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Our Goal

We want to generate syntax trees like this:
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Context-Free Grammars

Definition (Context-Free Grammar)

A context-free grammar (CFG) is a 4-tuple G = (N,T ,P,S)
where:

N is a finite set of non-terminal symbols.

T is a finite set of terminal symbols, N ∩ T = ∅.
P ⊆ N × (N ∪ T )∗ is a finite set of production rules.

S ∈ N is a specific start symbol.

Example

G = (N,T ,P, S)
where:

N = {S, NP, D, N, VP, V}

T = {often, chases, helps,
the, penguin, elephant}

P : S→ NP VP
NP→ D N

D→ the
N→ penguin

∣∣ elephant
VP→ often VP

∣∣V NP
V→ chases

∣∣ helps
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Context-Free Grammars

Example (Derivation with a CFG)

G = (N,T ,P,S)
where:

N = {S, NP, D, N, VP, V}

T = {often, chases, helps,
the, penguin, elephant}

P : S→ NP VP
NP→ D N

D→ the

N→ penguin
∣∣ elephant

VP→ often VP
∣∣V NP

V→ chases
∣∣ helps
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Tree-Substitution Grammars

Example (Derivation with a TSG)

Initial trees: S

VP↓NP↓

NP

N↓D↓

D

the

N

penguin

N

elephant

VP

VP↓often

VP

NP↓V↓

V

chases

V

helps

A derived tree: S
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Tree-Adjoining Grammars

Example (Derivation with a TAG)

Initial trees: S

VP

NP↓V

chases

NP↓

NP

N

penguin

D↓

NP

N

elephant

D↓

D

the

Auxiliary tree: VP

VP∗often

A derived tree: S

VP

VP

NP

N

elephant

D

the

V

chases

often

NP

N

penguin

D

the
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Outline

1 Why CFGs are not enough (for linguists)

2 Introduction to Tree-Adjoining Grammars

3 An Algorithm for Parsing TAGs

4 LTAG-Spinal Parser
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Outline

1 Why CFGs are not enough (for linguists)
Generative capacity
Lexicalization

2 Introduction to Tree-Adjoining Grammars

3 An Algorithm for Parsing TAGs

4 LTAG-Spinal Parser
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Cross-Serial Dependencies

Example (Swiss German; Shieber, 1985)

. . . that we HansDAT houseACC helped paint

. . . das mer em Hans es huus hälfed aastriiche

b a b a

‘. . . that we helped Hans paint the house’

. . . that we the childrenACC HansDAT houseACC let help paint

. . . das mer d’chind em Hans es huus lönd hälfe aastriiche

a b a a b a

‘. . . that we let the children help Hans paint the house’

This can be reduced to the copy language {ww |w ∈ {a, b}∗}
which is not context-free.
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Lexicalization

A grammar is lexicalized if each elementary structure is associated
with at least one lexical item (terminal symbol), called its anchor.

Example (Lexicalized CFG)

S→ Mary V
∣∣ John V

V→ runs

Example (Non-lex. CFG)

S→ N V

N→ Mary
∣∣ John

V→ runs

Weak lexicalization of a grammar:
Find a lexicalized grammar generating the same string language.

Strong lexicalization of a grammar:
Find a lexicalized grammar generating the same tree language.
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Lexicalization

Example (Lexicalized initial trees)

NP

N

Mary

S

VP

NP↓V

eats

NP↓

S

VP

PP

NP

N

account

P

into

NP↓V

takes

NP↓

Example (Non-lexicalized initial trees)

NP

N↓D↓

S

VP↓NP↓

S

VP

NP↓V↓

NP↓
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Why Lexicalization?

Syntactic structures associated with single words can be seen
as more powerful POS-tags (“supertags”).

Example (Transitive vs. intransitive verb)

S

VP

NP↓V

eats

NP↓
S

VP

V

sleeps

NP↓

(Finite) lexicalized grammars are finitely ambiguous.
⇒ The generated string languages are decidable.

Lexicalization is useful for parsing since it allows us to
drastically restrict the search space (as a preprocessing step).
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Lexicalization

Example (CFG which is not strongly lexicalizable with a TSG)

Consider the following CFG: S→ SS
S→ a

An intuitive approach to lexicalize
it with a TSG might be:

S

a

S

S

a

S↓

S

S↓S

a
But this is not a strong lexicalization
because it cannot generate the following
tree (which the CFG can generate):

S

S

S

a

S

a

S

S

a

S

a

Problem: In TSGs the distance between two nodes in the same
initial tree cannot increase during derivation.
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Linguistic Shortcomings of CFG

Proposition (Shieber, 1985)

The language L of Swiss German is not context-free.

Proposition (Joshi and Schabes, 1997)

CFG cannot be strongly lexicalized by TSG (or CFG).
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Outline

1 Why CFGs are not enough (for linguists)

2 Introduction to Tree-Adjoining Grammars
The formalism
What we can do with it

3 An Algorithm for Parsing TAGs
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Tree-Adjoining Grammars

Definition (Tree-Adjoining Grammar)

A tree-adjoining grammar (TAG) is a 5-tuple G = (N,T , I ,A, S)
where:

N is a finite set of non-terminal symbols.

T is a finite set of terminal symbols, N ∩ T = ∅.
I is a finite set of initial trees.

A is a finite set of auxiliary trees.

S ∈ N is a specific start symbol.

The trees in I ∪ A are called elementary trees.

A Tree-Substitution Grammar (TSG) is defined analogously as a
4-tuple G = (N,T , I , S), i.e. a TAG without auxiliary trees.
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Initial Trees

Definition (Initial Tree)

An initial tree is characterized as follows:

Internal nodes are only labeled by non-terminal symbols.

Leaf nodes are labeled by terminals or non-terminals.
If a leaf is labeled by a non-terminal, it is marked as
substitution node (indicated by the symbol “↓”).

Example

D

a

NP

N

cat

D↓

NP

N

Mary

S

VP

NP↓V

saw

NP↓

S

VP

PP

NP↓P

to

NP↓V

gives

NP↓
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Auxiliary Trees

Definition (Auxiliary Tree)

An auxiliary tree has the same properties as an initial tree apart
from one exception:

Exactly one of the leaves labeled by a non-terminal is marked
as the foot node (indicated by the symbol “∗”) instead of
being marked for substitution. The label of the foot node
must be identical to the label of the root node.

Example

N

N∗A

green

A

A∗Adv

very

S

S∗Adv

yesterday

S

VP

S

S∗Comp

that

V

thinks

NP↓
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Substitution

Definition (Substitution)

Let γ be a tree containing a substitution node n labeled by X and
α an initial tree whose root node is also labeled by X.

By applying the substitution operation on (γ, n) and α, one gets a
copy γ′ of γ in which n has been replaced by α. If γ, n, α do not
fulfill the above conditions, the operation is undefined.

S

X

S

X

X

γ α γ′

19 / 52



Substitution

Example (Substitution)

NP

N

Mary

S

VP

NP↓V
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NP↓

D

a
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N
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S
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N
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V
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NP
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Adjunction

Definition (Adjunction)

Let γ be a tree containing an internal node n labeled by X and
β an auxiliary tree whose root node is also labeled by X.

By applying the adjunction operation on (γ, n) and β, one gets a
copy γ′ of γ in which β has taken the place of the subtree t rooted
by n and t has been attached to the foot node of β. If γ, n, β do
not fulfill the above conditions, the operation is undefined.

S

X

S

X
X

γ γ′β

X∗
X∗
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Adjunction

Example (Adjunction)

S
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N

cat

D

a
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N
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S
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N
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S

S
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N
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Adjunction Constraints

Given TAG G = (N,T , I ,A,S)
We specify for each node n of a tree in I ∪ A:

OA ∈ {⊥,>} : obligatory adjunction
Boolean specifying whether adjunction at n is mandatory

SA ⊆ A : selective adjunction
Set of auxiliary trees authorized for adjunction at n

Also often used:

NA ∈ {⊥,>} : null adjunction
Shorthand for the special case OA = ⊥ ∧ SA = ∅

Remarks

• OA = > ∧ SA = ∅ is not allowed.

• β ∈ SA(n) only if root label of β equal to label of n.

• Substitution nodes must have NA = >.
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Cross-Serial Dependencies

Example (TAG for the copy language)

Generated string language:
{ww |w ∈ {a, b}∗}

S

ε

SNA

a
S

S∗NA

a

SNA

b
S

S∗NA
b

Elementary trees

SNA

a
S

S∗NA

ε

a

SNA

a
SNA

b
S

S∗NA

S∗NA

ε

a

b

Some derived trees
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Lexicalization

Example (strong lexicalization of a CFG with a TAG)

Consider again the following CFG: S→ SS
S→ a

It can be easily lexicalized with a
TAG by using adjunction:

S

a

S

S

a

S∗

By successive adjunction we get the following derived trees:

S

a

S

S

a

S

a

S

S

S

a

S

a

S

a

S

S

S

a

S

a

S

S

a

S

a
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Lexicalization

Proposition (Joshi and Schabes, 1997)

Finitely ambiguous CFGs can be strongly lexicalized by TAGs.

Proposition (Joshi and Schabes, 1997)

Finitely ambiguous TAGs are closed under strong lexicalization.
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Further Formal Properties of TAL

Tree-Adjoining Languages (TAL) have interesting formal
properties, similar to those of context-free languages:

TALs are closed under union, concatenation, iteration,
substitution and intersection with regular languages.

There is a pumping lemma for TAL.

There is a class of automata which recognizes TAL:
Embedded Push-Down Automata (EPDA).

TALs can be parsed in polynomial time.
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Outline

1 Why CFGs are not enough (for linguists)

2 Introduction to Tree-Adjoining Grammars

3 An Algorithm for Parsing TAGs
Preliminaries
The Recognizer Algorithm
Complexity and Extensibility

4 LTAG-Spinal Parser
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TAG Parsing

Parser: Given a string s and a TAG G = (N,T , I ,A,S),
find all derived trees in Ltree(G ) which yield s.

We will start with a simpler problem:
Recognizer: Given a string s and a TAG G = (N,T , I ,A, S),
decide whether s ∈ Lstring (G ).

Further simplification:
We will only consider the adjunction operation for now.
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Tree Traversal

The algorithm will traverse every eligible derived tree (Euler tour)
while scanning the input string from left to right.

Start End

CB

E F G H I

A

D

Left context,
already traversed

A

Right context,
to be traversed
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Recognizing Adjunction

But the algorithm never builds derived trees! It only uses the
elementary trees of the input grammar.

Suppose that the following adjunction took place:

A

A

A

A

A

=

(α) (β) (γ)

w1 w3 w5 w2 w4

w1
w2 w4

w5

w3

We need to traverse the derived tree γ but only have α and β at
our disposal.
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Recognizing Adjunction

If we could traverse γ, we would follow the path

· · · 1′′ · · · 2′′ · · · 3′′ · · · 4′′ · · ·

A

A

A

A

A

(1)
(1') (1" )

(2)

(2" )(2')

(3)

(3" )(3')

(4)
(4') (4" )

(α) (β) (γ)

w1 w3 w5 w2 w4

w1

w3

w5
w2 w4

This can be simulated by traversing α and β such that the dots
around the nodes labeled by A are visited in the following order:

· · · 1 1′ · · · 2′ 2 · · · 3 3′ · · · 4′ · · · 4 · · ·
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Dotted Tree

We introduce the notion of dotted tree.

It consists of:

a tree γ

a dot location (adr , pos)
where
• adr is the Gorn address of

a node in γ.
• pos ∈ {la, lb, rb, ra} is a

relative position.

Definition (Gorn Address)

Given a node n in a tree γ, the Gorn
address of n is:

0, if n is the root

k, if n is the k th child of the root

adr .k, if n is the k th child of the
node at address adr , adr 6= 0

(γ)
Start End

CB

E F G H I

A

D

Example (Dotted trees)

〈γ, 0, la〉 (•A )

〈γ, 3, rb〉 ( D•)

〈γ, 2.1, ra〉 ( E•)
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Equivalent Dot Positions

For the sake of convenience we will consider equivalent two
successive dot positions (according to the tree traversal) that do
not cross a node in the tree.

(γ)

CB

E F G H I

D

A
Example (Equivalent dotted trees)

〈γ, 0, lb〉 ≡ 〈γ, 1, la〉

〈γ, 1, ra〉 ≡ 〈γ, 2, la〉

〈γ, 2, lb〉 ≡ 〈γ, 2.1, la〉
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Chart Items

The algorithm stores intermediate results in a set of items called chart.
Each item contains a dotted elementary tree and the corresponding range
of the input string which has been recognized (by this item).

Definition (Chart Item)

An item is an 8-tuple [γ, adr , pos, i , j , k, l , adj ]
where

γ ∈ I ∪ A is an elementary tree.

adr is the Gorn address of a node in γ.

pos ∈ {la, lb, rb, ra} is a relative position.

i , j , k, l are indices on the input string.
i , l delimit the range spanned by the
dotted node and its left sibling nodes.
j , k delimit the gap below the foot note if
it exists. Otherwise their values are −.

adj ∈ {⊥,>} is a boolean indicating
whether an adjunction has been
recognized at address adr in γ.
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ci+1 c j cl

cj+1 ck

ck+1
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X
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...
X

X
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Outline of the Algorithm

Initialize the chart C with items of the form
[α, 0, la, 0,−,−, 0,⊥], where α ∈ I , root label S .

Then use 4 types of operations to add new items to C:
Scan, Predict, Complete, Adjoin

Operations stated as inference rules:

item1 · · · itemm

item∗
conditions

Add item∗ to C if item1,· · ·, itemm ∈ C and conditions are met.

Accept input string c1 · · · cn if C contains at least one item
[α, 0, ra, 0,−,−, n,⊥], where α ∈ I , root label S .
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Scan Operations

Input string: c1 · · · cn
Input TAG: G = (N,T , I ,A, S)

1
[γ, adr , la, i , j , k, l ,⊥]

[γ, adr , ra, i , j , k, l + 1,⊥]

γ(adr) ∈ T ,

γ(adr) = cl+1

a a

a= c
l+ 1

[ i,j,k,l,⊥] [ i,j,k,l+1,⊥]

2
[γ, adr , la, i , j , k, l ,⊥]

[γ, adr , ra, i , j , k, l ,⊥]
γ(adr) = ε

εε
[ i,j,k,l,⊥] [ i,j,k,l,⊥]
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Predict Operations

1
[γ, adr , la, i , j , k, l ,⊥]

[β, 0, la, l ,−,−, l ,⊥]

γ(adr) ∈ N,

β ∈ SA(γ, adr)

[ l,-,-,l,⊥]

A

A
A

[i,j,k,l,⊥]

2
[γ, adr , la, i , j , k, l ,⊥]

[γ, adr , lb, l ,−,−, l ,⊥]

γ(adr) ∈ N,

OA(γ, adr) = ⊥

[ i,j,k,l,⊥]

A A

[ l,-,-,l,⊥]

3
[β, adr , lb, l ,−,−, l ,⊥]

[γ, adr ′, lb, l ,−,−, l ,⊥]

adr = foot(β),

β ∈ SA(γ, adr ′)

A
[ l,-,-,l,⊥] [ l,-,-,l,⊥]

A

A
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Complete Operations

1
[γ, adr , rb, i , j , k, l ,⊥] [β, adr ′, lb, i ,−,−, i ,⊥]

[β, adr ′, rb, i , i , l , l ,⊥]

adr ′ = foot(β),

β ∈ SA(γ, adr)

A

[ i,-,-,i,⊥]

A

[ i,j,k,l,⊥]

A

A

[ i,i,l,l,⊥]

+
A

2
[γ, adr , rb, i , j , k, l , adj ] [γ, adr , la, h,−,−, i ,⊥]

[γ, adr , ra, h, j , k, l ,⊥]
γ(adr) ∈ N

A

[ i,j,k,l,adj]

+

B

B

A

[h,-,-,i,⊥]

B

B

A

[h,j,k,l,⊥]

B

B

3
[γ, adr , rb, i ,−,−, l , adj ] [γ, adr , la, h, j , k, i ,⊥]

[γ, adr , ra, h, j , k, l ,⊥]
γ(adr) ∈ N

A

[ i,-,-,l,adj]

A

[h,j,k,l,⊥]

A

[h,j,k,i,⊥]

+

39 / 52



Adjoin Operation

[β, 0, ra, i , j , k, l ,⊥] [γ, adr , rb, j , p, q, k,⊥]

[γ, adr , rb, i , p, q, l ,>]
β ∈ SA(γ, adr)

A
[ i,j,k,l,⊥]

A

[ j,p,q,k,⊥] [ i,p,q,l,⊤]

A
+

A
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Recognizer Algorithm

Algorithm (Recognizer; Joshi and Schabes, 1997)

Input: String c1 · · · cn
TAG G = (N,T , I ,A, S) (that only allows adjunction)

Initialize: C :=
{

[α, 0, la, 0,−,−, 0,⊥]
∣∣∣α ∈ I , α(0) = S

}
While

(
new items can be added to C

)
apply the following operations on each item in C:

[γ, adr, la, i, j, k, l,⊥]

[γ, adr, ra, i, j, k, l + 1,⊥]

γ(adr) ∈ T,

γ(adr) = cl+1

[γ, adr, la, i, j, k, l,⊥]

[γ, adr, ra, i, j, k, l,⊥]
γ(adr) = ε

[γ, adr, la, i, j, k, l,⊥]

[β, 0, la, l,−,−, l,⊥]

γ(adr) ∈ N,

β ∈ SA(γ, adr)

[γ, adr, la, i, j, k, l,⊥]

[γ, adr, lb, l,−,−, l,⊥]

γ(adr) ∈ N,

OA(γ, adr) = ⊥

[β, adr, lb, l,−,−, l,⊥]

[γ, adr′, lb, l,−,−, l,⊥]

adr = foot(β),

β ∈ SA(γ, adr′)

[γ, adr, rb, i, j, k, l,⊥]

[β, adr′, lb, i,−,−, i,⊥]

[β, adr′, rb, i, i, l, l,⊥]

adr′ = foot(β),

β ∈ SA(γ, adr)

[γ, adr, rb, i, j, k, l, adj]
[γ, adr, la, h,−,−, i,⊥]

[γ, adr, ra, h, j, k, l,⊥]
γ(adr) ∈ N

[γ, adr, rb, i,−,−, l, adj]
[γ, adr, la, h, j, k, i,⊥]

[γ, adr, ra, h, j, k, l,⊥]
γ(adr) ∈ N

[β, 0, ra, i, j, k, l,⊥]
[γ, adr, rb, j, p, q, k,⊥]

[γ, adr, rb, i, p, q, l,>]
β ∈ SA(γ, adr)

Output: If
(
∃ [α, 0, ra, 0,−,−, n,⊥] ∈ C : α ∈ I , α(0) = S

)
then return acceptance else return rejection
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Recognizer Algorithm

Example (execution of Recognizer)

Input string:
abecd

Input TAG:

S

e

(α)

SNA

dS

cS∗NAb

a

(β)

Gen. language:

{anbne cndn | n ≥ 0}

Input # Item added to chart Operation
read [ γ,adr ,pos, i , j , k, l ,adj]

1. [α, 0, la, 0,−,−,0, ⊥ ] initialization
2. [ β, 0, la, 0,−,−,0, ⊥ ] Pred1(1)
3. [α, 1, la, 0,−,−,0, ⊥ ] Pred2(1)
4. [ β, 1, la, 0,−,−,0, ⊥ ] Pred2(2)

a 5. [ β, 2, la, 0,−,−,1, ⊥ ] Scan1(4)
a 6. [ β, 0, la, 1,−,−,1, ⊥ ] Pred1(5)
a 7. [ β,2.1, la, 1,−,−,1, ⊥ ] Pred2(5)
a 8. [ β, 1, la, 1,−,−,1, ⊥ ] Pred2(6)
ab 9. [ β,2.2, la, 1,−,−,2, ⊥ ] Scan1(7)
ab 10. [ β,2.2, lb, 2,−,−,2, ⊥ ] Pred2(9)
ab 11. [α, 1, la, 2,−,−,2, ⊥ ] Pred3(10)
ab 12. [ β,2.1, la, 2,−,−,2, ⊥ ] Pred3(10)
abe 13. [α, 0, rb, 2,−,−,3, ⊥ ] Scan1(11)
abe 14. [ β,2.2, rb, 2,2, 3,3, ⊥ ] Comp1(13, 10)
abe 15. [ β,2.3, la, 1,2, 3,3, ⊥ ] Comp2(14, 9)
abec 16. [ β, 2, rb, 1,2, 3,4, ⊥ ] Scan1(15)
abec 17. [ β, 3, la, 0,2, 3,4, ⊥ ] Comp2(16, 5)
abecd 18. [ β, 0, rb, 0,2, 3,5, ⊥ ] Scan1(17)
abecd 19. [ β, 0, ra, 0,2, 3,5, ⊥ ] Comp2(18, 2)
abecd 20. [α, 0, rb, 0,−,−,5, > ] Adj(19, 13)
abecd 21. [α, 0, ra, 0,−,−,5, ⊥ ] Comp3(20, 1) 42 / 52



Complexity of Recognizer

Given:
n: length of the input string

G = (N,T , I ,A,S): input TAG

m: maximal number of internal nodes per tree in I ∪ A

Worst-case complexity can be reached by the Adjoin operation:

[β, 0, ra, i , j , k, l ,⊥] [γ, adr , rb, j , p, q, k,⊥]

[γ, adr , rb, i , p, q, l ,>]
β ∈ SA(γ, adr)

At most:
|A| possibilities for β

|I ∪ A| possibilities for γ

m possibilities for adr

n + 2 possibilities per index
(
i , · · · , q ∈ {0, · · · , n} ∪ {−}

)
⇒ Adjoin can be applied at most |A|·|I ∪ A|·m·(n + 2)6 times.

⇒ Time complexity of Recognizer: O(|A|·|I ∪ A|·m·n6)

⇒ For a specific grammar: O(n6)
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Extending Recognizer to a Parser

Recognizer can be easily extended to a parser by
remembering why items were placed into the chart.

We can use items of the form

[γ, adr , pos, i , j , k , l , adj ,P ]

where P is a set of pointers/pairs of pointers to items which
caused the item to exist.

Results in a graph of all possible derivations.

Time complexity remains the same, i.e. O(n6).
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Recognizing Substitution

Recognizer can be extended by two rules for substitution:

PredictSubst :
[γ, adr , lb, i ,−,−, i ,⊥]

[α, 0, la, i ,−,−, i ,⊥]
α ∈ SS(γ, adr)

Substitute :
[α, 0, ra, i ,−,−, l ,⊥]

[γ, adr , rb, i ,−,−, l ,⊥]
α ∈ SS(γ, adr)

SS(γ, adr) ⊆ I : set of trees substitutable at node (γ, adr),

empty if (γ, adr) not a substitution node

Time complexity remains the same, i.e. O(n6).
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LTAG-Spinal Parser

LTAG-spinal:
Roughly speaking, a subset of LTAG, where every elementary tree
is in spinal form (no branching, except for footnodes).

We look at the left-to-right incremental LTAG-spinal parser by
Shen and Joshi (2005), implemented in Java.

Input: POS-tagged sentences

Donald_NNP is_VBZ most_RBS famous_JJ for_IN his_PRP$

semi-intelligible_JJ speech_NN and_CC his_PRP$

explosive_JJ temper_NN ._.
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LTAG-Spinal Parser

Output:

2

root 1

#0 donald

spine: a_( XP NNP^ )

#1 is

spine: a_( S ( VP VBZ^ ) )

att #0, on 0, slot 0, order 0

att #3, on 0.0, slot 1, order 0

att #12, on 0, slot 1, order 0

#2 most

spine: a_RBS^

#3 famous

spine: a_( XP JJ^ )

att #2, on 0, slot 0, order 0

att #4, on 0, slot 1, order 0

#4 for

spine: a_( XP IN^ )

att #7, on 0, slot 1, order 0

#5 his

spine: a_PRP$^

#6 semi-intelligible

spine: a_JJ^

#7 speech

spine: a_( XP NN^ )

att #5, on 0, slot 0, order 0

att #6, on 0, slot 0, order 1

att #11, on 0, slot 1, order 0

#8 and

spine: a_CC^

#9 his

spine: a_PRP$^

#10 explosive

spine: a_JJ^

#11 temper

spine: a_( XP NN^ )

att #8, on 0, slot 0, order 0

att #9, on 0, slot 0, order 1

att #10, on 0, slot 0, order 2

#12 .

spine: a_.^
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LTAG-Spinal Parser
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Graphical representation of the output:

JJ

XP 8 11

Sentence: 2

IN

NN

XP 5 11

JJ 10 10

XP 2 11

PRP$ 9 9

PRP$ 5 5

XP 4 11

JJ 6 6

NNCC 8 8

#9
his

#8
and

#7
speech

#6
semi-intelligible

#5
his

#4
for

#3
famous

#2
most

#1
is

#0
donald

VBZ

VP

. 12 12

RBS 2 2

S 0 12

#12
.

#11
temper

#10
explosive

NNP

XP 0 0



LTAG-Spinal Parser - Tests

Test data: 2401 sentences from section 23 of the Penn Treebank

Test system of Shen and Joshi (2005):
2 × 1.13 GHz Pentium III, 2 GB RAM

By varying some settings of
their algorithm, they get:

sen/sec f-score (%)

0.79 88.7
...

...

0.07 94.2

Our test system (stromboli):
16 × 2.80 GHz Xeon X5560, 35 GB RAM

I performed two series of
measurements:

• default settings

• settings closer to S&J ?

sen/sec f-score (%)

10.20 ?

3.22 ?
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Conclusion

TAG: a grammar formalism related to CFG, but more powerful

Very interesting from the theoretical point of view
(mathematical and linguistical)

Parsable in polynomial time, but with a high exponent: O(n6)

Some recent research focuses on a subset, LTAG-spinal.
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