
Name: Matriculation number:
↑ Please write clearly and use capitalized BLOCK LETTERS ↑

Chair of Algorithms

and Data Structures

Prof. Dr. Hannah Bast

Sebastian Walter

Information Retrieval /
Databases and Information Systems

WS 2023/2024
https://ad-wiki.informatik.uni-freiburg.de/teaching

Exam
Monday, 18th of March 2024, 14:00 - 16:30 h, in building 101

There are five tasks. Each task is worth 20 points, that is, you can reach a maximum of 100

points. You need 50 points to pass the exam.

You have 2 hours 30 minutes of time overall. This is 20 minutes plus 10 minutes buffer per task.

You are allowed to use one DIN A4 sheet of paper with any contents of your choice related to the

lectures and the exercises. You can write on the front and on the back and it can be handwritten

or a printout, but it must be from yourself, not from someone else. You are not allowed to use

any computing devices or mobile phones, in particular nothing with which you can communicate

with others or connect to the Internet or parallel universes.

You may write down your solutions in either English or German.

Important: For the programming tasks you should use Python. Each programming task specifies

a maximum number of lines you are allowed to write. For all other tasks, do not simply write

down the final result, but it should also be clear how you derived it.

Multiple-choice tasks: Some of the tasks consist of a set of questions, to each of which the

answer is either true or false. A correct answer gives plus 2 points, a wrong answer gives minus

2 points, and no answer gives 0 points. So if you don’t know the answer, do not guess but write

no answer or simply nothing. No explanations are needed. Altogether, you cannot get less than

0 points for such tasks.

How and what to hand in: Please write, in the blue box at the top, your name and your

matriculation number. Please write your solutions on the exam: use the front side of the sheet on

which the question is printed and then the back side of the previous sheet. If you wish to submit

additional paper (which should be the exception), write your name and matriculation number on

every additional sheet.

Good luck!

This is the version of the exam with solution sketches. Do not
distribute, it’s for your personal use only. Don’t use it when you do
old exams for training, it’s the worst way to learn. Use it only for
checking your solutions, after you tried to solve the tasks yourself.

https://ad-wiki.informatik.uni-freiburg.de/teaching

Task 1 (Inverted Index and Ranking, 20 points)

1.1 (6 points) Consider the following collection of four documents D1, . . . , D4. Write down the

inverted index with tf scores. For which C and α does Zipf’s Law (Fn = C ·n−α) hold exactly for

this document collection?

D1 : b c a c d c

D2 : b c a c d c b c

D3 : a d a c c b

D4 : c a a c c

a: (D1, 1), (D2, 1), (D3, 2), (D4, 2)

b: (D1, 1), (D2, 2), (D3, 1)

c: (D1, 3), (D2, 4), (D3, 2), (D4, 3)

d: (D1, 1), (D2, 1), (D3, 1)

Word frequencies sorted: F1 = 12, F2 = 6, F3 = 4, F4 = 3, with C = 12 and α = 1, this fits

Fn = C · n−α = 12/n.

1.2 (10 points) Write a function merge(A: list[int], B: list[int]) → list[int] that merges two sorted

lists of integers into a single sorted list of integers, but without removing duplicates. For example,

merge([1, 3, 4], [2, 3, 5]) = [1, 2, 3, 3, 4, 5]. The function should run in time O(|A|+ |B|) and
should have at most 15 lines.

def merge(A, B):

i = j = 0

res = []

while i < len(A) or j < len(B):

if j == len(B) or (i < len(A) and A[i] <= B[j]):

res.append(A[i])

i += 1

else:

res.append(B[j])

j += 1

return res

1.3 (4 points) Given the list of result IDs [6, 7, 2, 4, 5] and the set of relevant IDs {1, 2, 3, 4}. Write

down the following values: P@2, P@R, AP . For rel1 = 0, rel2 = 0, and rel3 = 4, write down

DCG@3.

1. P@2 = 0/2 = 0

2. P@R = 2/4 = 1/2

3. AP = (1/3 + 2/4)/4 = (5/6)/4 = 5/24

4. For rel1 = 0, rel2 = 0, and rel3 = 4, DCG@3 =
∑3

i=1 reli/ log2(i+ 1) = 4/ log2(4) = 2

Task 2 (Database Basics, 20 points)

2.1 (12 points) You are given the following database schema, where columns marked PK are part

of a table’s primary key and columns marked FK are foreign keys to other tables.

movies(id INT PK, title TEXT, release year INT)

persons(id INT PK, name TEXT)

actors(movie id INT FK(movies.id) PK, person id INT FK(persons.id) PK)

streaming(movie id INT FK(movies.id) PK, platform TEXT PK, views INT)

Write a corresponding SQL query for each of the following queries:

1. Titles of all movies released in the 20th century

SELECT title FROM movies WHERE release year > 1900 AND release year <= 2000;

2. Titles of the top 10 movies ordered by total number of views on “Netflix” and “Amazon Prime”

SELECT movies.title FROM movies, streaming WHERE movies.id = streaming.movie id

AND (streaming.platform = ”Netflix” OR streaming.platform = ”Amazon Prime”)

GROUP BY movies.id ORDER BY SUM(streaming.views) DESC LIMIT 10;

3. Title and comma-separated list of actors for all movies with at least 10 actors

SELECT movies.title, GROUP CONCAT(persons.name, ’,’) FROM movies, actors, persons

WHERE movies.id = actors.movie id AND actors.person id = persons.id

GROUP BY movies.id HAVING COUNT(actors.person id) >= 10;

2.2 (8 points) The two query plans below each execute the same query over two tables A and B.

Compute the cost estimate for each plan if A has 10 rows and 4 columns and B has 20 rows and

2 columns. Give an example of a shape for A and B such that plan 2 is cheaper than plan 1.

Assume the following cost estimates: select → n · k, project → n · k′, and cartesian-product

→ n1 ·n2 · (k1 + k2), where n, n1, n2 and k, k1, k2 refer to the number of rows and columns of the

respective input tables and k′ refers to the number of output columns. Assume that select selects

half of the rows. It doesn’t matter what exactly ϕ1 and ϕ2 are.

Query plan 1:

1. A′ = select(A, ϕ1)

2. B′ = select(B, ϕ2)

3. C = cartesian-product(A′, B′)

4. R = project(C, all cols of C, true)

Query plan 2:

1. C = cartesian-product(A,B)

2. C ′ = select(C, ϕ1)

3. C ′′ = select(C ′, ϕ2)

4. R = project(C ′′, all cols of C ′′, true)

1. cost = 10 · 4, rows = 5, cols = 4

2. cost = 20 · 2, rows = 10, cols = 2

3. cost = 5 · 10 · (4 + 2), rows = 50, cols = 6

4. cost = 50 · 6
Total cost = 40 + 40 + 300 + 300 = 680

1. cost = 10 · 20 · (4 + 2), rows = 200, cols = 6

2. cost = 200 · 6, rows = 100, cols = 6

3. cost = 100 · 6, rows = 50, cols = 6

4. cost = 50 · 6
Total cost = 1200 + 1200 + 600 + 300 = 3300

If one of A or B is empty and the other is not, plan 2 has estimated cost 0, and plan 1 has not.

Task 3 (Advanced SQL, SPARQL, and Knowledge Graphs, 20 points)

3.1 (7 points) The following SQL query is the result of transforming a SPARQL query to SQL

for a database that stores all the triples in one table triples. Write down a SPARQL query that

leads to this SQL query. Write down in natural language what this query computes.

SELECT t3.subject, t3.object

FROM triples AS t1, triples AS t2, triples AS t3

WHERE t1.predicate = "has_mother" AND

t2.predicate = "has_father" AND

t1.subject = t2.subject AND

t3.predicate = "married_to" AND

t3.subject = t1.object AND

t3.object = t2.object;

SELECT ?mother ?father WHERE {
?child has_mother ?mother . # t1
?child has_father ?father . # t2
?mother married_to ?father . # t3

}

All pairs of mother and father
who have a child together
and who are married to each other

3.2 (6 points) For each of the following queries, write down whether it computes the three Oscars

that Meryl Streep has won, together with the corresponding movie. For each query write either

true or false. No explanation is needed. A correct answer gives plus 2 points, a wrong answer

gives minus 2 points. If you don’t know the answer, write no answer or nothing. You cannot get

less than 0 points for this task. Hints: SELECT * selects all variables from the query, P166 is

won-award, Q873 is Meryl Streep, P1686 is for which film, and P31 Q19020 means is an Oscar.

SELECT * WHERE {

wd:Q873 wdt:P166 ?a .

?a wdt:P1686 ?b .

?a wdt:P31 wd:Q19020 .

}

SELECT * WHERE {

wd:Q873 p:P166 ?a .

?a ps:P166 ?b .

?a pq:P1686 ?b .

?a wdt:P31 wd:Q19020 .

}

SELECT * WHERE {

wd:Q873 p:P166 ?a .

?a ps:P166 ?b .

?a pq:P1686 ?c .

?b wdt:P31 wd:Q19020 .

}

False False True

3.3 (7 points) Manually compute the result of the SQL query given on the left, using the table

movies given on the right. Write down in natural language what this query computes.

SELECT year, title, score

FROM movies NATURAL JOIN (

SELECT year, (MAX(score) AS score)

FROM movies

GROUP BY year

)

ORDER BY score DESC;

title score year

Spider-Man 8.3 2021

Everything Everywhere 7.8 2022

Oppenheimer 8.4 2023

Don’t Look Up 7.2 2021

Dune 8.0 2021

Top Gun 8.2 2022

year title score

2023 Oppenheimer 8.4

2021 Spider-Man 8.3

2022 Top Gun 8.2

For each year, the movie with the highest score; order

descending by scores.

Task 4 (Fuzzy Search, Q-Gram Index and Web Applications, 20 points)

4.1 (5 points) For the query prefix x = bree and the words y1 = free, y2 = dreisam and y3 = spree,

write down the left-padded 3-grams for the 3-gram index. For each word yi with i ∈ {1, 2, 3},
determine how many 3-grams it has in common with the query prefix. Then for each yi, say

whether PED(x, yi) needs to be computed explicitly in order to find out if PED(x, yi) ≤ 1 or

whether it is enough to look at the number of common 3-grams.

|Q3(x) ∩Q3(yi)| ≥ |Q3(x)| − 3 · 1 = 1

bree: $$b $br bre ree

free: $$f $fr fre ree → |Q3(x) ∩Q3(y1)| = 1 ≥ 1 → need to compute PED

dreisam: $$d $dr dre rei eis isa sam → |Q3(x) ∩Q3(y2)| = 0 ̸≥ 1 → no need to compute PED

spree: $$s $sp spr pre ree → |Q3(x) ∩Q3(y3)| = 1 ≥ 1 → need to compute PED

4.2 (8 points) For each of the following statements, say whether it is true or false. No explanation

is needed. A correct answer gives plus 2 points, a wrong answer gives minus 2 points. If you don’t

know the answer, write no answer or nothing. You cannot get less than 0 points for this task.

The “algorithm for fuzzy prefix search” refers to the algorithm from the respective lecture.

1. For all strings x and y, it holds that PED(x, y) ≤ ED(x, y). True, because the PED is defined

as the minimum over the ED of x and all prefixes of y (and y itself is a prefix of y).

2. For all strings x and y, it holds that PED(x, y) ≥ abs(|x| − |y|). False, because we’re looking

at prefixes of y. E.g. for x = br and y = breisgau: PED(x, y) = 0

3. Without any padding, the algorithm for fuzzy prefix search is still correct but less efficient.

True. With strings x and y and their padded versions x′, y′: PED(x′, y′) =PED(x, y) but due to

more q-grams, the PED needs to be computed less often.

4. With padding on both sides, the algorithm for fuzzy prefix search is still correct. False. With

q = 3, consider double-padded strings x′ = $$br$$ and y′ = $$breisgau$$ and their left-padded

versions x′′, y′′: PED(x′, y′) = 2 ̸= 0 =PED(x′′, y′′)

4.3 (7 points) Write a simple HTML page with heading Search, an input field and a button,

which upon a click of the button, sends the contents of the input field back to the server. Use

forms, not JavaScript. Given your HTML, the input text example, and assuming that the page is

accessed via localhost:8000/search.html how does the first line of the sent request look like when

clicking the button?

<html><body><h1>Search</h1>

<form>

<input type="text" value="xyz" name="query">

<input type="submit" value="Search">

</form>

</body></html>

First line of request: GET /search.html?query=example HTTP/1.1

Task 5 (Word Embeddings, Logistic Regression, Language Models, 20 points)

5.1 (7 points) Write a function cos sim(emb1: list[float], emb2: list[float]) → float that computes

the cosine similarity between two given word embeddings emb1 and emb2. You can assume that

the embeddings have the same dimension. You can use basic arithmetic operations and functions

from the math module, like math.sqrt, but you should not rely on the module torch. Your function

should have at most 10 lines.

def cos_sim(emb1: list[float], emb2: list[float]) -> float:

sum_squares_emb1 = sum_squares_emb2 = sum_products = 0

for i in range(len(emb1)):

sum_squares_emb1 += emb1[i] * emb1[i]

sum_squares_emb2 += emb2[i] * emb2[i]

sum_products += emb1[i] * emb2[i]

return sum_products / math.sqrt(sum_squares_emb1 * sum_squares_emb2)

5.2 (8 points) Write a function epoch(X: tensor, y: tensor, w: tensor) → tensor that does one

epoch of logistic regression, where tensor is an abbreviation for torch.Tensor. The arguments are

as follows: X is a 2D tensor with input vectors as rows, y is a 1D tensor with the input labels, w

is a 1D tensor with the current weights, and the function should return a 1D tensor with the new

weights after the epoch. You can assume that all values of all tensors involved are of type float

and that the bias is already part of X and w. You should take a batch size of 1 and a learning

rate of 0.1. Your function should have at most 10 lines.

epoch(X: tensor, y: tensor, w: tensor) -> tensor:

for i in range(X.shape(0)):

xi = X[i] # The i-th input vector, a 1D tensor

yi = y[i] # The i-th label, a single float

factor = 0.1 * (yi - torch.sigmoid(torch.dot(xi, w)) # a float

w = w + factor * xi

return w

5.3 (5 points) Express softmax(x, 0) in terms of x ∈ R and the sigmoid function σ. Do not just

write down the result, but also how you got there.

1. softmax(x, 0) = (ex, e0)/(ex + e0)

2. The first component is ex/(ex + 1) = 1/(1 + e−x) = σ(x)

3. The second component must then be 1− σ(x) = σ(−x)

4. Hence softmax(x, 0) = (σ(x), σ(−x))

