocorrect the UTF-8

– Some problems with Cookies and file://...

– Subscribe to the Announcements subforum, then you will get 
an email when something is posted there

Actually: best to subscribe to all subforums (one per ES)

– "UTF-8 is a great topic ... lost my fear of text encoding issues"

– Web stuff nice to look at, but not so nice to actually build it

– Master solution for the chocolate chip cookies please

– Last sheets took much longer than 8 hours, please reduce

I will do my best ... but please don't forget that most of the
overtime is due to lack of programming skills / experience
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Results for ES#6+7 (web apps)

 Let's look at some of the web apps

– Suggestions also for multiple keywords

– Result snippets

– Nice layout

– Postponed to next lecture …
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 Problem: another source of word variation

– We have already seen prefix search

Type uni ... find university

– And error-tolerant search

Type uniwercity ... find university

– But sometimes there are simply totally different words 
expressing more or less the same thing

Type university ... find college

Type bringdienst ... find lieferservice

Type cookie ... find biscuit
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Synonyms   2/4

 Solution 1:  Maintain a thesaurus

– Hand-maintain a thesaurus of synonyms

university: uni, academy, college, ...

bringdienst:  lieferservice, heimservice, pizzaservice, ...

cookie:  biscuit, confection, wafer, ...

– Problem 1: laborious, yet notoriously out of date

– Problem 2: it depends on the context, which 
synonyms are appropriate

university award ≠ academy award

http cookie ≠ http biscuit

– Anyway, that's not the topic of today's lecture ...
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Synonyms   3/4

 Solution 2:  Track user behaviour

– Investigate not just individual searches but whole 
search sessions (tracked using, guess what, cookies):

The initial query

The subsequent queries

What the user eventually clicked on

– Interesting, but not the topic of today's lecture either ...
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 Solution 3:  Automatic methods

– The text itself also tells us which words are related

– For example: pizza delivery webpages

they have similar contents (and style)

some use the word Bringdienst

some use the word Lieferservice

– Latent Semantic Indexing (LSI) tries to find such 
relations, based on similar context, automatically

– This is the topic of today's lecture !
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 An example term-document matrix
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 Assume our matrix is a product of these two
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 This is a matrix with column rank 2

– column rank = all  columns can be written as a linear 
combination of that many "base" columns, but not less

– row rank = defined analogously

– Theorem:  column rank = row rank



Latent Semantic Indexing   3/9

 If we change only few entries in that matrix

– we obtain a full-rank matrix again ... check in Octave

– Let us assume that the matrix came from a rank-2
matrix by changing only a few entries ... which it did

– Then it's not hard to guess that rank-2 matrix here

– LSI does this recovering automatically
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 Definition of Latent Semantic Indexing (LSI)

– Given an m x n term-document matrix A

– And a rank k, typically << min(m, n)

Note that the maximal rank is min(m, n) ... why?

– Then LSI computes argminAk, rank(Ak) = k ǁ A – Ak ǁ

that is, the rank-k matrix Ak with minimal distance to A

– Here ǁ . ǁ is the Frobenius norm:

For a matrix A = [aij] defined as ǁ A ǁ := sqrt( ∑aij
2 )

– How to compute this miraculous matrix ?
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 Eigenvector decomposition (EVD)
– For an m x m matrix A, and an m x 1 vector x

we say that x is an eigenvector of A if A · x = λ · x

λ is called an Eigenvalue of A

– If A is symmetric, A has m linear independent 
eigenvectors, which hence form a basis of the Rm

– Then A can be written as  U · D · UT

where D is diagonal, containing the Eigenvalues

and U is unitarian, that is, U · UT = UT · U = I

– This is called the Eigenvector decomposition of A

sometimes also called Schur decomposition
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 Singular Value Decomposition (SVD)

– Let A be an arbitrary rectangular m x n matrix A

– Then A can be written as  U · ∑ · VT

where U is m x k,  ∑ is k x k,  and V is n x k   k = rank(A)

and UT · U = I and VT · V = I (but not vice versa !)

and ∑ is a diagonal matrix with the so-called singular     
values on its diagonal

– Let's look at an example in Octave ...
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 How to compute the SVD

– Easy to compute from the EVD ... see below

– In pratice, use the more direct Lanczos method

– Which has complexity O(k · nnz), where k is the rank 
and nnz is the number of non-zero values in the matrix

– Note that for term-document matrices  nnz << n · m
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 With the SVD, rank-k approximation becomes easy

– For a given m x n matrix A, compute SVD  A = U · ∑ · VT 

– Let Uk = the first k columns of U

– Let Σk = the upper k x k part of ∑

– Let Vk = the first k columns of V

– Then  AA = Uk · Σk · Vk
T is the desired approximation

that is, that rank-k matrix Ak which minimizes ǁ A – Ak ǁ

– Let's look at our example in Octave ...
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 LSI can be viewed as document expansion

– LSI "replaces" A = U · Σ · VT by AA = Uk · Σk · Vk
T

– Observe: Uk · Uk
T · U = [Uk 0]     ... let's check in Octave

– Hence AA = T · A, where T = Uk · Uk
T (m x m matrix)

– Exercise Sheet 9:  on our Wikipedia collection, see which
term pairs get a high value in T (for various values of k)
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Octave   1/5

 Script language for numerical computation

– GNU's open source version of the proprietary Matlab

– Makes numerical computations easy, which would 
otherwise be a pain to use in Java / C++

In particular: comp. involving matrices and vectors

– Also comes with an interactive shell ... see next slilde

– Language has C-like commands (printf, fopen, ...)

– Still it's a script language, and correspondingly slow

– The built-in functions (like svd) are fast though

– Download and Doc.:  http://www.gnu.org/software/octave
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Octave   2/5

 Use the Octave shell pretty much like a Bash shell

– Arrow  :  previous command

– Arrow  :  next command 

– CTRL+R :  search in history

– CTRL+A :  go to beginning of line

– CTRL+E :  go to end of line

– CTRL+K :  delete from cursor position to end of line
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Octave   3/5

 Here are some commands useful for ES#8

– Create a vector or matrix

A = [1 1 1 0 0; 0 0 1 2 0; 1 0 0 1 1];   // 3 x 5 matrix.

– Compute part of SVD pertaining to k top singular values

[U, S, V] = svd(A); // For dense matrices, k = rank(A)
[U, S, V] = svds(A, k); // For sparse matrices, must spec. k

– Get a portion of a matrix or vector

UU = U(:, 1:k);   // First k columns of U.

– Multiply a matrix with its transpose

T = UU * UU';

– Note: if you omit the semicolon or write a comma, the result 
will be printed on the screen21
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 Sparse matrices

– Our term-document matrices are very sparse, that is

nnz << #rows · #cols  where nnz = #non-zero values

– Therefore write in following format, one entry per line

<row-index> <column-index> <value>

– Read such a sparse matrix into Octave with

tmp = load("A.matrix"));
A = spconvert(tmp);
clear tmp;
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 Vectors of strings

– Read file with one string per line into Octave like this

A = {};
file = fopen("words.txt");
i = 1;
while true

line = fgetl(file);
if line == -1, break; endif;
A(1, i) = line;
i++;

endwhile

– With Octave version ≥ 3.4, easier with textread ... 
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