
Name: Matriculation number:
↑ Please write clearly and use capitalized BLOCK LETTERS ↑

Chair of Algorithms

and Data Structures

Prof. Dr. Hannah Bast

Sebastian Walter

Information Retrieval /
Databases and Information Systems

WS 2023/2024
https://ad-wiki.informatik.uni-freiburg.de/teaching

Retake exam
Monday, 9th of September 2024, 14:00 - 16:30 h, in HS 26 and HS 36 in building 101

There are five tasks. Each task is worth 20 points, that is, you can reach a maximum of 100

points. You need 50 points to pass the exam.

You have 2 hours 30 minutes of time overall. This is 20 minutes plus 10 minutes buffer per task.

You are allowed to use one DIN A4 sheet of paper with any contents of your choice related to the

lectures and the exercises. You can write on the front and on the back and it can be handwritten

or a printout, but it must be from yourself, not from someone else. You are not allowed to use

any computing devices or mobile phones, in particular nothing with which you can communicate

with others or connect to the Internet or parallel universes.

You may write down your solutions in either English or German.

Important: For the programming tasks you should use Python. Each programming task specifies

a maximum number of lines you are allowed to write. For all other tasks, do not simply write

down the final result, but it should also be clear how you derived it.

Multiple-choice tasks: Some of the tasks consist of a set of questions, to each of which the

answer is either true or false. A correct answer gives plus 2 points, a wrong answer gives minus

2 points, and no answer gives 0 points. So if you don’t know the answer, do not guess but write

no answer or simply nothing. No explanations are needed. Altogether, you cannot get less than

0 points for such tasks.

How and what to hand in: Please write, in the blue box at the top, your name and your

matriculation number. Please write your solutions on the exam: use the front side of the sheet on

which the question is printed and then the back side of the previous sheet. If you wish to submit

additional paper (which should be the exception), write your name and matriculation number on

every additional sheet.

This is the version of the exam with solution sketches. Do not
distribute, it’s for your personal use only. Don’t use it when you do
old exams for training, it’s the worst way to learn. Use it only for
checking your solutions, after you tried to solve the tasks yourself.

https://ad-wiki.informatik.uni-freiburg.de/teaching

Task 1 (Inverted Index, Ranking and Evaluation, 20 points)

1.1 (5 points) Consider the following collection of four documents D1, . . . , D4. Write down the

inverted index with tf ∗ scores (that is, BM25 scores with idf = 1). Use k = 1 and b = 0.

D1 : b a c c

D2 : c a b d b c

D3 : c b a d c b c

D4 : c b a d d

a: (D1, 1), (D2, 1), (D3, 1), (D4, 1)

b: (D1, 1), (D2, 4/3), (D3, 4/3), (D4, 1)

c: (D1, 4/3), (D2, 4/3), (D3, 3/2), (D4, 1)

d: (D2, 1), (D3, 1), (D4, 4/3)

1.2 (7 points) Write a function build inverted index(A: list[list[str]]) → dict[str, list[int]] that

takes a list of text records, each given as a list of words, and computes the inverted lists. Each

inverted list must be sorted by the record id. You can assume that each text record contains each

word at most once. Your method must run in time linear in the total number of words in all

records and should have at most 10 lines.

def build_inverted_index(text_records):

inverted_index = {}

for id, text_record in enumerate(text_records):

for word in text_record:

if word not in inverted_index:

inverted_index[word] = []

inverted_index[word].append(id)

return inverted_index

1.3 (8 points) For each of the following statements, say whether it is true or false. No explanation

is needed. A correct answer gives plus 2 points, a wrong answer gives minus 2 points. If you don’t

know the answer, write no answer or nothing. You cannot get less than 0 points for this task.

1. If a list of term frequencies Fn follows Zipf’s law, the log-log plot of Fn shows a falling line. True,

we have Fn = C · 1/nα ⇔ logFn = −α · log n+ logC, which produces the line y = −αx+ logC

in a log-log plot, which has negative slope

2. If all results for a query are relevant, AP = P@R. False

3. If not all relevant documents are in the result list, bpref < 1. True, each of the |RR| terms of

the sum of the bpref formula is at most 1, and the sum is divided by |R| > |RR|.
4. The nDCG@4 of a ranked result list with relevances 4, 4, 3, 3, 1, 2 is exactly 1. True, the ideal

ranking (4, 4, 3, 3, 2, 1) is equivalent for the first 4 relevance scores, so iDCG@4 = DCG@4.

Task 2 (Database Basics, 20 points)

You are given the following database schema, where columns marked PK are part of a table’s

primary key and columns marked FK are foreign keys. You can assume that no employee can

start two positions at the same date.

employees(id INT PK, name TEXT, supervisor FK(employees.id) NOT NULL)

positions(e id INT FK(employees.id) PK, title TEXT PK, start date DATE PK)

2.1 (12 points) Write a corresponding SQL query for each of the following queries:

1. The names of all employees who became CEO or CTO before 2010.

SELECT DISTINCT e.name FROM employees AS e, positions AS p WHERE e.id = p.e id AND

(p.title = ’CEO’ OR p.title = ’CTO’) AND p.start date < ’2010-01-01’;

2. The names of all employees who held the same position more than once.

SELECT DISTINCT e.name FROM employees AS e, (SELECT e id, title FROM positions

GROUP BY e id, title HAVING COUNT(*) > 1) AS p WHERE e.id = p.e id;

3. The names of all employees and the position they started most recently.

SELECT e.name, p.title FROM employees AS e, positions AS p, (SELECT e id, MAX(start date)

AS latest date FROM positions GROUP BY e id) AS pmax WHERE e.id = p.e id AND p.e id

= pmax.e id AND p.start date = pmax.latest date;

2.2 (8 points) You are given the following query plan over the employees table E with 100 rows.

Write down in natural language what the query plan computes, as well as the dimensions of the

output table R. Compute the estimated cost of the plan. If there is a better query plan, write it

down and compute its cost. If there is no better query plan, briefly explain why not.

Assume the following cost estimates: select → n · k, project → n · k′, and cartesian-product

→ n1 ·n2 · (k1 + k2), where n, n1, n2 and k, k1, k2 refer to the number of rows and columns of the

respective input tables and k′ refers to the number of output columns. Use the exact sizes as size

estimates (and understand that they are independent of the data). Column indices start at 1.

Query plan:

1. C = cartesian-product(E,E)

2. S = select(C, row → row[3] == row[4])

3. R = project(S, (2, 5), false)

The query plan returns the name of each

employee and the name of their supervisor

Dimensions of R → 100× 2

@1: cost → 100 · 100 · (3 + 3) = 60 000

@2: cost → 10 000 · 6 = 60 000

@3: cost → 100 · 2 = 200

Total cost → 120 200

Better: project E before Cartesian product

1. E ′ = project(E, (2, 3), false)

2. E ′′ = project(E, (1, 2), false)

3. C = cartesian-product(E ′, E ′′)

4. S = select(C, row → row[2] == row[3])

5. R = project(S, (1, 4), false)

@1: cost → 100 · 2 = 200

@2: cost → 100 · 2 = 200

@3: cost → 100 · 100 · (2 + 2) = 40 000

@4: cost → 10 000 · 4 = 40 000

@5: cost → 100 · 2 = 200

Total cost → 80 600

Task 3 (Advanced SQL, SPARQL, and Knowledge Graphs, 20 points)

3.1 (6 points) The following SQL query is the result of transforming a SPARQL query to SQL for

a database that stores all the triples in one table triples. Write down a SPARQL query that leads

to this SQL query. Write down in natural language what this query computes. The not-equal

condition in the SQL query can be modeled by a FILTER(?var1 != ?var2) clause in SPARQL.

SELECT t1.subject, t2.subject

FROM triples AS t1, triples AS t2

WHERE t1.predicate = "has_mother" AND

t2.predicate = "has_mother" AND

t1.object = t2.object AND

t1.subject != t2.subject;

SELECT ?a ?b WHERE {

?a has_mother ?mother . # t1

?b has_mother ?mother . # t2

FILTER (?a != ?b)

}

All pairs of people with the same mother

3.2 (7 points) Grover Cleveland was US president twice in non-consecutive terms, starting in

1885 and starting in 1893. Write down RDF triples that represent Grover Cleveland’s two terms

of office together with their start years using the Wikidata reification scheme. You can use the

prefixes p:, ps:, pq:, wdt:, wd: without having to write down their long form. In Wikidata, Q35171

is Grover Cleveland, P39 is position held, Q11696 is President of the United states and P580 is

start time. You can write the years without datatypes, as "1885" and "1893", respectively.

wd:Q35171 p:P39 wds:Q35171-1 .

wds:Q35171-1 ps:P39 wd:Q11696 .

wds:Q35171-1 pq:P580 "1885" .

wd:Q35171 p:P39 wds:Q35171-2 .

wds:Q35171-2 ps:P39 wd:Q11696 .

wds:Q35171-2 pq:P580 "1893" .

3.3 (7 points) Write down the result of the inner SELECT query and of the whole SQL query, using

the table movies given on the right. Write down in natural language what this query computes.

SELECT m.title, m.score, m.year

FROM movies as m JOIN (

SELECT year, (AVG(score) AS avg_score)

FROM movies

GROUP BY year

) AS x ON m.year = x.year

AND m.score >= x.avg_score;

title score year

Spider-Man 8.3 2021

Everything Everywhere 7.8 2022

Oppenheimer 8.4 2023

Don’t Look Up 7.1 2021

Dune 8.0 2021

Top Gun: Maverick 8.2 2022

year avgScore

2021 7.8

2022 8.0

2023 8.4

year title score

2021 Spiderman 8.3

2021 Dune 8.0

2022 Top Gun: ... 8.2

2023 Oppenheimer 8.4

All movies that have at least the avera-

ge score of their respective year. Note:

The order of the rows is not specified.

Task 4 (Fuzzy Search, Q-Gram Index, Web Applications and UTF-8, 20 points)

4.1 (5 points) For the words y1 = dodo, y2 = frodo and y3 = rodeo, write down the inverted lists

of the left-padded 2-grams for the 2-gram index. The inverted lists should contain tuples (word

ID, number of occurrences). For the query prefix x = dod, write down the left-padded 2-grams.

Merge the relevant inverted lists (aggregating for each word ID) and write down the result list.

$d: [(1, 1)]; do: [(1, 2), (2, 1)]; od: [(1, 1), (2, 1), (3, 1)]; $f: [(2, 1)]; fr: [(2, 1)]; ro: [(2, 1), (3, 1)];
$r: [(3, 1)]; de: [(3, 1)]; eo: [(3, 1)]
dod: $d do od

merged list: [(1, 4), (2, 2), (3, 1)]

4.2 (8 points) For each of the following statements, say whether it is true or false. No explanation

is needed. A correct answer gives plus 2 points, a wrong answer gives minus 2 points. If you don’t

know the answer, write no answer or nothing. You cannot get less than 0 points for this task.

1. A string where all characters have an ASCII code < 128 is a valid UTF-8 sequence.

True → for a character with ASCII code < 128, the UTF-8 code is equal to the ASCII code

2. The multi-byte sequence 1100 0001 1000 0000 is a valid UTF-8 code.

False → this should be encoded with one byte

3. The UTF-8 code for the Unicode code point 8F0 is 1110 0001 1000 0111 1001 1001.

False → With the last bit being 1, the code cannot stand for an even code point.

4. The URL-encoding of the character with UTF-8 code 1100 0011 1001 1100 is %C3%9C.

True → 1100 = C, 0011 = 3, 1001 = 9, 1100 = C

4.3 (7 points) Given the following HTML, write the JavaScript file script.js with the following

functionality: After each keystroke in the input field, send a request to a server listening at

http://localhost:8000, with the content of the input field as URL parameter query. Display the

text response of the server in the result paragraph.

<html>

<head><script src="script.js" defer></script></head>

<body><input id="query"><p id="result"></p></body>

</html>

document.querySelector("#query").addEventListener("input", async function() {

const content = document.querySelector("#query").value;

const response = await fetch("http://localhost:8000/?query="+content).then(

response => response.text());

document.querySelector("#result").innerHTML = response;

});

Task 5 (Models, Logistic Regression, Sampling, 20 points)

5.1 (5 points) For a function f : X → Y , a model with N parameters is defined as a function

M : X × RN → Y and the corresponding loss function as L : Y × Y → R. Logistic regression

is a model for functions of the form f : Rn → [0, 1]. Write down the model and loss function of

logistic regression, using N = n parameters. If you make use of the sigmoid function, write down

its definition.

1. The model function M for LR is defined by M(x,w) = σ(w • x), where σ(z) = 1/(1− e−z)

2. The corresponding loss function L is defined by L(y, y′) = −[y · ln y′ + (1− y) · ln(1− y′)]

5.2 (7 points) Write a class SimplisticLanguageModel that implements a simplistic next-word

model that takes n embedddings of dimension d each as input, and outputs an embedding of the

next word. The output should be computed by a single linear transformation from Rn·d → Rd.

You should use PyTorch. In particular, the class should inherit from torch.nn.Module, and contain

a function init that defines the parameters, as well as a function forward that computes the

value of the model function for a given input batch and the current parameter settings. Add

a comment to your forward function that clarifies, in which shape you expect the input. Your

function should have at most 10 lines of code.

class SimplisticLanguageModel(torch.nn.Module):

def __init__(self, n: int, d: int):

super().__init__()

self.linear = torch.nn.Linear(n * d, d)

def forward(self, X: torch.Tensor):

We expect that X has the shape (batch_size, n * d).

return self.linear(X)

5.3 (8 points) Write a function sample(tokens: list[str], probs: list[float], k: int) → str that samples

from the top k most likely tokens according to the probability distribution given by probs, where

tokens and probs have the same length and k is at most that length. For example, when tokens =

[a, b, c, d], probs = [0.2, 0.35, 0.1, 0.35], and k = 2, then the function should return b or d, each

with a probability of 0.5. You can assume a function sample from dist(probs: list[float]) → int

that samples from the given probability distribution and returns an index, as well as a function

argsort(l: list) → list[int] that returns the indices of the ascendingly sorted elements instead of

the sorted elements. Your function should have at most 10 lines of code.

def sample(tokens: list[str], probs: list[float], k: int) -> str:

top_k_indices = argsort(probs)[len(probs) - k:]

top_k_probs = [probs[i] for i in top_k_indices]

top_k_tokens = [tokens[i] for i in top_k_indices]

top_k_probs_normalized = [p / sum(top_k_probs) for p in top_k_probs]

return top_k_tokens[sample_from_dist(top_k_probs_normalized)]

