
Machine Learning Introduction
for Natural Language Processing

Niklas Schnelle

8. November, 2017

Overview
Introduction

Definition
Historical Background
Machine Learning Approaches

Linear Regression
Linear in the Input
Linear Regression with Features
Features

Overfitting, Regularization & Cross-Validation
Overfitting
Overfitting Prevention

Classification
Discriminative Function
Separating Hyperplanes
Logistic Regression
Other Classical Methods (Overview)

References

Appendix

Introduction

“ . . . the [Analytical Engine] might
compose elaborate and scientific pieces of
music of any degree of complexity or
extent.” Ada Lovelace

Historical Background

As seen by the previous quote using computation for tasks such as
composing, reasoning or understanding language is quite old.
Historically research into such ”Artificial Intelligence” has seen two
fundamental approaches

I Symbolic AI based on logic and reasoning
I Checkers and Chess playing programs (Christopher Strachey,

Arthur Samuel 1950s)
I Prolog (Alain Colmerauer, 1972)

I Probablistic Models based on methods from statistics
sometimes inspired by neuroscience

I Perceptron Algorithm (Frank Rosenblatt, 1957)

Machine Learning Approaches

Machine Learning works by learning a model from data, depending
on the type of data different approaches are used

I Supervised Learning given examples {(x , y)} learn to predict
target label y from input x

I Classification: y is a set of class labels (e.g. genres,
part-of-speech, image labels)

I Regression: y is a real number

I Unsupervised Learning given a set of data {x} without an
explicit target y

I Uncover structure e.g. components of maximum variation
(PCA), clusters

I Create new representations such as an embedding in some
vector space

I Other Types
I Semi-Supervised, Reinforcement Learning etc.

Linear Regression

0 2 4 6 8 10

0

5

10

15

20

25

30

35

0 2 4 6 8 10

0

5

10

15

20

25

30

35

Figure: We want to estimate (for one author) the number of spelling
errors for a document of arbitrary length. We may plot known spelling
errors vs document lengths and then fit a line to estimate the rate of
errors (the m in f (x) = mx + c).

Linear Regression

First Model Linear Regression: Given an input vector x ∈ Rd we
want to learn a mapping to an output value y ∈ R

I Model with parameters β = (β0, β1, . . . , βd)T ∈ Rd+1

f (x) = β0 +
d∑

j=1

βjxj = (1, x1, . . . , xd)β

I Given training data D = {(xi , yi)}ni=1 the least squares loss is0

Lls(β) =
n∑

i=1

(yi − f (xi))2 = ‖y − Xβ‖2

I The optimial β̂ then is β̂ = (XTX)−1XT y

0
X ∈ Rn×d+1 are the 1-augmented xi stacked as row vectors and y ∈ Rn the stacked yi

Linear in the Input

0 2 4 6 8 10

0

5

10

15

20

25

30

35

0 2 4 6 8 10
2

1

0

1

2

3

4

5

Figure: Linear Regression directly on the input only works for linear data

Introducing Features

Clearly we need a more powerful model! Instead of learning a
mapping directly on the input values x we first transform them into
vectors of their characteristic properties the so called features.

I Replace each input x ∈ Rd with a feature vector φ(x) ∈ Rk

f (x) =
k∑

j=1

φi (x)βj = φ(x)Tβ

I For a real value x simply adding x2 using φ(x) = (1, x , x2)
allows fitting a parabola

I Note that in regression we almost always prepend a 1 to
capture constant offsets

I Everything else stays the same including the optimization

Linear in Features

0 2 4 6 8 10

20

40

60

80

100

120

140

0 2 4 6 8 10
2

1

0

1

2

3

4

5

Figure: The same algorithm but parametrized on φ(x) = (1, x , x2) instead
of just (1, x) allows us to perfectly fit quadratic relationships. Using
φ(x) = (1, x , x2, . . . , x5) we can fit even more complicated functions.

Example Features

Besides allowing us to fit data using complicated mathematical
functions, features allow us to express the dependence on arbitrary
other data

I The stock value of Facebook as a linear combination of the
stock of related companies
φ(x) = (1, xAPPL, xGOOG, . . .)

I The quality of a relationship based on the number and type of
emoticons in a chat
φ(msg) = (1, |♥ ∈ msg|, . . .)

I The price of oil as a function of keyword counts in Donald
Trump’s Tweets
φ(tweet) = (1, |bad ∈ tweet|+ |oil ∈ tweet|, . . .)

Features for Natural Language Processing

In the previous slides we used features like |bad ∈ tweet| with
handpicked words and dimensions.
To automate this we can encode a word or a fixed sequence of
words (n-gram) with:

I One-Hot Encoding: For each word w reserve a dimension
that is 1 iff w ∈ x (DictVectorizer with boolean values in
Scikit-Learn)

I Bag-of-Words: Like One-Hot-Encoding but store the number
of occurences (CountVectorizer) or the tf-idf values
(TfidfVectorizer) useful for longer x

Depending on the task other useful features may include

I Part-of-speech if known or computed with another model

I Capitalization, length, sub-word sequences (e.g. ”-ing”),
match with a dictionary. . .

Overfitting

0 2 4 6 8 10
2

1

0

1

2

3

4

5

Figure: With more expressive features like Radial Basis Functions
φ(x) = (1, e−

1
2‖x−c1‖, . . .) we may overfit the training data - and our

model generalizes badly.

Preventing Overfitting: Regularization & Cross-Validation

To counter overfitting we use two primary techniques (besides
adding more data)

I Regularization we modify the learning for example by
changing the loss function to prevent overfitting

I For Linear Regression we add a regularization term, penalizing
large βi with regularization factor λ0

Lridge(β) =
n∑

i=1

(yi − f (xi))2 + λ

k∑
j=2

β2
j

I Cross-Validation to estimate generalization we train only on
part of the training set while testing on the rest. We shuffle
roles until all data has been in both (KFold class in
Scikit-Learn)

0
The new Optimum is β̂ = (XTX + λI)−1XT y where I is the identity matrix with I1,1 set to 0

Regularization

0 2 4 6 8 10
2

1

0

1

2

3

4

5

0 2 4 6 8 10
2

1

0

1

2

3

4

5

Figure: Using the same Radial Basis Functions and data as before but
with Linear Ridge Regression and λ = 0.2

Classification: Discriminative Function

Often our target variable y is a discrete value from a set of classes
Y (part-of-speech, sentiment, topic etc).

I Instead of dealing with a discrete-valued function F : Rd → Y
we can learn a discriminative function

f : Rd × Y → R

such that
ŷ = argmax

y
f (x , y)

I f (x , y) is high if y is the correct class for x and low otherwise

Classification: Separating Hyperplanes

Assume for simplicity we only have two classes y ∈ {0, 1}
I Now we can use a simple threshold approach for f (x , y)

f (x , 1) = φ(x)Tβ

ŷ = argmax
y

f (x , y) =

{
0, f (x , 1) ≤ 0

1, f (x , 1) > 0

I In feature space β then defines a hyperplane separating the
two classes (1, x1, x2, . . . , xd)β = 0

I Note that even with this approach we can simulate more
classes using multiple classifiers

Classification: Separatable in Higher Dimensions

20 10 0 10 20 30
20

10

0

10

20

30

20 10 0 10 20 30 20 10 0 10 20

0
100
200
300
400
500
600
700
800

Figure: Two classes of points (x1, x2) ⊂ R2 become linearly separable
when adding x21 + x22 as a feature/dimension

Classification: Finding a Separating Hyperplane

It remains to find a suitable separating hyperplane and thus a
discriminative function

I Perceptron: Choose initial β. Classify each point x and if
misclassified nudge β in the right direction by
adding/subtracting φ(x).

I Support Vector Machines: Optimize for a maximal margin
between the hyperplane and closest points (support vectors)

I Logistic Regression: Turn discriminative function into
conditional class probabilities and maximize likelihood

Classification: Logistic Regression
Again we look only at the case of two classes y ∈ {0, 1}

I Note, that the discriminative function

ŷ = argmax
y

f (x , y) =

{
0, f (x , 1) ≤ 0

1, f (x , 1) > 0

can also be interpreted as two functions f (x , 0) and f (x , 1)
where f (x , 0) is constant 0

I Now we can write conditional class probabilities as

p(y = 1|x) =
ef (x ,1)

ef (x ,0)=0 + ef (x ,1)
= σ(f (x , 1))

I With this and data D = {(xi , yi)}ni=1 we can define and
minimize the neg-log-likelihood0

Llogistic(β) = −
n∑

i=1

log p(yi |xi) + λ‖β‖2

0
See Appendix for how to derive the optimal parameters

Classification: Logistic Regression

2 1 0 1 2

2

1

0

1

2

2
1

0
1

2 2
1

0
1

2

0.0

0.2

0.4

0.6

0.8

1.0

Figure: Using cubic features on x ∈ R2 input data. On the left we can
see the P(y = 1|x) > 0.5 decision boundary in the input space, while the
right plot shows the 3D structure of class probabilities σ(f (x , 1)).

Classification: Other Classical Methods

Besides these linear methods other classical machine learning
approaches include

I Naive Bayes: Directly apply Bayes’ theorem by assuming
independence of features

I Kernel Methods: Generalize the aforementioned linear
models using a similarity measure without needing explicit
features

I Local & Lazy Learning: Create only a local model around a
query point

I Bootstrapping: Use multiple models of same type on
randomized versions of the input data

I Boosting: As bootstrapping but be more clever in selecting
data for classifiers

I Decision Trees: Build a tree from regions of constant
prediction, often used with Boosting

References

This presentation + code for the demos and plots is available at:
https://ad-git.informatik.uni-freiburg.de/ad/nlpml

It is based mainly on the following materials:

I Introduction to Machine Learning
Prof. Marc Toussaint

https://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/Lecture-MachineLearning.pdf

I The Elements of Statistical Learning1
Trevor Hastie, Robert Tibshirani, Jerome Friedman

https://web.stanford.edu/~hastie/ElemStatLearn/

https://ad-git.informatik.uni-freiburg.de/ad/nlpml
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/Lecture-MachineLearning.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/

Appendix Logistic Regression: Optimal Parameters I

Unlike Linear Regression, Logistic Regression has no closed-form
solution

I In the two class case the neg-log-likelihood with data
D = {(xi , yi)}ni=1 is

Llogistic = −
n∑

i=1

[
yi log p(1|xi)+(1−yi) log(1−p(1|xi))

]
+λ‖β‖2

I Its gradient with pi := p(y = 1|xi) then is

∂Llogistic

∂β
=

n∑
i=1

(pi − yi)φ(xi) + 2λIβ = XT (p − y) + 2λIβ

Appendix Logistic Regression: Optimal Parameters II

Now we could simply do a gradient descent which can also be done
one example at a time and scales very well. Or we can compute the
Hessian matrix and use Newton’s algorithm to find the minimum.

I The Hessian can be computed as

H =
∂2Llogistic

∂2β
= XTWX + 2λI

where W is the diagonal matrix with
Wi ,i = p(y = 1|xi)(1− p(y = 1|xi))

I Applying Newton’s algorithm then means iterating

β ← β − H−1∂L
logistic

∂β

T

	Introduction
	Definition
	Historical Background
	Machine Learning Approaches

	Linear Regression
	Linear in the Input
	Linear Regression with Features
	Features

	Overfitting, Regularization & Cross-Validation
	Overfitting
	Overfitting Prevention

	Classification
	Discriminative Function
	Separating Hyperplanes
	Logistic Regression
	Other Classical Methods (Overview)

	References
	Appendix

