
Open Information
Extraction using
Wikipedia

Soraya Nikousokhan

Department of Computer Science

Albert-Ludwigs-University Freiburg, Germany

Nov.2013

1

Overview

• Motivation

• Wikipedia-based Open Extractor

• Architecture of WOE

• Preprocessor

• Matcher

• Learning Extractors

• Extraction with parser features

• Extraction with Shallow Features

• Performance Analysis

• Shallow or Deep Parsing

• Conclusion

2

Motivation

• IE systems extract semantic relations from
natural language text

• Use supervised learning
• availability of training data

• Can not scale to the web

• Open IE systems aim to handle the unbounded
number of relations
• self-supervised learning

• Automatic heuristics generate labeled data

• How well can these open systems perform?

3

Wikipedia-based Open Extractor

• Improves dramatically on text runner’s precision
and recall.

• A self-supervised learning

• heuristic matches between Wikipedia infobox attribute

values and corresponding sentences

• Operate in two modes:
• Restricted to POS

• Dependency parse features

 4

Open Information Extractor

• A function from a document d, to a set of
triples,{<arg1,rel,arg2>}, where the args are
noun phrases and “rel” indicating a semantic
relation between the two noun phrases

• The extractor should produce one triple for
every relation stated explicitly in the text

5

Open Information Extractor
Example

• Article: “Stanford university”

• Infobox: <estabilished,1891>

• Sentence: ” the university was founded in 1891
by… ”

• The triple would be:

• <arg1,rel,arg2>

• <Stanford university,estabilished,1891>

6

Architecture of WOE

7

Preprocessor

• Sentence Splitting

• Transform each Wikipedia article into HTML

• Splits into sentences by OpenNLP

• NLP annotation

• OpenNLP to supply POS tags and NP-chunk
annotations

• Stanford Parser to create a dependency parse

• Compiling synonyms

• The preprocessor build a set of synonyms

• Uses Wikipedia redirection pages and backward links 8

Matcher

• Constructs training data for the learner
component

• Given a Wikipedia page with an infobox

• the matcher iterates through all infobox attributes

• looking for sentence that contains references to both

the subject of the article and the attribute value

• These noun phrases will be annotated in the training

set.

9

Matcher

• Matching primary entities

 Use heuristics :

• Full match

• Partial match: “Amherst ” matches “Amherst, Mass”

• Patterns of “the<type>”: “City” for ” Ithaca”

• The most frequent pronoun: ” he” for the page on
“Albert Einstein”

• Matching sentence

• The matcher seeks a unique sentence to match the
attribute value

10

Learning Extractors

• Extraction with parser features

• WOE using features from dependency-parse
trees.

• It uses a pattern learner to classify whether the
shortest dependency path between two noun phrase
indicate a semantic relation

• Extraction with shallow features

• WOE limited to shallow features like POS tags

• Trains a conditional random field(CRF) to output
certain text between noun phrases when the text
denotes such a relation.

11

Extraction with Parser Features
Shortest Dependency Path as Relation

“Dan was not born in Berkeley.”

• The Stanford parser dependencies are:
 nsubjpass(born-4, Dan-1)

 auxpass(born-4, was-2)

 neg(born-4, not-3)

 root(ROOT-0, born-4)

 prep_in(born-4, Berkeley-6)

12

Extraction with Parser Features
Shortest Dependency Path as Relation
 • “Dan was not born in Berkeley.”

• CorePath:

• ExpandPath:

13

Extraction with Parser Features
Building a Database of Patterns

 • Learner generates a corePath between the tokens
denoting the subject and the infobox attribute
value.

• To improve learning performance:
• Generalized–corePaths: eliminate irrelevant relations
• Lexical words in corePaths are replaced with their POS tags
• Extraction pattern

• WOE builds a database (named DB▬) of 15,333
distinct patterns

• Each pattern p associated with a frequency

14

Extraction with Parser Features
Learning a Pattern Classifier

• ὡὕὉ checks whether the generalized-corePath
from a test triple is present in Ὀὄ and computes the

normalized logarithmic frequency as the probability:

• █▬ :associated frequency of the pattern

• █□╪●: maximal frequency of patterns in Ὀὄ

• █□░▪ȡcontrolling threshold, minimal frequency of a valid
pattern

15

Extraction with Parser Features
Learning a Pattern Classifier

• Example:

• “Dan was not born in Berkeley ”

• Dan as arg1 , Berkeley as arg2

• Computes corePath

• Abstracts to

• Queries Ὀὄto retrieve the frequency Ὢ=29112 and

assigns probability of 0.95(Ὢ ḊυπȢςυω)

• ὡὕὉ traverses the triple’s expandPath to out put
the final expression

16

Extraction with Shallow Features

• High speed can be crucial when processing web-scale
corpora

• Shallow features like POS-tags

• Use the same matching sentence set behind ╓║╟ to

generate positive examples

• Negative examples are generated from random noun-
phrase pairs

• generalized-corePaths which are not in ╓║╟

• Learning algorithm and selection features as textrunner
• A two-order CRF chain model is trained with Mallet package

17

Experiments

• Three corpora for experiments:
• WSJ from Penn Treebank

• Wikipedia

• Web

• Randomly selected 300 sentences for each

• Examined by two people to label all reasonable triples

• Submitted to Amazon Mechanical Turk for verification

• Each triple examined by 5 Turkers

• Positive when more than 3 Turkers marked them as
positive

18

Overall Performance Analysis

ÁHow do these systems perform against each other?

ÁHow does performance vary w.r.t sentence length?

ÁHow does extraction speed vary w.r.t sentence length?

19

Overall Performance Comparison

•ὡὕὉ is better
than TextRunner on
precision

• Better training dataset

•ὡὕὉ is the
best on recall

• Parser features
20

Extraction Performance vs.
Sentence Length

• Long sentence have
long-distance
relations

• Difficult for shallow
feature

21

Extraction Speed vs. Sentence
Length

•ὡὕὉ ’s
extraction time
grows quadratically

• Reliance on parsing

22

Shallow or Deep Parsing

• Shallow features like POS tags enable fast extraction
over large-scale corpora

• Deep features are derived from parse trees
• training better extractors

• Abstracted dependency path features are highly
informative

• In Web, many sentences contain complicated long-
distance relations

• Parser features are more powerful

23

 Conclusion

• WOE a new approach that uses self-supervised learning
over unlexicalized features, based on heuristic match
between Wikipedia infoboxes and corresponding text

• Runs in two modes
• ╦╞╔▬▫▼: a CRF extractor trained with shallow features like POS

tags

• ╦╞╔▬╪►▼▄ḊÁ pattern classifier learned from dependency path
patterns

• In comparison with textrunner
• ╦╞╔▬▫▼ runs at the same speed, but achieves an F-measure

which is between 9% and 23% greater

• ╦╞╔▬╪►▼▄ achieves an F-measure which is between %51 and
70%, but runs about 30X times slower due to it reliance on
parsing.

24

Reference

• Open Information Extraction using Wikipedia. ,Fei Wu ,Daniel
S. Weld, University of Washington .

25

