30.11.2011

Clause Identification

Antony R. Neu neua@informatik.uni-freiburg.de

Efficient Natural Language Processing Lehrstuhl für Algorithmen und Datenstrukturen Lehrstuhlinhaberin: Prof. Hannah Bast Universität Freiburg

Motivation

- POS Tagging
 - Words have a Part-Of-Speech tag
- Text chunking
 - Which words belong together
 - Not embedded or recursive
- Clause identification:
 - E.g. relative clauses
 - Recursive problem
 - Applications: text to speech

- Introduction
 - Problem definition
 - Applications
- Solutions
 - Rule-based approaches
 - Machine-Learning-based approaches
 - Demo
 - Hybrid systems
- Summary

Introduction - Definition

- Clause: Group of words containing a subject and a predicate. Subject may be implicite.
- Latin: claudere: close, conclude, enclose
- Two types:
 - Independent clause: sentence
 - Dependent clause:
 - sentence-like structure within a sentence
 - cannot exist without a main clause
- Examples:
- 1. "The man, who is walking over the street, is my father." (DC/IC)
- 2. "He went to school and she went to work." (IC/IC)

Introduction - Definition

- clause vs. phrase: phrase has no subject and predicate
- Examples:
 - a known writer
 - an entirely new culture
 - when they learn how to solve their problems with wikis
- Debatable definitions

Task to solve

- Clause identification (also: clause splitting, clause boundary recognition)
- Shared Task of CoNLL-2001 (Computational Natural Language Learning)
 - Find start and ending point of a clause
 - Determine clause structure of the sentence
 - Type of clause, e.g. relative clause, temporal clause is ignored
- Examples:
 - ((The space shuttle Atlantis blasted into orbit from Cape Canaveral) and (its crew launched the Galileo space probe on a flight to the planet Jupiter).)
 - (The deregulation of railroads and trucking companies (that (began in 1980)) enabled (shippers to bargain for transportation).)

Applications

- Text-To-Speech systems
- Machine-Translation
- Question-Answering
- Preprocessing for bilingual alignment
- Brokkoli?

CI vs. text chunking

"You will start to see shows where viewers program the program."

Chunked:

```
(NP You) (VP will start to see) (NP shows) (ADVP where) (NP viewers) (VP program) (NP the program)
```

Clauses:

(S You will start to see shows (S where (S viewers program the program)) .)

- Nevertheless:
 - Fuzzy transitions
 - Some chunkers provide simple clause identification

CI vs. full parsing

- Clause identification as intermediate step (Ejerhed '90)
- Form of shallow parsing
- Full parsing: better precision
- Why not extract clauses from full parse?
 - Classification frameworks:
 - Faster (e.g. needed for question answering)
 - Easier to implement
 - More easily portable to new languages

Solutions and Implementations

- Rule-Based-Systems (1990s)
- Machine Learning based systems (2000s)
- Hybrid systems (late 2000s)

Rule-based systems

- Clauses identified by predefined rules
- POS tags and/or chunk tags are taken into consideration
- Disadavantages:
 - Human work needed
 - Not easily adaptable to other languages
- Example:

Rule-based systems

Ejerhed '96:

- Only independent clauses identified
- Starts and end identified
 - (There was something true in that) (what he said).
- Regular expressions and stochastic approach

DL_MAD XX => DL_MAD <c> XX

DL_MAD: major delimiter (., ?, !)

Papageorgiou '97

- Adresses embedded clauses
- Inspired by Abbney's Cascaded Analysis of Syntactic Structure (CASS) parser ('91) (Full parser)
- Text is tokenized and tagged (Brill tagger)
- Clause tag marking module
 - What marks the clause, e.g. "if" or "as if"
- Partial parsing generates clause structure

Rule-based systems

- Leffa '98:
 - Considers POS tags and valence of verb
 - Valence: How many other words does the verb bind?
 - 0: (It) is raining. (not a real subject)
 - 1: The dog runs. (a subject)
 - 2: I hate maths. (a subject and an object)
 - Read sentence left to right and mark clause initiators/terminators.
 - Clauses are segmented and processed
 - Valence is considered
 - I know (when I have time).)
 - I work (when (I have time)).)

Evaluation

AUTHOR		Precision	Recall	$F_{\beta=1}$
Ejerhed (1988)	Regular expression	87.01	98.89	92.57
	Stochastic	95.07	96.01	95.54
Ejerhed (1996)	SUC corpus	100.00	95.80	97.85
	DI93 corpus	98.80	90.70	94.58
Papageorgiou (1997)		95.44	93.06	94.23
Leffa (1998)		_	95.00	_
Sang & Déjean (2001)	Best CoNLL-2001	84.82	73.28	78.63
Sang & Déjean (2001)	CoNLL-2001 Baseline	98.44	31.48	47.71

source: Master Thesis, Benjamin Hachey, University Edinburgh

- Not identical corpora used for evaluation
- No standard
- Interpretation: good results

Machine Learning Systems

- Used for CoNLL-2001 shared task
 - Baseline: Assign Clause start and end at start and end of each sentence
- Basic idea:
 - Systems learn on a specific training set.
 - Classification problem (see text chunking)
 - Features are considered, e.g. the last 3 words (POS and chunk tags)
 - Decision: Is this word the beginning of a clause?

Implementations

- Carreras and Marquez (shown today)
 - Boosted decision trees
 - Perceptrons (neural networks)
 - Both concepts outperform all other participiants
- Others:
 - Short-Term Memory based
 - Conditional Random Fields
 - Hidden Markov Model

Benchmark Results CoNLL 2001

+	+		-++-		++
test cor	precision	recall	11	F	11
++	+		-++-		++
[CM03]	87.99%	81.01%	11	84.36	11
[CMPR02]	90.18%	78.11%		83.71	
[CM01]	84.82%	78.85%		81.73	
[MP01]	70.85%	70.51%		70.68	
[TKS01]	76.91%	65.22%		70.58	
[PG01]	73.75%	64.56%		68.85	
[Dej01]	72.56%	58.69%		64.89	11
[Ham01]	55.81%	49.49%		52.46	
++	+		-++-		++
baseline	98.44%	33.88%		50.41	
++	·+		-++-		++

Results of CoNLL-2001 shared task

Carreras & Marquez systems

- [CM01]
 - Learning algorithm (modified Adaboost) is given large number of binary simple features
- 4 feature types are used:
 - Word window: Surrounding sequence of words with their POS tags
 - Chunk window: Surrounding chunk tags of a word
 - Sentence patterns from word a to b:
 - All occurrences of punctuation marks, relative pronouns, conjunctions, the word "that" with its POS tag and VP chunks between a and b

Carreras & Marquez systems

- Sentence features:
 - Number of occurences VP, WP (pronoun), WP\$, punctuation mark, beginning/end of clauses, the word "that" to the left and right hand side of the word
- Window size was tuned to 3
- Filtering-Ranking Perceptron Learning for Partial Parsing (2005)
 - Similar Features to CM'01
 - Perceptrons are used instead of Adaboost
 - Implementation: Phreco

Phreco - Demo

- Uses perceptrons to recognize chunks or clauses
- Carreras' dissertation
- A demo is shown
- File with 11 sentences

Phreco - Evaluation

- Run times (45 000 words):
 - Test data set A: 44min 33s (743 KB, 2012 sentences, 1.3s per sentence)
 - Test data set B: 39min 33s (623 KB, 1671 sentences, 1.4s per sentence)
- Over 1 second per sentence
- Excluding tagging and chunking time

Phreco - Profiling

<pre>%Time ExclSec Cumuls #Calls sec/call Csec/c Name 98.4 2696. 2696.5 75439 0.0357 0.0357 ml::vperceptron_classify 0.54 14.68 14.685 133684 0.0000 0.0000 PHREC0::phrase_set::top_phrases 0.26 7.057 7.057 75439 0.0001 0.0001 mapping::map_features 0.15 4.048 4.681 89564 0.0000 0.0001 PHREC0::clausefex::word_window_fea tures 0.12 3.284 813.73 2012 0.0016 0.4044 PHREC0::frclauser::optimal_hierarc 8 0.011 3.105 3.105 136515 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.11 3.102 5.668 122628 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.11 3.102 5.668 122628 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.09 2.586 2.586 89564 0.0000 0.0000 PHREC0::clausefex::sentence_counts features 0.09 2.434 798.19 699017 0.0000 0.0011 PHREC0::frclauser::predict_phrase 0.08 2.176 1908.7 61314 0.0000 0.0311 PHREC0::sefilter::predict_word_sig</pre>							
0.54 14.68 14.685 133684 0.0000 0.0000 PHREC0::phrase_set::top_phrases 0.26 7.057 7.057 75439 0.0001 0.0001 mapping::map_features 0.15 4.048 4.681 89564 0.0000 0.0001 PHREC0::clausefex::word_window_features 0.12 3.284 813.73 2012 0.0016 0.4044 PHREC0::frclauser::optimal_hierarchy 0.11 3.105 136515 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.11 3.102 5.668 122628 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.11 3.102 5.668 12628 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.11 3.102 5.668 12628 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.09 2.586 2.586 89564 0.0000 0.0001 PHREC0::clausefex::chunk_window_features 0.08 2.176 1908.7 61314 0.0000 0.0011 PHREC0::sefilter::predict_phrase 0.05 1.450 1.450 3 <	%Time	ExclSec	CumulS	#Calls	<pre>sec/call</pre>	Csec/c	Name
0.26 7.057 7.057 75439 0.0001 0.0001 mapping::map_features 0.15 4.048 4.681 89564 0.0000 0.0001 PHREC0::clausefex::word_window_features 0.12 3.284 813.73 2012 0.0016 0.4044 PHREC0::frclauser::optimal_hierarchy 0.11 3.105 3.105 136515 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.11 3.102 5.668 122628 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.11 3.102 5.668 122628 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.11 3.102 5.668 12628 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.09 2.586 2.586 89564 0.0000 0.0001 PHREC0::clausefex::sentence_counts 0.08 2.176 1908.7 61314 0.0000 0.0001 PHREC0::sefilter::predict_word_sig 0.06 1.614 1.614 183942 0.0000 0.0000 PHREC0::clausefex::signal_window_f 0.05 1.450 1.450	98.4						
0.15 4.048 4.681 89564 0.0000 0.0001 PHREC0::clausefex::word_window_fea tures 0.12 3.284 813.73 2012 0.0016 0.4044 PHREC0::frclauser::optimal_hierarc hy 0.11 3.105 3.105 136515 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.11 3.102 5.668 122628 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.09 2.586 2.586 89564 0.0000 0.0000 PHREC0::clausefex::chunk_window_fe atures 0.09 2.434 798.19 699017 0.0000 0.0001 PHREC0::sefilter::predict_phrase 0.08 2.176 1908.7 61314 0.0000 0.0011 PHREC0::sefilter::predict_word_sig nal 0.06 1.614 1.614 183942 0.0000 0.0000 PHREC0::clausefex::signal_window_fe eatures 0.05 1.450 1.450 3 0.4833 0.4833 ml::vperceptron_read_from_file 0.05 1.450 1.450 3 0.4833 0.4833 ml::vperceptron_read_from_file 0.04 1.026 <			14.685	133684	0.0000	0.0000	
0.12 3.284 813.73 2012 0.0016 0.4044 PHREC0::frclauser::optimal_hierarc hy 0.11 3.105 3.105 136515 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.11 3.102 5.668 122628 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.11 3.102 5.668 122628 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.09 2.586 2.586 89564 0.0000 0.0000 PHREC0::clausefex::chunk_window_fe atures 0.09 2.434 798.19 699017 0.0000 0.0011 PHREC0::frclauser::predict_phrase 0.08 2.176 1908.7 61314 0.0000 0.0311 PHREC0::sefilter::predict_word_sig 0.48 3.4 0.0000 0.0000 PHREC0::sefilter::predict_word_sig 0.05 1.450 1.450 0.4833 0.4833 ml::vperceptron_read_from_file 0.05 1.424 1928.4 2012 0.0007 0.9585 PHREC0::sefilter::start_end_filter 13 0.04 1.026 2743.0 2012 0.0005 1	0.26	7.057	7.057			0.0001	
8 hy 0.11 3.105 3.105 136515 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.11 3.102 5.668 122628 0.0000 0.0000 PHREC0::clausefex::sentence_counts 0.09 2.586 2.586 89564 0.0000 0.0000 PHREC0::clausefex::chunk_window_fe atures 0.09 2.434 798.19 699017 0.0000 0.0011 PHREC0::frclauser::predict_phrase 0.08 2.176 1908.7 61314 0.0000 0.0011 PHREC0::sefilter::predict_word_sig 0.06 1.614 1.614 183942 0.0000 0.0000 PHREC0::sefilter::signal_window_fe eatures 0.05 1.450 1.450 3 0.4833 0.4833 ml::vperceptron_read_from_file 0.05 1.424 1928.4 2012 0.0007 0.9585 PHREC0::sefilter::start_end_filter 13 0.04 1.026 2743.0 2012 0.0005 1.3634 PHREC0::frclauser::process_sentenc 91 e	0.15	4.048	4.681	89564	0.0000	0.0001	
0.11 3.102 5.668 122628 0.0000 0.0000 PHREC0::clausefex::sentence_counts features 0.09 2.586 2.586 89564 0.0000 0.0000 PHREC0::clausefex::chunk_window_fe atures 0.09 2.434 798.19 699017 0.0000 0.0001 PHREC0::clausefex::predict_phrase 0.08 2.176 1908.7 61314 0.0000 0.0311 PHREC0::sefilter::predict_word_sig nal 0.06 1.614 1.614 183942 0.0000 0.0000 PHREC0::clausefex::signal_window_features 0.05 1.450 1.450 3 0.4833 0.4833 ml::vperceptron_read_from_file 0.05 1.424 1928.4 2012 0.0007 0.9585 PHREC0::sefilter::start_end_filter 13 ing 0.004 1.026 2743.0 2012 0.0005 1.3634 PHREC0::frclauser::process_sentenc 91 e e e 1.000000000000000000000000000000000000	0.12	3.284		2012	0.0016	0.4044	
0.09 2.586 2.586 89564 0.0000 0.0000 PHREC0::clausefex::chunk_window_fe atures 0.09 2.434 798.19 699017 0.0000 0.0011 PHREC0::frclauser::predict_phrase 0.08 2.176 1908.7 61314 0.0000 0.0011 PHREC0::sefilter::predict_word_sig nal 0.06 1.614 1.614 183942 0.0000 0.0000 PHREC0::clausefex::signal_window_fe eatures 0.05 1.450 1.450 3 0.4833 0.4833 ml::vperceptron_read_from_file 0.05 1.424 1928.4 2012 0.0007 0.9585 PHREC0::sefilter::start_end_filter ing 0.04 1.026 2743.0 2012 0.0005 1.3634 PHREC0::frclauser::process_sentenc e	0.11	3.105	3.105	136515	0.0000	0.0000	PHRECO::clausefex::sentence counts
0.09 2.434 798.19 699017 0.0000 0.0011 PHREC0::frclauser::predict_phrase 0.08 2.176 1908.7 61314 0.0000 0.0311 PHREC0::sefilter::predict_word_sig 0.06 1.614 1.614 183942 0.0000 0.0000 PHREC0::clausefex::signal_window_f 0.05 1.450 1.450 3 0.4833 0.4833 ml::vperceptron_read_from_file 0.05 1.424 1928.4 2012 0.0007 0.9585 PHREC0::sefilter::start_end_filter 13 0.04 1.026 2743.0 2012 0.0005 1.3634 PHREC0::frclauser::process_sentenc 91 e	0.11	3.102	5.668	122628	0.0000	0.0000	_
0.08 2.176 1908.7 61314 0.0000 0.0311 PHREC0::sefilter::predict_word_sig nal 0.06 1.614 1.614 183942 0.0000 0.0000 PHREC0::clausefex::signal_window_f eatures 0.05 1.450 1.450 3 0.4833 0.4833 ml::vperceptron_read_from_file 0.05 1.424 1928.4 2012 0.0007 0.9585 PHREC0::sefilter::start_end_filter 13 0.04 1.026 2743.0 2012 0.0005 1.3634 PHREC0::frclauser::process_sentenc 91 e	0.09	2.586	2.586	89564	0.0000	0.0000	
34 nal 0.06 1.614 1.614 183942 0.0000 0.0000 PHREC0::clausefex::signal_window_f eatures 0.05 1.450 1.450 3 0.4833 0.4833 ml::vperceptron_read_from_file 0.05 1.424 1928.4 2012 0.0007 0.9585 PHREC0::sefilter::start_end_filter ing 0.04 1.026 2743.0 2012 0.0005 1.3634 PHREC0::frclauser::process_sentenc e	0.09	2.434	798.19	699017	0.0000	0.0011	PHREC0::frclauser::predict_phrase
0.05 1.450 1.450 3 0.4833 0.4833 ml::vperceptron_read_from_file 0.05 1.424 1928.4 2012 0.0007 0.9585 PHREC0::sefilter::start_end_filter 13 0.04 1.026 2743.0 2012 0.0005 1.3634 PHREC0::frclauser::process_sentenc 91 e	0.08	2.176		61314	0.0000	0.0311	
0.05 1.424 1928.4 2012 0.0007 0.9585 PHRECO::sefilter::start_end_filter 13 ing 0.04 1.026 2743.0 2012 0.0005 1.3634 PHRECO::frclauser::process_sentenc 91 e	0.06	1.614	1.614	183942	0.0000	0.0000	
13 ing 0.04 1.026 2743.0 2012 0.0005 1.3634 PHREC0::frclauser::process_sentenc 91 e	0.05	1.450	1.450	3	0.4833	0.4833	<pre>ml::vperceptron read from file</pre>
91 e	0.05	1.424		2012	0.0007	0.9585	
0.03 0.827 0.827 75439 0.0000 0.0000 ml::new_fvinput	0.04	1.026		2012	0.0005	1.3634	
	0.03	0.827	0.827	75439	0.0000	0.0000	ml::new_fvinput

Pearl profile

Hybrid Systems

- Recent works based on previous ML and rule based works
- Basic idea:
 - Use machine learning approach
 - Resolve errors with rules
- Papers:
 - Sundar et. al. '08 (best values)
 - Also: Nguyen'07

Sundar et al 2008

- Uses Conditional random fields as ML approach
- Features used (word windows of 5):
 - Word itself
 - POS tag
 - Chunk tag
 - Can linguistic rules be applied? (used later)

Sundar et al 2008

- Error analyzer and linguistic rules:
 - Find wrongly marked clause boundaries
 - 'Error patterns' are used for identification, e.g. unbalanced starts and endings of clauses
 - Linguistic rules are applied to correct errors (inside out)
 - Example rule:

Mark position 0 as clause boundary start.

Sundar et al 2008 - Benchmark

S.No	System	Precision (%)	Recall (%)	Fmeasure (%)
1	CRFs	83.68%	78.65%	81.08%
2	CRFs with linguistic Rules	92.06%	87.89%	89.04%

·						
S. No	References	Techniques	Precision	Recall	F1 mesaure	
1	Our method	CRFs +	92.06%	87.89%	89.04%	
		linguistic Rules				
2	Carreras et al.	FR-	88.17%	82.10%	85.03%	
	05	Perceptron				
3	Vinh Van	CRFs	90.01%	78.98%	84.09%	
	Nyugenet al 07					
4	Carreras et al. 02	AdaBoost class	90.18%	78.11%	83.71%	
5	Carreras et al. 01	AdaBoost class	84.82%	78.85%	81.73%	
6	Monila and Pla 01	HMM	70.85%	70.51%	70.68%	

Summary

- Time-expensive intermediate task
- Not a lot of open-source implementations available
 - Lots of POS taggers and chunkers
 - Lots of Full parsers , role labelers etc.
 - Missing: intermediate task
- Hybrid systems seem to be an interesting approach

- Overviews:
- Recognising Clauses Using Symbolic and Machine Learning Approaches, Master Thesis, Benjamin Hachey, University of Edinburgh, http://benhachey.info/pubs/diss_msc.pdf
- Introduction to the CoNLL-2001 Shared Task: Clause Identification, Tjon, Sang, Déjan, 2001, http://www.cnts.ua.ac.be/conll2001/clauses/
- References:
- [CM01]: Xavier Carreras and Luís Màrquez, Boosting Trees for Clause Splitting. In: Proceedings of CoNLL-2001, Toulouse, France, 2001. http://www.cnts.ua.ac.be/conll2001/pdf/07375car.pdf
- [TKS01] Erik F. Tjong Kim Sang, Memory-Based Clause Identification. In: Proceedings of CoNLL-2001, Toulouse, France, 2001.
- [Eje96] Eva Ejerhed, Finite State Segmentation of Discourse into Clauses. In "Proceedings of the ECAI '96 Workshop on Extended finite state models of language", ECAI '96, Budapest, Hungary, 1996.
- [Lef98] Vilson J. Leffa, Clause processing in complex sentences. In: "Proceedings of LREC'98", Granada, Espanha, 1998
- Papageorgiou, H. (1997), Clause recognition in the framework of alignment, in 'Proceedings of the 2nd Conference on Recent Advances in Natural Language Processing (RANLP-97)', Tzigov Chark, Bulgaria, pp. 417–425.

References:

- [MP01] Antonio Molina and Ferran Pla, Clause Detection using HMM. In: Proceedings of CoNLL-2001, Toulouse, France, 2001.
- Clause Boundary Identification Using Conditional Random Fields, R. Vijay Sundar Ram and Sobha Lalitha Devi, AU-KBC Research Centre, 2008 Springer Berlin / Heidelberg
- Filtering-Ranking Perceptron Learning for Partial Parsing, Xavier Carreras, Lluís Màrquez and Jorge Castro, Machine Learning Journal, Special Issue on Learning in Speech and Language Technologies, Volume 60, Issue 1-3, pages 41-71, Sept. 2005