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Variants of Problem

 Entity Detection
- Input: Smith is as good as his father at work.
- 2.5Million Smiths, only in USA

 Entity Recognition
- Input: “Dennis Ritchie was best known as the creator 

of the C programming language....“
- Output: 

• PERSON http://en.wikipedia.org/wiki/Dennis_Ritchie

• …..

http://en.wikipedia.org/wiki/Dennis_Ritchie


07.12.11 Named Entity Recognition 4

Named Entity Recognition (NER)

 Definition:
- “NER is the process of finding mentions of specified 

things in running text.“

 Three universally accepted categories:
- Person 

• e.g: Smith, John, Bob, Dennis

- Organization
• e.g: Google Inc, Microsoft Corporation, European Union

- Location.
• e.g Berlin, Europe, NYC 
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Example

Andrew Johnson was appointed as president of 
ACME , the biggest company in Santa Barbara, 
California. 

[PER Andrew Johnson] was appointed as president of 
[ORG ACME] , the biggest company in [LOC Santa 
Barbara], [LOC California]. 
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Application Areas

- Information Extraction
- Component for other areas

• Question Answering (QA)
• Summarization
• Automatic translation
• Document indexing
• Text data mining 

- Genetics & Biomedical Sciences
- Speech processing
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NE Category Hierarchies

 Universilly Accepted: Person , Organization , Location
 But also:

- Artifact, Facility, Geopolitical entity, Vehicle, Weapon, etc.

 SEKINE (2011) 
- 200 types
- Domain-dependent

 BNN (2002)
- 29 types

 Examples:
- Person : Bush,  Michael Jackson,  Elizabeth II, LeBron 
- God : Zeus,   Indra,   Danu,   Ra
- Organization--> Sports_Organization:The Breen Gym,   

UCLA Bruins, Ma family army,  Shinagawa Jogging Club
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Challenges with NE Hierarchies

- Many of these grey area are caused by metonymy.
• Washington or United states government.

- Organization vs Location
• “England won the World Cup” vs. 
• “The World Cup took place in England”.

- Location vs. Organization 
• “she met him at Heathrow” vs. 
• “the Heathrow authorities”
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Message Understanding Conference

 MUC6 (1995)
- Extraction of Named Entities 

• names of persons, organizations, locations
• temporal expressions, currency and percentages

- Tags
• ENAMEX (“entity name expression”) tag

- people, organization and locations

• NUMEX (“numeric expression”) tag
- currency and percentages

• TIMEX (“time expression”) tag
- temporal expressions – dates and times
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NER is not ..

 Event recognition.
 Just matching text strings with pre-defined lists of 

names. 
 It does not create templates, nor entity linking.



Named Entity Recognition 
Approaches

 List Lookup Approach
 Shallow Parsing Approach
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List Lookup Approach

 System that recognises only entities stored in its 
lists. (gazetteers)

 Advantages - Simple, fast, language independent, 
easy to re-target

 Disadvantages – collection and maintenance of lists, 
cannot deal with name variants, cannot resolve 
ambiguity
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Shallow Parsing Approach

 Internal evidence – names often have internal 
structure. These components can be either stored 
or guessed.

 Location 
- CapWord + {City, Forest, Center}

• e.g. Sherwood Forest

- Cap Word + {Street, Boulevard, Avenue, Road}
• e.g. Lombard Street
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Shallow Parsing Approach (cont)

 External evidence -  names are often used in very 
predictive local contexts

 Location
- “to the” COMPASS “of” CapWord  

• e.g. to the south of Freiburg

- “based in” CapWord
• e.g. based in Freiburg

- CapWord “is a” (ADJ)? GeoWord
• e.g. Freiburg is a nature friendly city
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Ambiguities in Shallow Parsing

 Ambiguously capitalised words (first word in 
sentence)
- [All American Bank] vs. All [State Police]

 Semantic ambiguity
- “John F. Kennedy”  = airport (location)
- “Alexander Bürkle” = organization

 Structural ambiguity 
- [Cable and Wireless] vs. [Microsoft] and [Dell]
- [Center for Computational Linguistics] vs. message 

from [City Hospital] for [John Smith].
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Type of NER Systems

 Handcrafted systems
- Knowledge (rule) based

• Patterns
• Gazetteers

 Automatic systems
- Statistical
- Machine learning
- Unsupervised
- Analyze: char type, POS, lexical info, dictionaries

 Hybrid systems



Named Entity Recognizer Softwares

 Stanford Named Entity Recognizer
 Illinois Named Entity Tagger
 Lingpipe Named Entity Recognizer
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Stanford NER

 Working Group:
- “The Stanford Natural Language Processing Group“

 Source code & License
- Java + Open source (GNU GPL v2)

 Implementation
- of linear chain CRF

 Conference
- CoNLL03 (Person, Organization, Location).

 Feature Extraction
- Features are more important than model
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Stanford NER : Features

 Word features: 
- current word, previous word, next word, all words within 

a window 

 Orthographic features:
- Jenny  Xxxx→
- IL-2  XX-#→

 Prefixes and Suffixes:
- Jenny  <J, <Je, <Jen, ..., nny>, ny>, y>→

 Lots of feature conjunctions
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Stanford NER: Distributed Models

 Trained on CoNLL, MUC and ACE
 Entities: Person, Location, Organization
 Trained on both British and American newswire, so 

robust across both domains
 Models with and without the distributional similarity 

features


 Demo!
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Illinois Named Entity Tagger

 Java + Open source
 90.8 F1 on CoNLL03
 External Knowledge: Wikipedia & Gazetteer list
 Non-local features
 Word Class model
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Inference & Chunk Representation

 BIO: Beginning Inside and 
Outside

 BILOU: Beginning, the 
Inside and the Last tokens 
of multi-token chunks as 
well as Unit-length chunks

 Comparison

BIO BILOU

retain O O

the O O

Golan B-
loc

B-loc

Heights I-loc L-loc

Israel B-
loc

U-loc

captured O O

from O O

Syria B-
loc

U-loc
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List of baseline features

 Tokens in the window C=[-2,+2]
 Capitalization of tokens in C.
 Previous 2 predictions
 Conjunction of previous prediction and C.
 Normalized digits (22/12/2009 ---> 

*DD*/*DD*/*DDDD*)
 Overall around 15 active features.
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Why non-local feature?

SOCCER -  BLINKER BAN LIFTED .

LONDON 1996-12-06 Dutch] forward Reggie 
Blinker had his indefinite suspension lifted by FIFA 
on Friday and was set to make his Sheffield 
Wednesday comeback against Liverpool on 
Saturday. Blinker missed his club’s last two games 
after FIFA slapped a worldwide ban on him for 
appearing to sign contracts for both Wednesday 
and ORG Udinese while he was playing for 
Feyenoord.


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Why non-local feature?

SOCCER - [PER BLINKER] BAN LIFTED .

[LOC LONDON] 1996-12-06 [MISC Dutch] 
forward [PER Reggie Blinker] had his indefinite 
suspension lifted by [ORG FIFA] on Friday and was 
set to make his [ORG Sheffield Wednesday] 
comeback against [ORG Liverpool] on Saturday. 
[PER Blinker] missed his club’s last two games 
after [ORG FIFA] slapped a worldwide ban on him 
for appearing to sign contracts for both [ORG 
Wednesday] and [ORG Udinese] while he was 
playing for [ORG Feyenoord].


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External Knowledge

 Unlabeled Text
- Word class model

 Gazetteers
- 16 gazetteers, 1.5M entities from Wikipedia
- Overall 30 gazetteers in Illinois Named Entity Tagger. 
-

- Demo!
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LingPipe Named Entity Recognition

 Commercial product (free version available)
 Java Based
 Works well for different domains. Bio, Gen & Newswire
 Regex Support
 Demo
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Performance & Profiling

 Speed vs Accuracy 
 Benchmark

- CoNLL03 Shared task for NER
• Reuters Corpora

- TRC2 : comprises 1,800,370 news stories covering the period 
from 2008-01-01 to 2009-02-28

- MUC7 Named Entity task

 Sample File
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Results: Speeds Words per Sec

Input Size Stanford Illinois Lingpipe

Under 100 words 626 ~ 2 ~50

3.3K words 1279 48 1070

37k words 1643 355 2466

3.5Mi words Heap error -- --

* All speeds are in words per second
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Speed & Memory Bootneck

 Stanford NER
- Memory consumtion is biggest problem.

 Illinois Name Entity Tagger
- Prepocessing and Gazeeter startup took huge amount 

of time. 
• Fast version(configuration) is available, but with less 

accuracy

 Lingpipe
- Comerical version is faster and accurate.
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Accuracy in term F1

 Illinois Named Entity Tagger
- F1 90.8 (so best report on CoNLL03 share task)

 Stanford Entity Recognizer
- F1 86.86 (CoNLL03)
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Conclusion

 Named Entities are important in text!
 Non-local features improve the efficiency of NER.
 External Knowldge provide extra aid. 
 Important sub compontnat to other part of NLP and 

Information extraction.
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Thanks

&

Questions?
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