Part-of-speech Tagging

Felix Ruzzoli

Albert-Ludwigs-Universität Freiburg

14. November 2011

- Part-of-speech Tagging
 - The Idea
 - Problems
 - The Solutions
 - Maximum entropy
 - Profiling
 - The end

Part-of-speech

Part-of-speech, also word class or lexical category

Part-of-speech

Simplified:

- nouns
- verbs
- adjectives
- adverbs

Part-of-speech

More complex and suited for computer analysis:

Tag	Meaning	Example
DT	Determiner	the
VBZ	Verb, 3rd person singular present	takes
JJ	Adjective	green
NN	Noun, singular or mass	table
IN	Preposition or subordinating conjunction	in, of
NNP	Proper noun, singular	John

The Brown Corpus

The Brown Corpus

- developed at Brown University
- by Henry Kucera and Nelson Francis
- in the mid-1960s
- pioneered the field of corpus linguistics

The Brown Corpus

- 500 Text samples
- about 1 million words
- compiled from works published in the U.S.

Today the Penn Treebank is most widely used.

- Part-of-speech Tagging
 - The Idea
 - Problems
 - The Solutions
 - Maximum entropy
 - Profiling
 - The end

Ambiguities

Trust nobody!

VS.

Invest in the family trust.

Ambiguities

First case: *Trust* is a verb.

Second case: *trust* is a noun.

How to distuingish between the two?

Real Ambiguities

The Duchess was entertaining last night.

No way to find the POS of 'entertaining'. Even for a human.

Word vs. Token

- don't
- vice versa
- John's

- Part-of-speech Tagging
 - The Idea
 - Problems
 - The Solutions
 - Maximum entropy
 - Profiling
 - The end

Simple Tagging

The baseline approach:

- Count how often a certain word is tagged with a certain category
- Apply the category to the token which occurs most often
- Tag unknown words as nouns

Already achieves about 90% accuracy.

Rule based Taggers

- Assign to each token all the possible tags
- Apply rules which remove tags on the tokens
- One tag per token

The classic Brill Tagger works like this.

Stochastic Taggers

Assign tags using probability theory:

- Hidden markov models
- Decision trees
- Maximum entropy probability distribution

Tree Tagger & Stanford Tagger are stochastic.

Machine Learning

These approaches can be combined with machine learning:

- Learn the rules to improve on errors
- Train perceptrons to categorize
- Learn the probability distributions

- Part-of-speech Tagging
 - The Idea
 - Problems
 - The Solutions
 - Maximum entropy
 - Profiling
 - The end

Used by Tsuruoka's and the stanford tagger.

Terminology:

- Token or Word (w_i)
- Tag (t_i)
- History (a set, h_i)
 - Token and Tag context
 - e.g. $h_i = \{w_i, w_{i+1}, w_{i+2}, w_{i-1}, w_{i-2}, t_{i-1}, t_{i-2}\}$
- Feature (a function, $f_i(h_i, t_i)$)
 - Input: Tag and History
 - Output: $\in \{0, 1\}$
 - e.g. $f_1(h_i, t_i) = 1$ if suffix $(w_i) = \text{"ing"}$ and $t_i = VBG$

The algorithm:

- Generate feature space from training data
 - Compile a history for every token
 - Look at (history, tag) pairs and extract positive (helpful) features
 - Compile a list of positive features
- ⇒ Mapping from (history, tag) to a list of features (feature map)

The algorithm continued:

- Generate tag dictionary (optional)
 - Contains for every token the tags found in the training data
- Iterate input data word by word per sentence
- Search a tag sequence which most likely resembles the word sequence
 - Assign a tag to each word
 - Compute probability of sequence using the feature map
 - Iterate

For more insights read:

- Berger, A. L., Pietra, V. J. D., & Pietra, S. A. D. (1996).
 A maximum entropy approach to natural language processing.
 Computational linguistics, 22(1), 39-71. Morristown, NJ, USA: MIT Press.
- Ratnaparkhi, A. (1996).
 A Maximum Entropy Model for Part-Of-Speech Tagging.
 Computational Linguistics, 1, 133-142.

Part-of-speech Tagging

- The Idea
- Problems
- The Solutions
- Maximum entropy
- Profiling
- The end

Practical speed

Test was conducted on stromboli using a textfile with 220k words

Tagger	Running time
Tsuruoka's $C++$ Tagger	33s
Stanford Tagger	5s
TreeTagger	2s

(Demo)

Profiling

Running profilers on Tsuruoka's C++ Tagger & Stanford Tagger.

Tagger	Most time spent in	% of execution time
Tsuruoka's C++	conditional_probability()	79
Stanford	MaxentTagger.getNum()	16

Most expensive: HashMap lookups of the features.

Part-of-speech Tagging

- The Idea
- Problems
- The Solutions
- Maximum entropy
- Profiling
- The end

End of presentation

Thanks for listening.

Sources

- Brill Tagger
 Brill, E. (1992).
 - A simple rule-based part of speech tagger. Proceedings of the third conference on Applied natural language processing (pp. 112-116). Morristown, NJ, USA: Association for Computational Linguistics.
- TreeTagger
 Schmid, H. (1994).
 Probabilistic part-of-speech tagging using decision trees.
 Proceedings of International Conference on New Methods in
 - Language Processing, 12, 44-49. doi:10.1.1.28.1139

Sources

Tsuruoka's Tagger
 Tsuruoka, Y., & Tsujii, J. (2005).

 Bidirectional inference with the easiest-first strategy for tagging sequence data. Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing - HLT '05 (pp. 467-474). Morristown, NJ, USA: Association for Computational Linguistics.