Open Information Extraction using Wikipedia

Soraya Nikousokhan

Department of Computer Science Albert-Ludwigs-University Freiburg, Germany

Nov.2013

Overview

- Motivation
- Wikipedia-based Open Extractor
- Architecture of WOE
 - Preprocessor
 - Matcher
 - Learning Extractors
 - Extraction with parser features
 - Extraction with Shallow Features
- Performance Analysis
- Shallow or Deep Parsing
- Conclusion

Motivation

- **IE systems** extract semantic relations from natural language text
- Use supervised learning
 - availability of training data
 - Can not scale to the web
- Open IE systems aim to handle the unbounded number of relations
 - self-supervised learning
 - Automatic heuristics generate labeled data
- How well can these open systems perform?

Wikipedia-based Open Extractor

 Improves dramatically on text runner's *precision* and *recall*.

A self-supervised learning

 heuristic matches between Wikipedia infobox attribute values and corresponding sentences

• Operate in two modes:

- Restricted to POS
- Dependency parse features

Open Information Extractor

- A function from a document *d*, to a set of triples, {<arg1,rel,arg2>}, where the args are noun phrases and "rel" indicating a semantic relation between the two noun phrases
- The extractor should produce one triple for every relation stated explicitly in the text

Open Information Extractor Example

- Article: "Stanford university"
- Infobox: <estabilished,1891>
- Sentence: " the university was founded in 1891 by... "
- The triple would be:
 - <arg1,rel,arg2>
 - <Stanford university, estabilished, 1891>

Architecture of WOE

Preprocessor

Sentence Splitting

- Transform each Wikipedia article into HTML
- Splits into sentences by OpenNLP

NLP annotation

- OpenNLP to supply POS tags and NP-chunk annotations
- Stanford Parser to create a dependency parse

Compiling synonyms

- The preprocessor build a set of synonyms
- Uses Wikipedia redirection pages and backward links

Matcher

- Constructs training data for the learner component
- Given a Wikipedia page with an infobox
 - the matcher iterates through all infobox attributes
 - looking for sentence that contains references to both the subject of the article and the attribute value
 - These noun phrases will be annotated in the training set.

Matcher

Matching primary entities

Use heuristics :

- Full match
- Partial match: "Amherst " matches "Amherst, Mass"
- Patterns of "the<type>": "City" for " Ithaca"
- The most frequent pronoun: " he" for the page on "Albert Einstein"

Matching sentence

• The matcher seeks a **unique** sentence to match the attribute value

Learning Extractors

- Extraction with parser features
 - WOE^{Parse} using features from dependency-parse trees.
 - It uses a pattern learner to classify whether the shortest dependency path between two noun phrase indicate a semantic relation

Extraction with shallow features

- WOE^{POS} limited to shallow features like POS tags
- Trains a conditional random field(CRF) to output certain text between noun phrases when the text denotes such a relation.

Extraction with Parser Features Shortest Dependency Path as Relation

"Dan was not born in Berkeley."

• The Stanford parser dependencies are:

nsubjpass(born-4, Dan-1) auxpass(born-4, was-2) neg(born-4, not-3) root(ROOT-0, born-4) prep in(born-4, Berkeley-6)

Extraction with Parser Features Shortest Dependency Path as Relation

- "Dan was not born in Berkeley."
- CorePath:

Dan nsubjpass born prep_in Berkeley

• ExpandPath:

Extraction with Parser Features Building a Database of Patterns

- Learner generates a corePath between the tokens denoting the subject and the infobox attribute value.
- To improve **learning performance**:
 - Generalized–corePaths: eliminate irrelevant relations
 - Lexical words in corePaths are replaced with their POS tags
 - Extraction pattern "N nsubjpass $V \leftarrow prep N$ "
 - WOE builds a **database** (named DB_p) of 15,333 distinct patterns
 - Each **pattern** *p* associated with **a frequency**

Extraction with Parser Features Learning a Pattern Classifier

- WOE^{parse} checks whether the generalized-corePath from a test triple is present in DB_p and computes the normalized logarithmic frequency as the probability:
- f_p :associated frequency of the pattern
- f_{max} : maximal frequency of patterns in DB_p
- f_{min} :controlling threshold, minimal frequency of a valid pattern

$$w(p) = \frac{max(log(f_p) - log(f_{min}), 0)}{log(f_{max}) - log(f_{min})}$$

Extraction with Parser Features Learning a Pattern Classifier

- Example:
- "Dan was not born in Berkeley "
- Dan as arg1, Berkeley as arg2
- Computes corePath Dan nsubjpass born prep_in Berkeley
- Abstracts to "N nsubjpass $V \leftarrow prep N$ ".
- Queries DB_p to retrieve the frequency f_p =29112 and assigns probability of 0.95(f_m : 50.259)
- WOE^{parse} traverses the triple's expandPath to out put the final expression (Dan, wasNotBornIn, Berkeley)

Extraction with Shallow Features

- High speed can be crucial when processing web-scale corpora
- Shallow features like POS-tags
- Use the same matching sentence set behind *DB_P* to generate **positive examples**
- Negative examples are generated from random nounphrase pairs
 - generalized-corePaths which are **not in** *DB*_P
- Learning algorithm and selection features as textrunner
 - A two-order CRF chain model is trained with Mallet package

Experiments

- Three corpora for experiments:
 - WSJ from Penn Treebank
 - Wikipedia
 - Web
- Randomly selected 300 sentences for each
- Examined by two people to label all reasonable triples
- Submitted to Amazon Mechanical Turk for verification
- Each triple examined by **5 Turkers**
- Positive when more than 3 Turkers marked them as positive

Overall Performance Analysis

- How do these systems *perform* against each other?
- How does *performance* vary w.r.t *sentence length*?
- How does extraction speed vary w.r.t sentence length?

Overall Performance Comparison

8.0 orecision 0.6 4 0.2 WOF^{pos} TextRunner 0.0 0.0 01 0.2 03 0.5 0.6 04 recall

P/R Curve on Wikipedia

- WOE^{pos} is better than TextRunner on precision
 - Better training dataset
- WOE^{parse} is the best on recall
 - Parser features

Extraction Performance vs. Sentence Length

- Long sentence have long-distance relations
 - Difficult for shallow feature

Extraction Speed vs. Sentence Length

- WOE^{parse}'s extraction time grows quadratically
 - Reliance on parsing

Shallow or Deep Parsing

- Shallow features like POS tags enable fast extraction over large-scale corpora
- Deep features are derived from parse trees
 - training better extractors
- Abstracted dependency path features are highly informative
- In Web, many sentences contain complicated longdistance relations
 - Parser features are more powerful

Conclusion

- WOE a new approach that uses self-supervised learning over unlexicalized features, based on heuristic match between Wikipedia infoboxes and corresponding text
- Runs in two modes
 - WOE^{pos}: a CRF extractor trained with shallow features like POS tags
 - **WOE**^{parse} : a pattern classifier learned from dependency path patterns
- In comparison with textrunner
 - WOE^{pos} runs at the same speed, but achieves an F-measure which is between 9% and 23% greater
 - WOE^{parse} achieves an F-measure which is between %51 and 70%, but runs about 30X times slower due to it reliance on parsing.

Reference

Open Information Extraction using Wikipedia. ,Fei Wu ,Daniel
S. Weld, University of Washington .