Open IE with OLLIE

Max Lotstein
Information Extraction
Winter 2013

Outline

Inspiration

Architecture

Performance

Conclusion

Outline

Inspiration

Architecture

Performance

Conclusion

ReVerb

$\arg _{1} \longleftarrow$ relation $\longrightarrow \arg _{2}$
 $V|V P| V W^{*} P$

WOE, TextRunner*

*NOTE: WOE ${ }^{\text {pos }}$ uses this information to train a classifier, as does TextRunner. Only WOE ${ }^{\text {parse }}$ uses it during extraction.

Many Systems, One Product: Tuples

(arg1 , relation , arg2)

Extractions

\#1: Relations w/o Verbs

"Microsoft co-founder Bill Gates ..."
(Bill Gates, be co-founder of, Microsoft)

\#2: Relation/Argument Order

After winning the election, Obama celebrated.
(Obama, win, the election)

\#3: Non-Contiguous Elements

There are plenty of taxis available at Bali airport.
(taxis, be available at, Bali airport)

\#4: Nested Relations

Early astronomers believed that the earth is the center of the universe.
((the Earth, be the center of, the universe)
AttributedTo believe, Early astronomers)

If he makes this shot, Tiger Woods will win the championship.
((Tiger Woods, will win, the championship)
ClausalModifier if, he makes this shot)

OLLIE uses deep syntactic analysis to extract these new relations, and uses a new form of representation when appropriate.

Information Density and Emphasis

- Many ways to encode information textually
- $\frac{\text { relations }}{\text { sentence }}>1$

Bill Gates is the co-founder of Microsoft. Bill Gates is a billionaire. Bill Gates owns a dog named Bucks.

VS.

Microsoft co-founder, Bill Gates, who is a billionaire, owns a dog named Bucks.

Outline

Inspiration

Architecture

Performance

Conclusion

Architecture

Seed Tuples

Seed Tuple, Example

(Obama, win, the election)

Training Data

Bootstrap, Example

Many pundits expect Obama to win the election. (Obama, win, the election)

Creating an Open Pattern

1. Extract path
2. Annotate relation node with word and POS
3. Normalize copula

$\{O b a m a\} \uparrow$ nsubj \uparrow \{win:postag=VB\} \downarrow dobj $\downarrow\{$ the election $\}$

Slot Node

A node on the dependency path that isn't part of the extraction

Can We De-Lexicalize?

If all of the following:
NO slot node on path
Relation node between arguments
Preposition ${ }_{\text {pattern }}=$ Preposition $_{\text {tuple }}$
Path has no nn or amod edges
Then: syntactic pattern
Else: lexical/semantic pattern

Purely Syntactic Patterns

Aggressively generalize:

- Relations, remove lexical constraints
- Prepositions, convert to \{prep_*\}

Consider sentences:

1. "Michael appeared on Oprah..."
2. "... when Alexander the Great advanced to Babylon."

Both have the pattern:
$\{\arg 1\} \uparrow$ nsubj $\uparrow\{$ rel:postag=VBD $\} \downarrow\{$ prep_* $\downarrow \downarrow\{\arg 2\}$

Lexical/Semantic Patterns, Example

"Microsoft co-founder Bill Gates..."
(Bill Gates, is co-founder of, Microsoft)
"Chicago Symphony Orchestra"*
(Orchestra, is symphony of, Chicago)*

Can we still generalize to unseen words?

Lexical/Semantic Patterns

People $=$ WordNet's People class
Location = WordNet's Location class
L = list of lexical items
$I_{\text {people }}=L \cap$ People
$I_{\text {location }}=L \cap$ Location
If $I_{\text {people }}\left(\right.$ or $\left.I_{\text {location }}\right)>3 / 4^{*}$:
Then: Use $I_{\text {people, }} \operatorname{drop} L$ (Use $I_{\text {location }}$)
Else: Keep L

Some Open Pattern Templates

Extraction Template	Open Pattern
1. (argl; be \{rel\} \{prep\}; arg2)	$\{$ arg 1\} \dagger nsubjpass \uparrow \{rel:postag=VBN\} \downarrow \{prep_* $\downarrow \downarrow$ \{arg2\}
2. (argl; \{rel\}; arg2)	$\{\arg 1\} \dagger$ nsubj \dagger \{rel:postag=VBD $\} \downarrow$ dobj \downarrow \{arg2\}
3. (argl; be \{rel\} by; arg2)	\{arg 1\} \dagger nsubjpass \uparrow \{rel:postag=VBN\} \downarrow agent \downarrow \{arg2\}
4. (argl; be \{rel\} of; arg2)	\{rel:postag=NN;type=Person\} \dagger nn \dagger \{argl\} \downarrow nn $\downarrow\{\arg 2\}$
5. (argl; be \{rel\} \{prep\}; arg2)	$\begin{aligned} & \text { \{arg 1\} } \uparrow \text { nsubjpass } \uparrow \text { \{slot:postag=VBN;lex Gannounce\|name\|choose...\} } \\ & \downarrow \text { dobj } \downarrow \text { \{rel:postag=NN }\} \downarrow \text { prep- } *\} \downarrow\{\arg 2\} \end{aligned}$

Open Pattern Template Statistics

PatternType Average Rank Frequency

Lexical/Semantic
344
515
Purely Syntactic
186
114

Grand Total

629

Lexical Constraint Statistics

Average of Length

Extraction

Pattern Matching

1. Apply Pattern Template
2. Expand on relevant edges
e.g. "election" \rightarrow "the election" (det)
3. Use word order from sentence to make tuple

Context Analysis

- Attribution
- Marked by ccomp edges
- E.g. "He says that you like to swim" (says, like)
- Communication/cognition verbs, e.g. 'believe'
- Clausal Modifier: when dependent clause modifies main extraction
- Marked by advcl
- "The accident occurred as night fell" (occurred, fell)
- If, when, although, because ...

Outline

Inspiration

Architecture

Performance

Conclusion

Speed: Conflicting Reports

System	Sent/sec	ReportedIn
OLLIE	89	OLLIE
ReVerb	104	ReVerb
TextRunner	662	TextRunner
TextRunner	79	ReVerb
TextRunner	2727	WOE
WOE $_{\text {parse }}$	3	ReVerb
WOE $_{\text {parse }}$	88	WOE
WOE $_{\text {pos }}$	79	ReVerb
WOE $_{\text {pos }}$	2727	WOE

A Less Precise Consensus

parseTime vs. extractTime

Precision vs. Yield

- 300 Sentences, selected randomly from News, Wikipedia and a Biology textbook
- Hand corrected extractions by multiple humans

Comparing Comparisons

Precision Yield

vs. $\frac{\text { Precision }}{\text { Recall }}$

- Requires full set
- Allows false negative detection

Noun-Mediated Relations

Relation	OLLIE	REVERB	incr.
is capital of	8,566	146	59 x
is president of	21,306	1,970	11 x
is professor at	8,334	400	21 x
is scientist of	730	5	146 x

"Obama, the president of the US"
"Obama, the US president"
>> "Obama is the president of the US" "US President Obama"

OLLIE vs. SRL

	LUND	OLLIE	union
Verb relations	$0.58(0.69)$	$0.49(0.55)$	$0.71(0.83)$
Noun relations	$0.07(0.33)$	$0.13(0.13)$	$0.20(0.33)$
All relations	$0.54(0.67)$	$0.47(0.52)$	$0.67(0.80)$

- SRL performs well
- Bad at grammatical complexity
- OLLIE deals with co-reference better
- Noun-mediated relations are harder, rarer
- Union is higher than both: everybody wins!

Sources of Error

Source of Error \%

Parser Error
 32

Aggressive generalization
 18

Incorrect application of lexical pattern

12
Missed Context
13
Limitations of Binary
Representation
12

Illuminating Errors

- The rotation of the planet causes it to take the shape of an oblate spheroid; that is, it is flattened at the poles and bulges at the equator. ${ }^{1}$
- (it, is flattened at, the poles and bulges)*
- Saturn is the only planet of the Solar System that is less dense than water--about 30\% less. ${ }^{2}$
- (Saturn, is the only planet of, the Solar System)*
- I shot the man with the gun.
- (I, shot the man with, the gun)*
- (I , shot, the man)*
http://en.wikipedia.org/wiki/Saturn ${ }^{1}$
http://simple.wikipedia.org/wiki/Saturn ${ }^{2}$

Two Observations About Language

1. In English, words can act in groups - I like ice cream. Do you (like ice cream)?

- I like ice cream and hate bananas.
- I said I would hit Fred and hit Fred I did.

2. Words also depend on other words by

- Verbs have agents, objects, etc.
- I (subj) throw (verb) the (det) ball (obj)

Phrase

Driven

Grammar

Dependency Grammar

Neither approach is perfect.

Outline

Inspiration

Architecture

Performance

Conclusion

Conclusions, Methodology

- How big must a sample be in order to be representative?
- Bootstrapping hypothesis, only 100
- 50 sentences in SRL comparison
- 'Gold standard’ annotation (support recall)
- Potentially more reliable inter-system comparison
- "Hey look, our system is better! What are the odds!"
- Better false negative detection
- Ahem ... grad students are cheap.

Conclusion, Theoretical

- Generalization Techniques
- Syntactic: a bit too aggressive
- Lexical/Semantic: a bit too tame
- Many other options. See Angeli, Gabor, and Manning 2013
- OLLIE lives and dies by its parser
- Responsible for sig. \% of errors
- Accounts of sig. \% of time
- Relations still assumed binary
- Many are n-ary, have optional arguments
- See KrakeN, ClausIE
- Contextual Relations are limited, flawed
- What really are relations, anyway?

Our Work Isn't Done

Words are not bags of characters:
Opposites, synonyms, entailment, classes ...

Sentences are not bags of words:
Syntactic structure, semantic frames

Are documents bags of sentences?
Coreference disambiguation

References

Schmitz, Michael, et al. "Open language learning for information extraction." Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Association for Computational Linguistics, 2012.
OLLIE Readme, Accessed on 12-3-2013. URL https://github.com/knowitall/ollie
Etzioni, Oren, et al. "Open information extraction: The second generation." Proceedings of the Twenty-Second international joint conference on Artificial Intelligence-Volume Volume One. AAAI Press, 2011.
Fader, Anthony, Stephen Soderland, and Oren Etzioni. "Identifying relations for open information extraction." Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2011.
Banko, Michele, et al. "Open Information Extraction from the Web." IJCAI. Vol. 7. 2007.
Wu, Fei, and Daniel S. Weld. "Open information extraction using Wikipedia." Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2010.
De Marneffe, Marie-Catherine, and Christopher D. Manning. "Stanford typed dependencies manual." URL http://nlp. stanford. edu/software/dependencies manual. pdf (2008).
"Dependency Grammar." Advanced Natural Language Processing, University of Edinburgh. URL http://www.inf.ed.ac.uk/teaching/courses/anlp/slides/anlp15.pdf
Angeli, Gabor, and Christopher D. Manning. "Philosophers are mortal: Inferring the truth of unseen facts." CoNLL-2013 (2013): 133.

Akbik, Alan, and Alexander Löser. "Kraken: N-ary facts in open information extraction." Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction. Association for Computational Linguistics, 2012.
Del Corro, Luciano, and Rainer Gemulla. "ClausIE: clause-based open information extraction." Proceedings of the 22nd international conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2013.

Wikipedia, That, http://en.wikipedia.org/wiki/That (as of Dec. 4, 2013).

GitHub

This repository * Search or type a command
(3)

Explore Features Enterprise Blog
Sign up

PUBLIC \square knowitall / ollie

```
& branch: master - ollie / Commits
```


Nov 18, 2013

```
7. Merge pull request #22 from mlotstein/master ...
```

```
5ca8c4ec15
```

Nov 17, 2013

Update README.md

```
e04b3b49a7
```

schmmd authored 16 days ago
Browse code \Rightarrow

Nov 15, 2013

- . Fix package name in command line call in README file ...

4 f 5 cb 51 d 6 f
mlotstein authored 18 days ago
Browse code \Rightarrow
Merge pull request \#21 from mlotstein/master ...
schmmd authored 18 days ago
6 d 76094088
Browse code \Rightarrow
\#- Fixed import statements in Java Example File ...
mlotstein authored 18 days ago

Confidence Function

- Top Positive Features:
- nn edges in pattern 0.91
- rel contains verb 0.48
- openparse confidence 0.43
- Top Negative Features:
- if right before arg1 -1.22
- vacuous extraction -0.64
- semantic constraints in pattern -0.43

