
Name: Matrikelnummer:

Chair for Algorithms

and Data Structures

Prof. Dr. Hannah Bast

Natalie Prange

Information Retrieval
WS 2022/2023

http://ad-wiki.informatik.uni-freiburg.de/teaching

Exam
Tuesday, 28th of February 2023, 11:00 - 13:15 h, in building 101 SR 00-010/14, SR 01-009/13 and SR 02-016/18

General instructions: There are five tasks. Each task is worth 20 points, that is, you can reach

a maximum number of 100 points. You need 50 points to pass the exam.

You have 2 hours 15 minutes of time overall. This is 20 minutes per task plus 35 minutes buffer

time.

You are allowed to use one DIN A4 sheet of paper with any contents of your choice related to the

lectures and the exercises. You can write on the front and on the back and it can be handwritten

or a printout, but it must be from yourself, not from someone else. You are not allowed to use

any computing devices or mobile phones, in particular nothing with which you can communicate

with others or connect to the Internet or parallel universes.

You may write down your solutions in either English or German.

Please write your solutions on this handout, below the description of the tasks! You can also use

the back side of the pages. Please write your name and Matrikelnummer on the top of this cover

sheet in the framed box. If you need additional pages, please write your name and Matrikelnummer

on each of them, too.

Important:

For the programming tasks you should use Python. None of your functions must be longer than

fifteen lines.

For all other tasks: Do not simply write down the final result. It should also be clear how you

derived it.

Good luck!

This is the version of the exam with solution sketches. Do not
distribute, it’s for your personal use only. Don’t use it when you do
old exams for training, it’s the worst way to learn. Use it only for
checking your solutions, after you tried to solve the tasks yourself.

http://ad-wiki.informatik.uni-freiburg.de/teaching

Task 1 (Exponential Search, Elias-Gamma, Lagrangian multipliers, 20 points)

1.1 (5 points) Implement a function exponential search(A, x), which takes an array A of integers

sorted in ascending order and an integer x. You can assume that x is contained in A. Let j be

the smallest index for which A[j] = x. The function should compute an index i with j ≤ i ≤ 2j

and the function should run in O(log(1 + j)) time.

def exponential_search(A, x):

i = 0

while A[i] < x:

i = min(max(2 * i, 1), len(A) - 1)

return i

1.2 (5 points) Write down the Elias-Gamma codes for x = 3, 4, 7, 8, 15, 16 with the leading zeroes

underlined. Then write down the code length (in number of bits) for each of these numbers. Then

write down the general formula for the code length for an abritrary number x ∈ N and briefly

explain why it’s correct.

1. The Elias-Gamma codes are as follows, with the leading zeroes underlined:

3 = 011, 4 = 00100, 7 = 00111, 8 = 0001000, 15 = 0001111, 16 = 000010000

2. The code lengths in bits for these numbers are: 3, 5, 5, 7, 7, 9.

3. The general formula for the code length for number x is 2 · blog2 xc+ 1

4. It’s blog2 xc for the leading zeroes and blog2 xc+ 1 for the binary representation of x

1.3 (10 points) Let p1, . . . , pn be a probability distribution over n symbols. Determine the proba-

bility distribution for which the entropy is maximized, using the method of Langrange multipliers.

You can assume without proof that the assumptions for applying the method are satisfied and that

the point where all partial derivatives of the Lagrangian function are zero is a global maximum.

1. The entropy is defined as H = −
∑n

i=1 pi · log2 pi

2. We want to maximize H under the constraint that
∑n

i=1 pi = 1

3. The corresponding Lagrangian is L = −
∑n

i=1 pi · log2 pi + λ · (
∑n

i=1 pi − 1)

4. The partial derivatives with respect to a pi is ∂L/∂pi = − log2 pi − 1/ ln 2 + λ

5. These n partial derivatives are all zero if and only if the pi are all equal

6. The partial derivative with respect to λ is ∂L/∂λ =
∑n

i=1 pi − 1

7. So all partial derivatives are zero if and only if pi = 1/n for all i.

Task 2 (Q-Grams and Edit Distance, 20 points)

2.1 (5 points) Write down the edit distance between the strings x = alfa and y = alpha and the

sequence of operations needed to get from x to y (you don’t have to write down the table). Then

pad the words with dollar signs on both ends, as appropriate for a 3-gram index, and write down

the set of 3-grams that the two padded strings have in common.

1. The edit distance is 2.

2. A possible sequence of operation is: replace f by p, then insert the missing h.

3. The set of common q-grams is {$$a, $al, a$$}.

2.2 (5 points) Calculate the minimal possible edit distance between two strings of length 5 that

have three 3-grams in common when using padding on both sides. Write down the intermediate

steps for the calculation.

1. Let x and y denote the two strings without padding, and x′ and y′ the versions with padding.

2. Then ED(x, y) = ED(x′, y′) and the number of 3-grams of x′ and y′ is |Q3(x
′)| = |Q3(y

′)| = 7.

2. From the lecture we know that |Q3(x
′) ∩Q3(y

′)| ≥ max{|Q3(x
′)|, |Q3(y

′)|} − 3 · ED(x, y).

3. With |Q3(x
′) ∩Q3(y

′)| = 3 and max{|Q3(x
′)|, |Q3(y

′)|}, we have 3 ≥ 7− 3 · ED(x, y).

4. The smallest edit distance, for which is inequality is not violated is ED(x, y) = 2.

2.3 (10 points) The general algorithm for computing the edit distance between two strings of

length n and m runs in O(n ·m). Write a function one delete(x, y) that runs in time O(m + n)

and returns True if the string x can be transformed into the string y with exactly one delete

operation, and False otherwise.

def one_delete(x, y):

if len(x) 1 != len(y) + 1:

return False

numDel = 0

for i in range(len(y)):

if x[i + numDel] != y[i]:

if numDel >= 1:

return False

numDel += 1

return numDel == 1

Task 3 (Ranking and Linear Classifiers, 20 points)

3.1 (8 points) You are given the following term-document matrix (3 terms, 5 documents):

A =

 1 2 0 1 5

4 1 0 2 3

1 1 2 1 0


State a query q ∈ N3 such that qTA returns the following document ranking in descending order

(ties will be decided in favor of lower document numbers): 1, 3, 4, 2, 5. Which documents should

be relevant for q such that the ranking gets a P@R score of 0.5 and a P@4 score of 0.25? Calculate

the average precision of your solution.

1. The query qT = (0, 1, 3) produces the scores (7, 4, 6, 5, 3) and hence the desired ranking.

2. If documents 3 and 5 are relevant, we have P@R = P@2 = 0.5 and P@4 = 0.25.

3. The average precision then is (P@2 + P@5)/2 = (0.5 + 0.4)/2 = 0.45.

3.2 (5 points) Let H = {x : w • x = b} be a hyperplane in Rd with w ∈ Rd, w 6= 0 and b ∈ R. For

which b does H contain the origin (with proof)? Now assume that d = 4, w = (1
2
, 1
2
, 1
2
, 1
2
), and

b = 0. Compute the distance of the point p = (1, 1, 1, 1) to H.

1. The origin 0 is contained in H if and only if w • 0 = b.

2. When w is not all zero, this can only happen if b = 0.

3. The distance of a point p to H can be computed via (w • p− b)/|w|.
4. For the given w, we have |w| = 1, and so the distance is w • p− b = 2.

3.3 (7 points) The F1 score of the predictions for a class is defined as 2/(1/P + 1/R), where P

is the precision and R is the recall. Prove that F1 = 1 if and only if P = 1 and R = 1. Draw four

two-dimensional points, each with a label from one of two classes, such that no linear classifier

can achieve F1 = 1 for both classes. Briefly explain why your points have this property.

1. If either P < 1 or R < 1, we have 1/P + 1/R > 2 and hence F1 < 1.

2. Therefore F1 = 1 can only be achieved when P = R = 1.

3. To achieve F1 = 1 for both classes, all points must be classified correctly. Here are two examples

of four points in R2 with labels, such that no hyperplane (which in R2 is a line) exists, which

separates the labels:

D1 =


1 1 0

2 2 0

2 1 1

1 2 1


x1

x2

0

0

1

1

D2 =


1 1 0

2 1 0
3
2

2 0
3
2

4
3

1


x1

x2

0 0

0

1

Task 4 (Web Apps and Naive Bayes, 20 points)

4.1 (10 points) Write a function predict(doc, wordIds, pwc, pc) that expects a document (as an

array of strings), the word IDs (as a map where wordIds[<word>] gives the ID), the pwc learned

during training of Naive Bayes (as an array of k arrays, one for each of the k classes, and all

entries are non-zero) and the pc (as a one-dimensional array). The function should return the

most likely class and its probability. Do not use smoothing. You can ignore rounding problems.

def predict(doc, wordIds, pwc, pc):

c_best, p_best = -1, -1

for c in range(0, len(pc)):

p = pc[c]

for w in doc:

wid = wordIds[w]

p = p * pwc[c][wid]

if p > p_best:

c_best, p_best = c, p

return c_best, p_best

4.2 (5 points) Write an HTML page with heading Enter Query, an input field, a paragraph, and a

button labeled Predict. The input field and the paragraph should have an ID. The HTML should

include a JavaScript file script.js, to be written for Task 4.3.

<html>

<body><h1>Enter Query</h1>

<input type="text" id="query"/><p id="result"></p>

<button>Predict</button>

<script src="script.js"></script></body>

</html>

4.3 (5 points) Write script.js with the following functionality: If the user presses the button, send

the content of the input field to a server using a GET request to a URL of your choice. Assume

that the backend implements the method from Task 4.1 and returns a single JSON object with

fields class and probability. Replace the content of the paragraph with the predicted class and its

probability, separated by a space.

document.querySelector("button").onclick = async function() {

let q = document.querySelector("#query").value;

let ob = await fetch("/backend?q=" + q).then(res => res.json());

document.querySelector("#result").innerHTML = ob.class + " " + ob.probability;

};

Task 5 (Latent Semantic Indexing and SPARQL, 20 points)

5.1 (10 points) Write a function top(q, A, U, k) that returns the index of the top-ranked document

using the document expansion method (the third variant discussed in the lecture) and takes the

following parameters, each as a numpy.array : the query vector q (as one column), the original

term-document matrix A, the U from the SVD of A, and the dimension k of the approximation.

Use the function transpose for transposition and dot for a matrix-matrix or matrix-vector product.

def top(q, A, U, k):

Uk = U[:, :k]

Tk = Uk.dot(Uk.transpose())

scores = q.transpose().dot(Tk).dot(A)

return scores.argmax()

5.2 (5 points) Let A be an m× n matrix with rank r, and let A = U · S · V be the singular value

decomposition, where U is an m × r column-orthonormal matrix, S is a diagonal r × r matrix,

and V is an r × n row-orthonormal matrix. Prove that V = S−1 · UT · A.

U · S · V = A

⇒ UT · U · S · V = UT · A UT · U = Ir

⇒ S · V = UT · A
⇒ S−1 · S · V = S−1 · UT · A S−1 · S = Ir

⇒ V = S−1 · UT · A

Remark concerning S−1: The entries s1, . . . , sr in the diagonal matrix S are all non-zero. Then

the inverse S−1 exists and is also a diagonal matrix, with values 1/s1, . . . , 1/sr.

5.3 (5 points) Assume that we have a knowledge graph which includes relations for occupation

(relating persons to their occupation), place of birth (relating persons to their place of birth,

which you can assume to be unique) and educated at (relating persons to the university they

studied at). Express the following question as a SPARQL query: YouTubers who studied at the

same university as MrBeast, each with their place of birth.

SELECT ?p ?b WHERE {

<MrBeast> <educated_at> ?u .

?p <educated_at> ?u .

?p <occupation> <YouTuber> .

?p <place_of_birth> ?b .

}

