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Motivation 

• IE systems  extract semantic relations from 
natural language text 

• Use supervised learning  
•  availability of training data 

• Can not scale to the web 

• Open IE systems aim to handle the unbounded 
number of relations  
• self-supervised learning 

• Automatic heuristics generate labeled data 

• How well can these open systems perform? 
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Wikipedia-based Open Extractor 

• Improves dramatically on text runner’s precision 
and recall. 

• A self-supervised learning  

• heuristic matches between Wikipedia infobox attribute 

values and corresponding sentences  

• Operate in two modes: 
• Restricted to POS 

• Dependency parse features 
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Open Information Extractor 

•  A function from a document d, to a set of 
triples,{<arg1,rel,arg2>}, where the args are 
noun phrases and “rel”  indicating a semantic 
relation between the two noun phrases 

 

• The extractor should produce one triple for 
every relation stated explicitly in the text 
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Open Information Extractor 
Example 

 

• Article: “Stanford university” 

• Infobox: <estabilished,1891> 

• Sentence: ” the university was founded in 1891 
by… ” 

• The triple would be: 

• <arg1,rel,arg2>  

• <Stanford university,estabilished,1891> 
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Architecture of WOE 
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Preprocessor 

• Sentence Splitting 

• Transform each Wikipedia article into HTML  

• Splits into sentences by OpenNLP 

• NLP annotation 

• OpenNLP to supply POS tags and NP-chunk 
annotations 

• Stanford Parser to create a dependency parse 

• Compiling synonyms 

• The preprocessor build a set of synonyms 

• Uses Wikipedia redirection pages and backward links  8 



Matcher 

• Constructs training data for the learner 
component 

• Given a Wikipedia page with an infobox 

• the matcher iterates through all infobox attributes 

•  looking for sentence that contains references to both 

the subject of the article and the attribute value  

• These noun phrases will be annotated in the training 

set. 
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Matcher 

• Matching primary entities 

      Use heuristics : 

• Full match  

• Partial match: “Amherst ” matches “Amherst, Mass”  

• Patterns of “the<type>”: “City” for ” Ithaca”  

• The most frequent pronoun: ” he” for the page on 
“Albert Einstein” 

• Matching sentence 

• The matcher seeks a unique sentence to match the 
attribute value  
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Learning Extractors 

• Extraction with parser features 

• WOE  using features from dependency-parse 
trees. 

• It uses a pattern learner to classify whether the 
shortest dependency path between two noun phrase 
indicate a semantic relation  

• Extraction with shallow features  

• WOE  limited to shallow features like POS tags 

• Trains a conditional random field(CRF) to output 
certain text between noun phrases when the text 
denotes such a relation. 
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Extraction with Parser Features 
Shortest Dependency Path as Relation 
  
“Dan was not born in Berkeley.” 

• The Stanford parser dependencies are: 
 nsubjpass(born-4, Dan-1)  

 auxpass(born-4, was-2) 

 neg(born-4, not-3) 

 root(ROOT-0, born-4)  

 prep_in(born-4, Berkeley-6) 
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Extraction with Parser Features 
Shortest Dependency Path as Relation 
 • “Dan was not born in Berkeley.” 

• CorePath: 
 

 

• ExpandPath: 
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Extraction with Parser Features 
Building a Database of Patterns 

 • Learner generates a corePath between the tokens 
denoting the subject and the infobox attribute 
value. 

• To improve learning performance: 
• Generalized–corePaths: eliminate irrelevant relations 
• Lexical words in corePaths are replaced with their POS tags 
• Extraction pattern 

 

• WOE builds a database (named DB▬) of 15,333 
distinct patterns  

• Each pattern p associated with a frequency  
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Extraction with Parser Features 
Learning a Pattern Classifier 

 

• ὡὕὉ   checks whether the generalized-corePath 
from a test triple is present in Ὀὄ and computes the 

normalized logarithmic frequency as the probability: 

• █▬ :associated frequency of the pattern 

• █□╪●: maximal frequency of  patterns in Ὀὄ 

• █□░▪ȡcontrolling  threshold, minimal frequency of a valid 
pattern  
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Extraction with Parser Features 
Learning a Pattern Classifier 

• Example: 

• “Dan was not born in Berkeley ” 

• Dan as arg1 , Berkeley as arg2  

• Computes corePath 

• Abstracts to  

• Queries  Ὀὄto retrieve the frequency Ὢ=29112 and 

assigns probability of 0.95(Ὢ ḊυπȢςυω) 

•  ὡὕὉ  traverses the triple’s expandPath to out put 
the final expression 
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Extraction with Shallow Features 

• High speed can be crucial when processing web-scale 
corpora 

• Shallow features like POS-tags 

• Use the same matching sentence set behind ╓║╟  to 

generate positive examples 

• Negative examples are generated from random noun-
phrase pairs  

• generalized-corePaths which are not in ╓║╟  

• Learning algorithm and selection features as textrunner  
• A two-order CRF chain model is trained with Mallet package   
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Experiments 

• Three corpora for experiments: 
• WSJ from Penn Treebank 

• Wikipedia 

• Web 

• Randomly selected 300 sentences for each 

• Examined by two people to label all reasonable triples 

• Submitted to Amazon Mechanical Turk for verification 

• Each triple examined by 5 Turkers  

• Positive when more than 3 Turkers marked them as 
positive  

18 



Overall Performance Analysis 

ÁHow do these systems perform against each other? 

ÁHow does performance vary w.r.t sentence length? 

ÁHow does extraction speed vary w.r.t sentence length? 
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Overall Performance Comparison 

 

•ὡὕὉ  is better 
than TextRunner on 
precision  

• Better training dataset  

 

•ὡὕὉ  is the 
best on recall 

• Parser features 
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Extraction Performance vs. 
Sentence Length 

 

• Long sentence have 
long-distance 
relations 

• Difficult for shallow 
feature 
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Extraction Speed vs. Sentence 
Length 

 

•ὡὕὉ ’s 
extraction time 
grows quadratically 

• Reliance on parsing 
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Shallow or Deep Parsing 

• Shallow features like POS tags enable fast extraction 
over large-scale corpora  

• Deep features are derived from parse trees  
• training better extractors 

• Abstracted dependency path features are highly 
informative   

• In Web, many sentences  contain complicated long-
distance relations 

• Parser features are more powerful  
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 Conclusion 

• WOE  a new approach that uses self-supervised learning 
over unlexicalized  features, based on heuristic match 
between Wikipedia infoboxes and corresponding text 

• Runs in two modes  
• ╦╞╔▬▫▼: a CRF extractor trained with shallow features like POS 

tags 

• ╦╞╔▬╪►▼▄ḊÁ pattern classifier learned from dependency path 
patterns 

• In comparison with textrunner 
•   ╦╞╔▬▫▼ runs at the same speed, but achieves an F-measure 

which is between 9% and 23% greater  

• ╦╞╔▬╪►▼▄ achieves an F-measure which is between %51 and 
70%, but runs about 30X times slower due to it reliance on 
parsing. 
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