
Name: Matrikelnummer:

Chair for Algorithms

and Data Structures

Prof. Dr. Hannah Bast

Allthetu Tors

Information Retrieval
WS 2021/2022

http://ad-wiki.informatik.uni-freiburg.de/teaching

Exam
Friday, 4th of March 2022, 14:00 - 16:15 h, HS 026

General instructions:

There are five tasks, of which you can select four tasks of your choice. Each task is worth 25 points.

If you do all five tasks, we will only count the best four. That is, you can reach a maximum number

of 100 points.

You need 50 points to pass the exam. You have 2 hours 15 minutes of time overall. If you do four

tasks, this is 30 minutes per task on average plus 15 minutes buffer time.

You are allowed to use one DIN A4 sheet of paper with any contents of your choice related to the

lectures and the exercises. You can write on the front and on the back and it can be hand-written

or a printout, but it must be from yourself, not from someone else. You are not allowed to use

any computing devices or mobile phones, in particular nothing with which you can communicate

with others or connect to the Internet or parallel universes.

You may write down your solutions in either English or German.

Please write your solutions on this hand-out, below the description of the tasks! You can also use

the back side of the pages. Please write your name and Matrikelnummer on the top of this cover

sheet in the framed box. If you need additional pages, please write your name and Matrikelnummer

on each of them, too.

Important:

For the programming tasks: You can use Python, Java, or C++. None of your functions must be

longer than TWENTY lines.

For all other tasks: Do not simply write down the final result. It should also be clear how you

derived it.

Good luck!

This is the version of the exam with solution sketches. Do not
distribute, it’s for your personal use only. Don’t use it when you do
old exams for training, it’s the worst way to learn. Use it only for
checking your solutions, after you tried to solve the tasks yourself.

http://ad-wiki.informatik.uni-freiburg.de/teaching

Task 1 (Ranking, Evaluation and List Intersection, 25 points)

1.1 (5 points) Consider the following collection of four documents D1, ..., D4. Write down the

term-document matrix for this collection with tf.idf scores.

D1: bla bla bla

D2: bli blu blo

D3: bla blo

D4: blu blu

The idf for bli is 2, and for all other words 1. Hence the tf.idf matrix:
bla bli blu blo

D1 3 0 0 0

D2 0 2 1 1

D3 1 0 0 1

D4 0 0 2 0

1.2 (5 points) Consider a query “bla bli”. Compute the dot-product similarities of the four

documents above (using your tf.idf scores from 1.1) to that query.

With A the term-document matrix from above and q = (1, 1, 0, 0), q · A = (3, 2, 1, 0).

1.3 (5 points) Rank the four documents by the scores from 1.2 (highest score first). Assume that

documents D1 and D3 are relevant. Compute the following metrics: P@2, P@R, AP (average

precision).

The ranking is (D1, D2, D3, D4). P@2 = P@R = 0.5, AP = (1 + 2/3)/2 = 5/6.

1.4 (10 points) Given an array A with integer values in ascending order, we want to locate element

x in A with galloping search (an exponential search followed by a binary search). Prove that, if

x is contained in A, the algorithm needs O(log d) time, where d is the position of x in A.

1. Let j1, ..., jk be the search positions in the exponential search, where ji = 2i − 1.

2. Since jk−1 < d, we have 2k−1 − 1 < d and hence 2k−1 ≤ d and k ≤ log2 d+ 1.

3. It follows that jk ≤ 2log2 d+1 − 1 < 2d. The binary search halves the search interval in every

step, so we have to do at most O(log(2d)) = O(log 2 + log d) = O(log d) steps.

5. Putting both parts together, the algorithm needs O(log d) time.

Task 2 (Zipf’s law, Compression, and UTF-8, 25 points)

2.1 (8 points) Zipf’s law states the frequency F of the n-th most frequent term in a text collection

as a function of n. State the law and prove that F shows as a straight line with negative slope in

a log-log plot.

1. Zipf’s law states that F (n) = c/nα, for some (positive) constants c and α.

2. In a normal x-y plot, x = n and y = c/xα.

3. Taking the log on both sides, we get log y = −α · log x+ log c.

4. That is, with log x on the x-axis and log y on the y-axis, we see a line with negative slope.

2.2 (7 points) Write the following numbers in Elias-Delta encoding: 1, 7, 16. For each code,

underline the part that comes from the Elias-Gamma encoding.

1 = 1

7 = 01111

16 = 001010000

2.3 (5 points) Consider the following encoding: a = 000, b = 001, c = 01, d = 10, e = 11. Find

a distribution over {a, b, c, d, e} such that this encoding is entropy-optimal, with a proof that it

indeed is.

1. For perfect entropy-optimality, Li = log2 1/pi, where Li is the length of the code for symbol i.

2. We here have L1 = 3, L2 = 3, L3 = 2, L4 = 2, L5 = 2.

3. We thus get perfect entropy-optimality with p1 = 1/8, p2 = 1/8, p3 = 1/4, p4 = 1/4, p5 = 1/4.

2.4 (5 points) Give an example of a two-byte UTF-8 sequence that is a valid encoding of a single

Unicode character. Give an example of a two-byte UTF-8 sequence that is an invalid encoding of

a single Unicode character. With explanation! Specify each sequence as a bit sequence and as a

sequence of four hexadecimal digits.

1. Bits: 1100 1111 1011 1111. Hex: CFBF . Valid because codepoint doe not fit into 7 bits.

2. Bits: 1100 0001 1011 1111. Hex: C1BF . Invalid because codepoint fits into 7 bits.

Task 3 (SPARQL and fuzzy prefix search, 25 points)

3.1 (5 points) Assume we have a knowledge base which includes relations for nationality (relating

persons to countries), place of birth (relating persons to their place of birth), language spoken

(relating countries to languages), olympic discipline (relating persons to their olympic disciplines).

Express the query Olympians from German-speaking countries with their place of birth and their

olympic discipline in SPARQL.

SELECT ?p ?b ?d WHERE {

?p <place_of_birth> ?b .

?p <nationality> ?c .

?c <language_spoken> <German> .

?p <olympic_discipline> ?d .

}

3.2 (10 points) Write a function ped(x, y) that computes the PED between two strings x and y

in O(|x| · |y|) time.

def ped(x, y):

matrix = [[0 for _ in range(len(y)+1)] for _ in range(len(x)+1)]

for row in range(len(x)+1):

for col in range(len(y)+1):

if row == 0:

matrix[row][col] = col

elif col == 0:

matrix[row][col] = row

else:

s = 0 if x[row - 1] == y[col - 1] else 1

rep_costs = matrix[row - 1][col - 1] + s

add_costs = matrix[row][col - 1] + 1

del_costs = matrix[row - 1][col] + 1

matrix[row][col] = min(rep_costs, add_costs, del_costs)

return min(matrix[len(x)])

3.3 (10 points) Let x and y be non-empty strings, and let δ ∈ N such that |x| + δ < |y| and

PED(x, y) ≤ δ. Proof that under these conditions PED(x, y) = PED(x, y′), where y′ is the prefix

of length |x|+ δ of y.

1. ED(x, y[1. . . |x|+ δ + i]) > δ for all i ∈ {1. . . |y| − (|x|+ δ)} since at least δ+ i characters have

to be deleted to transform x into y.

2. Since PED(x, y) ≤ δ there is some j ∈ {1. . . |x|+ δ} such that ED(x, y[1. . . j]) ≤ δ.

3. Since PED is defined as the minimal ED(x, y′) for all prefixes y′ of y and since y[1 . . . j] is a

prefix of both y[1 . . . |x|+ δ] and y it follows that PED(x, y) = PED(x, y′), where y′ is the prefix

of length |x|+ δ of y.

Task 4 (Web Apps and Naive Bayes, 25 Punkte)

4.1 (5 Points) Write a valid HTML page with heading Hardle, three text input fields with ids f1,

f2, f3, and a button labeled Guess. The HTML should include a JavaScript file script.js, to be

written in Task 4.2.

<html>

<head><script src="script.js"></head>

<body><h1>Hardle</h1>

<input type="text" id="#f1"/><input type="text" id="#f2"/>

<input type="text" id="#f3"/><button>Guess</button></body>

</html>

4.2 (10 Points) Write script.js with the following functionality. Whenever the user presses the

Guess button, send the content of input field f1 to a backend at the relative URL /backend.

The backend returns a JSON object with 3 integer attributes correct positions, correct letters

and tries left. Show the value of correct positions and correct letters in input fields f2 and f3. If

correct positions matches the length of the content of field f1, show You win in field f1. If field

tries left is 0, show You lose. You may use jQuery.

$("button").click(function() {

$.get("/backend?q=" + $("#f1").val(), function(res) {

if (res["correct_positions"] == $("#f1").text().length) $("#f1").text("You win");

else if (res["tries_left"] == 0) $("#f1").text("You lose");

else {

$("#f2").text(res["correct_positions"]);

$("#f3").text(res["correct_letters"]);

}}});

4.3 (10 Points) Consider each number from 0..15 as a document with four words, where the words

are 0 or 1 and the ith word stands for the ith bit in the binary representation of the number. For

example, document 1100 is the number 3. Each document is labeled with class A if the number

is even, and with class B if the number is odd. Train a Naive Bayes classifier on these 16 labeled

documents. Determine all probabilities pc and pwc (and write down the intermediate steps). Show

that using these probabilities, Naive Bayes predicts class A for the number 1.

1. Of the 16 documents/numbers, 8 are even and 8 are odd, hence pA = pB = 1/2.

2. All documents have the same length, hence nA = nB = 8 · 4 = 32.

3. For A, the first bit is always 0 and of the other bits half are 0 and half are 1.

4. So n0A = 8 + 12 = 20 and n1A = 12, and similarly, n0B = 12 and n1B = 20.

5. Therefore p0A = p1B = 20/32 = 5/8 and p1A = p0B = 12/32 = 3/8.

6. Pr(A|1000)/Pr(B|1000) = p1A · p30A/(p1B · p30B) = 52/32 > 1, so 1 is classified as A.

Task 5 (Latent Semantic Indexing and Linear Classifiers, 25 points)

5.1 (10 points) Write a function top(q, U, S, V, k) that returns the index of the top-ranked

document for a given query vector q, the numpy matrices U , S, V from the singular value decom-

position, and the dimension k of the approximation. Use the function transpose for transposition

and dot for matrix-matrix or matrix-vector products. In your code, indicate (using a different

color) the dimensions of the vectors and matrices and make sure that they match.

1. def top(q, U, S, V, k):

2. Uk = U[:, 0:k]

3. Sk = S[0:k, 0:k]

4. Vk = V[0:k, :]

5. scores = q.transpose().dot(Uk).dot(Sk).dot(Vk)

6. return numpy.argmax(scores)

5.2 (5 points) Let H = {x : 2 · x1 − 2 · x2 + x3 = 7} be a 2D plane in 3D space. Compute the

distance of the point x = (1, 2, 3) to H. If you know the formula for the distance computation,

you can just use it. Otherwise, derive the formula by writing x as the sum of a point on H and a

multiple of the unit normal vector of H; the multiple is then the distance.

1. Let w = (2,−2, 1) denote the normal vector of H. It’s length is |w| =
√

4 + 4 + 1 = 3.

2. The distance from x to H is then |w • x− 5|/|w| = |2− 4 + 3− 7|/3 = 2.

5.3 (10 points) Let σ(t) = 1/(1 + e−t) be the sigmoid function. Prove that σ′(t) = σ(t) · σ(−t).

1. By the chain rule, σ′(t) = −1/(1 + e−t)2 · (−e−t).
2. This can be equivalently written as 1/(1 + e−t) · e−t/(1 + e−t).

3. The first factor is just σ(t) again.

4. Multiplying both numerator and denominater in the second factor by et, we obtain 1/(1 + et).

5. The second factor is thus σ(−t), and so we get σ′(t) = σ(t) · σ(−t).

