Perceptrons

PARASTOU KOHVAEI

01.02.2012

ALBERT-LUDWIGS-UNIVERSITÄT
FREIBURG
DEPARTMENT OF COMPUTER SCIENCE
CHAIR FOR ALGORITHMS AND DATA
STRUCTURES

Outline

Introduction

Perceptron

Learning Perceptrons

Limitations and Enhancements

Applications

Summary

Intro

- Machine learning is a branch of artificial intelligence which is about building computer systems that automatically improve with experience.
- In machine learning, Pattern Recognition is the assignment of a label to a given input value. (i.e., part of speech tagging)
- Classification is one example of Pattern Recognition. (i.e., spam filtering)
- Classification is the algorithmic process of classifying input data into categories according to shared qualities or characteristics.
- Classifier: A system that performs classification by means of a function inferred from a set of training data

Perceptron

- The simplest type of Artificial Neural Network
- Artificial Neural Networks are mathematical models of Biological Neural Networks.
- Perceptron is a Binary Classifier. It classifies input data into two groups: "True" or "False".

History and Origins

 Rooted from works in Neurological Science field (early 20th century) and a simple model of a nerve cell

- First introduced in a paper in 1943
- Completed and presented in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt

Structure

• Multiple inputs, each input line having it's own weight

• An activation function, which activates the perceptron and forms the output; usually step function or a threshold function like Sigmoid function.

What Can Perceptrons Do?

- Perceptrons are linear classifiers.
- Linearly separable sets can be separated by straight lines.

Feature Vectors

- Feature : Any distinctive aspect, quality, or characteristic of an entity
 - Example: Symbolic (i.e. color) or numeric (i.e. height)
- Feature Vector: The combination of numerical features in an n-dimensional vector
- Used in many algorithms of pattern recognition and machine learning

Learning Perceptrons

- N-dimensional feature vector as input
- Having *w* as weights vector and *x* as feature vector and *w*. *x* as the dot-product of the two:

$$f(x) = 1 if w.x + b > 0$$
$$0 otherwise$$

Original Perceptrons use step function as activation function.

Learning Algorithm

- A 3-phase algorithm: Initialization, Iteration, Termination
- Different learning algorithms according to the way the output of the Perceptron is used for modifying the weights
- As the simplest method, learning algorithm uses the output of the step function.

Initialization

- Randomly chosen weights (w(i))
- Training set consisting of feature vectors (x(i))
- A constant bias value, this value can change the position of the separating line (b)
- Relatively low learning rate, it is the modification rate for weights. (α)

Iteration

 Weights and bias are modified for a given vector over iteration

$$w(i) = w(i) + \alpha[actual\ output - desired\ output] * x(i)$$

$$b = b + \alpha[actual\ output - desired\ output]$$

This repeats for every member in the training set

Termination

- Weights do not change.
- The perceptron classifies correctly.

Note: Convergence guaranteed for linearly separable sets

Example: NAND Gate

- A perceptron learning the binary NAND
 - o x_0 and x_1 and x_2 as input, with x_0 held constant at 1
 - \circ Bias = 0
 - \circ Threshold = 0.5
 - Learning Rate = 0.1
 - o Training set $\{((0,0),1),((0,1),1),((1,0),1),((1,1),0)\}$

Learning Table

	Ι	npu	ıt	Initial			Output	Error	rror Final Weights		nts
				Weights							
x_0	x_1	x_3	Desired Output (z)	w_0	w_1	w_2	Network (n)	z - n	w_0	w_1	w_2
1	1	0	1	0	0	О	0	1	0.1	0	0
1	0	1	1	0.1	0	O	0	1	0.2	0	0.1
1	1	0	1	0.2	0	0.1	0	1	0.3	0.1	0.1
1	1	1	О	0.3	0.1	0.1	0	0	0.3	0.1	0.1
after 9 iterations											
1	1	0	1	0.8	-0.2	-0.1	1	0	0.8	-0.2	-0.1
1	1	1	O	0.8	-0.2	-0.1	0	O	0.8	-0.2	-0.1
1	O	0	1	0.8	-0.2	-0.1	1	O	0.8	-0.2	-0.1
1	0	1	1	0.8	-0.2	-0.1	1	0	0.8	-0.2	-0.1

Limitations And Enhancements

• Limited output values (True or False)

Not applicable to non-linearly separable entities

Most famous example: boolean XOR

Graph Comparison of NAND and XOR

NAND on two inputs

XOR on two inputs

Evolution to MLPs

- Introduced in 1980's as a development of the perceptron
- They contain middle hidden layers of processing units.
- Hidden layers detect specific features in the input.
- Capable of solving more challenging problems in AI

Multi-layer Perceptron

Each layer is fully connected to the next one.

Nodes have their own weight vector and activation function.

MLP Construction

 Multiple layers and layer units based on the classification function complexity

Problem-specific number of input and output units

None-linear and differentiable activation functions

Learning MLPs

- Backpropagation mostly used as the learning algorithm
- Two phases: Propagation and Weight Update
 - Forward and backward propagation of training values and output respectively
 - Calculating and adjusting weight gradients, e.g. the direction in which the weight is growing, to reduce error
- Iteration over two phases

Applications

- MLPs are used in Natural Language Processing, Image and Speech Recognition and Cyber Security.
- Currently they are used in research areas which involve complex approximations.
- They are themselves subject of ongoing research in Computational Neuroscience and Parallel Distributed Processing.

Summary

- Perceptrons are simple algorithms widely used in classification problems.
- Multilayer perceptrons are extensions which can recognize more complex patterns.
- Perceptrons have opened the way for a myriad of applications in artificial intelligence.
- Their impact has been remarkable.

Main References

Estebon, M. (Spring 1997).Perceptrons: An Associative Learning Network.
 Virginia Tech CS 3604. Retrieved from

http://www.ccs.fau.edu/~bressler/EDU/CompNeuro/Resources/Estebon Perceptrons.pdf

- History of the Perceptron.(2012, Jan 31). Retrieved from http://www.csulb.edu/~cwallis/artificialn/History.htm
- Wikipedia.(2012, Jan 27).Multi Layer Perceptron. Retrieved from http://en.wikipedia.org/wiki/Multilayer_perceptron
- Wikipedia.(2012, Jan 25).Perceptron. Retrieved from http://en.wikipedia.org/wiki/Perceptron
- Weisman, O. & Pollak, Z. (1995, Aug 13). Retrieved from http://www.cs.bgu.ac.il/~omri/Perceptron/
- Kuro5hin.(2003, Nov 12).Perceptrons: Intro to machine Learning. Retrieved from

http://www.kuro5hin.org/story/2003/11/11/17383/475

Appendix A

• The perceptron applet:

http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletPerceptron.html