
Lexicalized Tree-Adjoining Grammars (LTAG)

Fabian Reiter

January 18, 2012

Our Goal

We want to generate syntax trees like this:

S

VP

VP

NP

N

elephant

D

the

V

chases

often

NP

N

penguin

D

the

2 / 52

Context-Free Grammars

Definition (Context-Free Grammar)

A context-free grammar (CFG) is a 4-tuple G = (N,T ,P,S)
where:

N is a finite set of non-terminal symbols.

T is a finite set of terminal symbols, N ∩ T = ∅.
P ⊆ N × (N ∪ T)∗ is a finite set of production rules.

S ∈ N is a specific start symbol.

Example

G = (N,T ,P, S)
where:

N = {S, NP, D, N, VP, V}

T = {often, chases, helps,
the, penguin, elephant}

P : S→ NP VP
NP→ D N

D→ the
N→ penguin

∣∣ elephant
VP→ often VP

∣∣V NP
V→ chases

∣∣ helps

3 / 52

Context-Free Grammars

Example (Derivation with a CFG)

G = (N,T ,P,S)
where:

N = {S, NP, D, N, VP, V}

T = {often, chases, helps,
the, penguin, elephant}

P : S→ NP VP
NP→ D N

D→ the

N→ penguin
∣∣ elephant

VP→ often VP
∣∣V NP

V→ chases
∣∣ helps

S

VP

VP

NP

N

elephant

D

the

V

chases

often

NP

N

penguin

D

the

4 / 52

Tree-Substitution Grammars

Example (Derivation with a TSG)

Initial trees: S

VP↓NP↓

NP

N↓D↓

D

the

N

penguin

N

elephant

VP

VP↓often

VP

NP↓V↓

V

chases

V

helps

A derived tree: S

VP

VP

NP

N

elephant

D

the

V

chases

often

NP

N

penguin

D

the

5 / 52

Tree-Adjoining Grammars

Example (Derivation with a TAG)

Initial trees: S

VP

NP↓V

chases

NP↓

NP

N

penguin

D↓

NP

N

elephant

D↓

D

the

Auxiliary tree: VP

VP∗often

A derived tree: S

VP

VP

NP

N

elephant

D

the

V

chases

often

NP

N

penguin

D

the

6 / 52

Outline

1 Why CFGs are not enough (for linguists)

2 Introduction to Tree-Adjoining Grammars

3 An Algorithm for Parsing TAGs

4 LTAG-Spinal Parser

7 / 52

Outline

1 Why CFGs are not enough (for linguists)
Generative capacity
Lexicalization

2 Introduction to Tree-Adjoining Grammars

3 An Algorithm for Parsing TAGs

4 LTAG-Spinal Parser

8 / 52

Cross-Serial Dependencies

Example (Swiss German; Shieber, 1985)

. . . that we HansDAT houseACC helped paint

. . . das mer em Hans es huus hälfed aastriiche

b a b a

‘. . . that we helped Hans paint the house’

. . . that we the childrenACC HansDAT houseACC let help paint

. . . das mer d’chind em Hans es huus lönd hälfe aastriiche

a b a a b a

‘. . . that we let the children help Hans paint the house’

This can be reduced to the copy language {ww |w ∈ {a, b}∗}
which is not context-free.

9 / 52

Lexicalization

A grammar is lexicalized if each elementary structure is associated
with at least one lexical item (terminal symbol), called its anchor.

Example (Lexicalized CFG)

S→ Mary V
∣∣ John V

V→ runs

Example (Non-lex. CFG)

S→ N V

N→ Mary
∣∣ John

V→ runs

Weak lexicalization of a grammar:
Find a lexicalized grammar generating the same string language.

Strong lexicalization of a grammar:
Find a lexicalized grammar generating the same tree language.

10 / 52

Lexicalization

Example (Lexicalized initial trees)

NP

N

Mary

S

VP

NP↓V

eats

NP↓

S

VP

PP

NP

N

account

P

into

NP↓V

takes

NP↓

Example (Non-lexicalized initial trees)

NP

N↓D↓

S

VP↓NP↓

S

VP

NP↓V↓

NP↓

11 / 52

Why Lexicalization?

Syntactic structures associated with single words can be seen
as more powerful POS-tags (“supertags”).

Example (Transitive vs. intransitive verb)

S

VP

NP↓V

eats

NP↓
S

VP

V

sleeps

NP↓

(Finite) lexicalized grammars are finitely ambiguous.
⇒ The generated string languages are decidable.

Lexicalization is useful for parsing since it allows us to
drastically restrict the search space (as a preprocessing step).

12 / 52

Lexicalization

Example (CFG which is not strongly lexicalizable with a TSG)

Consider the following CFG: S→ SS
S→ a

An intuitive approach to lexicalize
it with a TSG might be:

S

a

S

S

a

S↓

S

S↓S

a
But this is not a strong lexicalization
because it cannot generate the following
tree (which the CFG can generate):

S

S

S

a

S

a

S

S

a

S

a

Problem: In TSGs the distance between two nodes in the same
initial tree cannot increase during derivation.

13 / 52

Linguistic Shortcomings of CFG

Proposition (Shieber, 1985)

The language L of Swiss German is not context-free.

Proposition (Joshi and Schabes, 1997)

CFG cannot be strongly lexicalized by TSG (or CFG).

14 / 52

Outline

1 Why CFGs are not enough (for linguists)

2 Introduction to Tree-Adjoining Grammars
The formalism
What we can do with it

3 An Algorithm for Parsing TAGs

4 LTAG-Spinal Parser

15 / 52

Tree-Adjoining Grammars

Definition (Tree-Adjoining Grammar)

A tree-adjoining grammar (TAG) is a 5-tuple G = (N,T , I ,A, S)
where:

N is a finite set of non-terminal symbols.

T is a finite set of terminal symbols, N ∩ T = ∅.
I is a finite set of initial trees.

A is a finite set of auxiliary trees.

S ∈ N is a specific start symbol.

The trees in I ∪ A are called elementary trees.

A Tree-Substitution Grammar (TSG) is defined analogously as a
4-tuple G = (N,T , I , S), i.e. a TAG without auxiliary trees.

16 / 52

Initial Trees

Definition (Initial Tree)

An initial tree is characterized as follows:

Internal nodes are only labeled by non-terminal symbols.

Leaf nodes are labeled by terminals or non-terminals.
If a leaf is labeled by a non-terminal, it is marked as
substitution node (indicated by the symbol “↓”).

Example

D

a

NP

N

cat

D↓

NP

N

Mary

S

VP

NP↓V

saw

NP↓

S

VP

PP

NP↓P

to

NP↓V

gives

NP↓

17 / 52

Auxiliary Trees

Definition (Auxiliary Tree)

An auxiliary tree has the same properties as an initial tree apart
from one exception:

Exactly one of the leaves labeled by a non-terminal is marked
as the foot node (indicated by the symbol “∗”) instead of
being marked for substitution. The label of the foot node
must be identical to the label of the root node.

Example

N

N∗A

green

A

A∗Adv

very

S

S∗Adv

yesterday

S

VP

S

S∗Comp

that

V

thinks

NP↓

18 / 52

Substitution

Definition (Substitution)

Let γ be a tree containing a substitution node n labeled by X and
α an initial tree whose root node is also labeled by X.

By applying the substitution operation on (γ, n) and α, one gets a
copy γ′ of γ in which n has been replaced by α. If γ, n, α do not
fulfill the above conditions, the operation is undefined.

S

X

S

X

X

γ α γ′

19 / 52

Substitution

Example (Substitution)

NP

N

Mary

S

VP

NP↓V

saw

NP↓

D

a

NP

N

cat

D↓

S

VP

NP

N

cat

D

a

V

saw

NP

N

Mary

20 / 52

Adjunction

Definition (Adjunction)

Let γ be a tree containing an internal node n labeled by X and
β an auxiliary tree whose root node is also labeled by X.

By applying the adjunction operation on (γ, n) and β, one gets a
copy γ′ of γ in which β has taken the place of the subtree t rooted
by n and t has been attached to the foot node of β. If γ, n, β do
not fulfill the above conditions, the operation is undefined.

S

X

S

X
X

γ γ′β

X∗
X∗

21 / 52

Adjunction

Example (Adjunction)

S

VP

NP

N

cat

D

a

V

saw

NP

N

Mary

S

S∗Adv

yesterday

N

N∗A

green
S

S

VP

NP

N

N

cat

A

green

D

a

V

saw

NP

N

Mary

Adv

yesterday

22 / 52

Adjunction Constraints

Given TAG G = (N,T , I ,A,S)
We specify for each node n of a tree in I ∪ A:

OA ∈ {⊥,>} : obligatory adjunction
Boolean specifying whether adjunction at n is mandatory

SA ⊆ A : selective adjunction
Set of auxiliary trees authorized for adjunction at n

Also often used:

NA ∈ {⊥,>} : null adjunction
Shorthand for the special case OA = ⊥ ∧ SA = ∅

Remarks

• OA = > ∧ SA = ∅ is not allowed.

• β ∈ SA(n) only if root label of β equal to label of n.

• Substitution nodes must have NA = >.

23 / 52

Cross-Serial Dependencies

Example (TAG for the copy language)

Generated string language:
{ww |w ∈ {a, b}∗}

S

ε

SNA

a
S

S∗NA

a

SNA

b
S

S∗NA
b

Elementary trees

SNA

a
S

S∗NA

ε

a

SNA

a
SNA

b
S

S∗NA

S∗NA

ε

a

b

Some derived trees

24 / 52

Lexicalization

Example (strong lexicalization of a CFG with a TAG)

Consider again the following CFG: S→ SS
S→ a

It can be easily lexicalized with a
TAG by using adjunction:

S

a

S

S

a

S∗

By successive adjunction we get the following derived trees:

S

a

S

S

a

S

a

S

S

S

a

S

a

S

a

S

S

S

a

S

a

S

S

a

S

a

25 / 52

Lexicalization

Proposition (Joshi and Schabes, 1997)

Finitely ambiguous CFGs can be strongly lexicalized by TAGs.

Proposition (Joshi and Schabes, 1997)

Finitely ambiguous TAGs are closed under strong lexicalization.

26 / 52

Further Formal Properties of TAL

Tree-Adjoining Languages (TAL) have interesting formal
properties, similar to those of context-free languages:

TALs are closed under union, concatenation, iteration,
substitution and intersection with regular languages.

There is a pumping lemma for TAL.

There is a class of automata which recognizes TAL:
Embedded Push-Down Automata (EPDA).

TALs can be parsed in polynomial time.

27 / 52

Outline

1 Why CFGs are not enough (for linguists)

2 Introduction to Tree-Adjoining Grammars

3 An Algorithm for Parsing TAGs
Preliminaries
The Recognizer Algorithm
Complexity and Extensibility

4 LTAG-Spinal Parser

28 / 52

TAG Parsing

Parser: Given a string s and a TAG G = (N,T , I ,A,S),
find all derived trees in Ltree(G) which yield s.

We will start with a simpler problem:
Recognizer: Given a string s and a TAG G = (N,T , I ,A, S),
decide whether s ∈ Lstring (G).

Further simplification:
We will only consider the adjunction operation for now.

29 / 52

Tree Traversal

The algorithm will traverse every eligible derived tree (Euler tour)
while scanning the input string from left to right.

Start End

CB

E F G H I

A

D

Left context,
already traversed

A

Right context,
to be traversed

30 / 52

Recognizing Adjunction

But the algorithm never builds derived trees! It only uses the
elementary trees of the input grammar.

Suppose that the following adjunction took place:

A

A

A

A

A

=

(α) (β) (γ)

w1 w3 w5 w2 w4

w1
w2 w4

w5

w3

We need to traverse the derived tree γ but only have α and β at
our disposal.

31 / 52

Recognizing Adjunction

If we could traverse γ, we would follow the path

· · · 1′′ · · · 2′′ · · · 3′′ · · · 4′′ · · ·

A

A

A

A

A

(1)
(1') (1")

(2)

(2")(2')

(3)

(3")(3')

(4)
(4') (4")

(α) (β) (γ)

w1 w3 w5 w2 w4

w1

w3

w5
w2 w4

This can be simulated by traversing α and β such that the dots
around the nodes labeled by A are visited in the following order:

· · · 1 1′ · · · 2′ 2 · · · 3 3′ · · · 4′ · · · 4 · · ·
32 / 52

Dotted Tree

We introduce the notion of dotted tree.

It consists of:

a tree γ

a dot location (adr , pos)
where
• adr is the Gorn address of

a node in γ.
• pos ∈ {la, lb, rb, ra} is a

relative position.

Definition (Gorn Address)

Given a node n in a tree γ, the Gorn
address of n is:

0, if n is the root

k, if n is the k th child of the root

adr .k, if n is the k th child of the
node at address adr , adr 6= 0

(γ)
Start End

CB

E F G H I

A

D

Example (Dotted trees)

〈γ, 0, la〉 (•A)

〈γ, 3, rb〉 (D•)

〈γ, 2.1, ra〉 (E•)

33 / 52

Equivalent Dot Positions

For the sake of convenience we will consider equivalent two
successive dot positions (according to the tree traversal) that do
not cross a node in the tree.

(γ)

CB

E F G H I

D

A
Example (Equivalent dotted trees)

〈γ, 0, lb〉 ≡ 〈γ, 1, la〉

〈γ, 1, ra〉 ≡ 〈γ, 2, la〉

〈γ, 2, lb〉 ≡ 〈γ, 2.1, la〉

34 / 52

Chart Items

The algorithm stores intermediate results in a set of items called chart.
Each item contains a dotted elementary tree and the corresponding range
of the input string which has been recognized (by this item).

Definition (Chart Item)

An item is an 8-tuple [γ, adr , pos, i , j , k, l , adj]
where

γ ∈ I ∪ A is an elementary tree.

adr is the Gorn address of a node in γ.

pos ∈ {la, lb, rb, ra} is a relative position.

i , j , k, l are indices on the input string.
i , l delimit the range spanned by the
dotted node and its left sibling nodes.
j , k delimit the gap below the foot note if
it exists. Otherwise their values are −.

adj ∈ {⊥,>} is a boolean indicating
whether an adjunction has been
recognized at address adr in γ.

35 / 52

(γ)

ci+1 c j cl

cj+1 ck

ck+1

Xz

X

...X1 ... Xy

...

...

...
X

X

... ...

0

Outline of the Algorithm

Initialize the chart C with items of the form
[α, 0, la, 0,−,−, 0,⊥], where α ∈ I , root label S .

Then use 4 types of operations to add new items to C:
Scan, Predict, Complete, Adjoin

Operations stated as inference rules:

item1 · · · itemm

item∗
conditions

Add item∗ to C if item1,· · ·, itemm ∈ C and conditions are met.

Accept input string c1 · · · cn if C contains at least one item
[α, 0, ra, 0,−,−, n,⊥], where α ∈ I , root label S .

36 / 52

Scan Operations

Input string: c1 · · · cn
Input TAG: G = (N,T , I ,A, S)

1
[γ, adr , la, i , j , k, l ,⊥]

[γ, adr , ra, i , j , k, l + 1,⊥]

γ(adr) ∈ T ,

γ(adr) = cl+1

a a

a= c
l+ 1

[i,j,k,l,⊥] [i,j,k,l+1,⊥]

2
[γ, adr , la, i , j , k, l ,⊥]

[γ, adr , ra, i , j , k, l ,⊥]
γ(adr) = ε

εε
[i,j,k,l,⊥] [i,j,k,l,⊥]

37 / 52

Predict Operations

1
[γ, adr , la, i , j , k, l ,⊥]

[β, 0, la, l ,−,−, l ,⊥]

γ(adr) ∈ N,

β ∈ SA(γ, adr)

[l,-,-,l,⊥]

A

A
A

[i,j,k,l,⊥]

2
[γ, adr , la, i , j , k, l ,⊥]

[γ, adr , lb, l ,−,−, l ,⊥]

γ(adr) ∈ N,

OA(γ, adr) = ⊥

[i,j,k,l,⊥]

A A

[l,-,-,l,⊥]

3
[β, adr , lb, l ,−,−, l ,⊥]

[γ, adr ′, lb, l ,−,−, l ,⊥]

adr = foot(β),

β ∈ SA(γ, adr ′)

A
[l,-,-,l,⊥] [l,-,-,l,⊥]

A

A

38 / 52

Complete Operations

1
[γ, adr , rb, i , j , k, l ,⊥] [β, adr ′, lb, i ,−,−, i ,⊥]

[β, adr ′, rb, i , i , l , l ,⊥]

adr ′ = foot(β),

β ∈ SA(γ, adr)

A

[i,-,-,i,⊥]

A

[i,j,k,l,⊥]

A

A

[i,i,l,l,⊥]

+
A

2
[γ, adr , rb, i , j , k, l , adj] [γ, adr , la, h,−,−, i ,⊥]

[γ, adr , ra, h, j , k, l ,⊥]
γ(adr) ∈ N

A

[i,j,k,l,adj]

+

B

B

A

[h,-,-,i,⊥]

B

B

A

[h,j,k,l,⊥]

B

B

3
[γ, adr , rb, i ,−,−, l , adj] [γ, adr , la, h, j , k, i ,⊥]

[γ, adr , ra, h, j , k, l ,⊥]
γ(adr) ∈ N

A

[i,-,-,l,adj]

A

[h,j,k,l,⊥]

A

[h,j,k,i,⊥]

+

39 / 52

Adjoin Operation

[β, 0, ra, i , j , k, l ,⊥] [γ, adr , rb, j , p, q, k,⊥]

[γ, adr , rb, i , p, q, l ,>]
β ∈ SA(γ, adr)

A
[i,j,k,l,⊥]

A

[j,p,q,k,⊥] [i,p,q,l,⊤]

A
+

A

40 / 52

Recognizer Algorithm

Algorithm (Recognizer; Joshi and Schabes, 1997)

Input: String c1 · · · cn
TAG G = (N,T , I ,A, S) (that only allows adjunction)

Initialize: C :=
{

[α, 0, la, 0,−,−, 0,⊥]
∣∣∣α ∈ I , α(0) = S

}
While

(
new items can be added to C

)
apply the following operations on each item in C:

[γ, adr, la, i, j, k, l,⊥]

[γ, adr, ra, i, j, k, l + 1,⊥]

γ(adr) ∈ T,

γ(adr) = cl+1

[γ, adr, la, i, j, k, l,⊥]

[γ, adr, ra, i, j, k, l,⊥]
γ(adr) = ε

[γ, adr, la, i, j, k, l,⊥]

[β, 0, la, l,−,−, l,⊥]

γ(adr) ∈ N,

β ∈ SA(γ, adr)

[γ, adr, la, i, j, k, l,⊥]

[γ, adr, lb, l,−,−, l,⊥]

γ(adr) ∈ N,

OA(γ, adr) = ⊥

[β, adr, lb, l,−,−, l,⊥]

[γ, adr′, lb, l,−,−, l,⊥]

adr = foot(β),

β ∈ SA(γ, adr′)

[γ, adr, rb, i, j, k, l,⊥]

[β, adr′, lb, i,−,−, i,⊥]

[β, adr′, rb, i, i, l, l,⊥]

adr′ = foot(β),

β ∈ SA(γ, adr)

[γ, adr, rb, i, j, k, l, adj]
[γ, adr, la, h,−,−, i,⊥]

[γ, adr, ra, h, j, k, l,⊥]
γ(adr) ∈ N

[γ, adr, rb, i,−,−, l, adj]
[γ, adr, la, h, j, k, i,⊥]

[γ, adr, ra, h, j, k, l,⊥]
γ(adr) ∈ N

[β, 0, ra, i, j, k, l,⊥]
[γ, adr, rb, j, p, q, k,⊥]

[γ, adr, rb, i, p, q, l,>]
β ∈ SA(γ, adr)

Output: If
(
∃ [α, 0, ra, 0,−,−, n,⊥] ∈ C : α ∈ I , α(0) = S

)
then return acceptance else return rejection

41 / 52

Recognizer Algorithm

Example (execution of Recognizer)

Input string:
abecd

Input TAG:

S

e

(α)

SNA

dS

cS∗NAb

a

(β)

Gen. language:

{anbne cndn | n ≥ 0}

Input # Item added to chart Operation
read [γ,adr ,pos, i , j , k, l ,adj]

1. [α, 0, la, 0,−,−,0, ⊥] initialization
2. [β, 0, la, 0,−,−,0, ⊥] Pred1(1)
3. [α, 1, la, 0,−,−,0, ⊥] Pred2(1)
4. [β, 1, la, 0,−,−,0, ⊥] Pred2(2)

a 5. [β, 2, la, 0,−,−,1, ⊥] Scan1(4)
a 6. [β, 0, la, 1,−,−,1, ⊥] Pred1(5)
a 7. [β,2.1, la, 1,−,−,1, ⊥] Pred2(5)
a 8. [β, 1, la, 1,−,−,1, ⊥] Pred2(6)
ab 9. [β,2.2, la, 1,−,−,2, ⊥] Scan1(7)
ab 10. [β,2.2, lb, 2,−,−,2, ⊥] Pred2(9)
ab 11. [α, 1, la, 2,−,−,2, ⊥] Pred3(10)
ab 12. [β,2.1, la, 2,−,−,2, ⊥] Pred3(10)
abe 13. [α, 0, rb, 2,−,−,3, ⊥] Scan1(11)
abe 14. [β,2.2, rb, 2,2, 3,3, ⊥] Comp1(13, 10)
abe 15. [β,2.3, la, 1,2, 3,3, ⊥] Comp2(14, 9)
abec 16. [β, 2, rb, 1,2, 3,4, ⊥] Scan1(15)
abec 17. [β, 3, la, 0,2, 3,4, ⊥] Comp2(16, 5)
abecd 18. [β, 0, rb, 0,2, 3,5, ⊥] Scan1(17)
abecd 19. [β, 0, ra, 0,2, 3,5, ⊥] Comp2(18, 2)
abecd 20. [α, 0, rb, 0,−,−,5, >] Adj(19, 13)
abecd 21. [α, 0, ra, 0,−,−,5, ⊥] Comp3(20, 1) 42 / 52

Complexity of Recognizer

Given:
n: length of the input string

G = (N,T , I ,A,S): input TAG

m: maximal number of internal nodes per tree in I ∪ A

Worst-case complexity can be reached by the Adjoin operation:

[β, 0, ra, i , j , k, l ,⊥] [γ, adr , rb, j , p, q, k,⊥]

[γ, adr , rb, i , p, q, l ,>]
β ∈ SA(γ, adr)

At most:
|A| possibilities for β

|I ∪ A| possibilities for γ

m possibilities for adr

n + 2 possibilities per index
(
i , · · · , q ∈ {0, · · · , n} ∪ {−}

)
⇒ Adjoin can be applied at most |A|·|I ∪ A|·m·(n + 2)6 times.

⇒ Time complexity of Recognizer: O(|A|·|I ∪ A|·m·n6)

⇒ For a specific grammar: O(n6)

43 / 52

Extending Recognizer to a Parser

Recognizer can be easily extended to a parser by
remembering why items were placed into the chart.

We can use items of the form

[γ, adr , pos, i , j , k , l , adj ,P]

where P is a set of pointers/pairs of pointers to items which
caused the item to exist.

Results in a graph of all possible derivations.

Time complexity remains the same, i.e. O(n6).

44 / 52

Recognizing Substitution

Recognizer can be extended by two rules for substitution:

PredictSubst :
[γ, adr , lb, i ,−,−, i ,⊥]

[α, 0, la, i ,−,−, i ,⊥]
α ∈ SS(γ, adr)

Substitute :
[α, 0, ra, i ,−,−, l ,⊥]

[γ, adr , rb, i ,−,−, l ,⊥]
α ∈ SS(γ, adr)

SS(γ, adr) ⊆ I : set of trees substitutable at node (γ, adr),

empty if (γ, adr) not a substitution node

Time complexity remains the same, i.e. O(n6).

45 / 52

Outline

1 Why CFGs are not enough (for linguists)

2 Introduction to Tree-Adjoining Grammars

3 An Algorithm for Parsing TAGs

4 LTAG-Spinal Parser

46 / 52

LTAG-Spinal Parser

LTAG-spinal:
Roughly speaking, a subset of LTAG, where every elementary tree
is in spinal form (no branching, except for footnodes).

We look at the left-to-right incremental LTAG-spinal parser by
Shen and Joshi (2005), implemented in Java.

Input: POS-tagged sentences

Donald_NNP is_VBZ most_RBS famous_JJ for_IN his_PRP$

semi-intelligible_JJ speech_NN and_CC his_PRP$

explosive_JJ temper_NN ._.

47 / 52

LTAG-Spinal Parser

Output:

2

root 1

#0 donald

spine: a_(XP NNP^)

#1 is

spine: a_(S (VP VBZ^))

att #0, on 0, slot 0, order 0

att #3, on 0.0, slot 1, order 0

att #12, on 0, slot 1, order 0

#2 most

spine: a_RBS^

#3 famous

spine: a_(XP JJ^)

att #2, on 0, slot 0, order 0

att #4, on 0, slot 1, order 0

#4 for

spine: a_(XP IN^)

att #7, on 0, slot 1, order 0

#5 his

spine: a_PRP$^

#6 semi-intelligible

spine: a_JJ^

#7 speech

spine: a_(XP NN^)

att #5, on 0, slot 0, order 0

att #6, on 0, slot 0, order 1

att #11, on 0, slot 1, order 0

#8 and

spine: a_CC^

#9 his

spine: a_PRP$^

#10 explosive

spine: a_JJ^

#11 temper

spine: a_(XP NN^)

att #8, on 0, slot 0, order 0

att #9, on 0, slot 0, order 1

att #10, on 0, slot 0, order 2

#12 .

spine: a_.^
48 / 52

LTAG-Spinal Parser

49 / 52

Graphical representation of the output:

JJ

XP 8 11

Sentence: 2

IN

NN

XP 5 11

JJ 10 10

XP 2 11

PRP$ 9 9

PRP$ 5 5

XP 4 11

JJ 6 6

NNCC 8 8

#9
his

#8
and

#7
speech

#6
semi-intelligible

#5
his

#4
for

#3
famous

#2
most

#1
is

#0
donald

VBZ

VP

. 12 12

RBS 2 2

S 0 12

#12
.

#11
temper

#10
explosive

NNP

XP 0 0

LTAG-Spinal Parser - Tests

Test data: 2401 sentences from section 23 of the Penn Treebank

Test system of Shen and Joshi (2005):
2 × 1.13 GHz Pentium III, 2 GB RAM

By varying some settings of
their algorithm, they get:

sen/sec f-score (%)

0.79 88.7
...

...

0.07 94.2

Our test system (stromboli):
16 × 2.80 GHz Xeon X5560, 35 GB RAM

I performed two series of
measurements:

• default settings

• settings closer to S&J ?

sen/sec f-score (%)

10.20 ?

3.22 ?

50 / 52

Conclusion

TAG: a grammar formalism related to CFG, but more powerful

Very interesting from the theoretical point of view
(mathematical and linguistical)

Parsable in polynomial time, but with a high exponent: O(n6)

Some recent research focuses on a subset, LTAG-spinal.

51 / 52

References

Joshi, A. K. and Schabes, Y. (1997)
Tree-Adjoining Grammars.
In Salomma, A. and Rosenberg, G., editors, Handbook of Formal
Languages and Automata, volume 3, pages 69–124. Springer.

Kallmeyer, L. (2010)
Parsing Beyond Context-Free Grammars.
Springer.

Abeillé, A. and Rambow, O. (2000)
Tree Adjoining Grammar: An Overview.
In Abeillé, A. and Rambow, O., editors, Tree Adjoining Grammars:
Formalisms, Linguistic Analyses and Processing, volume 107 of CSLI
Lecture Notes, pages 1–68. CSLI Publications, Stanford.

Shen, L. and Joshi, A. K. (2005)
Incremental LTAG Parsing.
In Proceedings of the Human Language Technology Conference /
Conference of Empirical Methods in Natural Language Processing
(HLT/EMNLP).

52 / 52

	Why CFGs are not enough (for linguists)
	Generative capacity
	Lexicalization

	Introduction to Tree-Adjoining Grammars
	The formalism
	What we can do with it

	An Algorithm for Parsing TAGs
	Preliminaries
	The Recognizer Algorithm
	Complexity and Extensibility

	LTAG-Spinal Parser

