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Motivation

 Knowledge base with internet facts
 Grows every day/iteration
 Gets every day more accurate
 Uses state of the art techniques of IE
 NELL started in the Year 2010 and is still 

computing
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How does it work?

NELL...
… crawls the net for information
…evaluates the information
… stores beliefs in a knowledge base
… iterates over time with the received 

knowledge to get better results
… graduates (or degrades) old beliefs after one 

iteration
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How does it work?

 Subsystems with 
different 
approaches

 Knowledge 
integrator (KI)

 Knowledge base (KB)
 External resources
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Knowledge Integrator

 Decides if a candidate 
gets to a belief

 Candidates get propose
- Probability
- Summary
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Subsystems

 Read from data resources and KB
 Propose to KI
 Uncorrelated errors
 Multiple types of inter-related knowledge

r
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Knowledge Base

 Beliefs
(posterior > 0.9)

 Candidate facts
(posterior <= 0.9)

 Retains source justification 
for each belief
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Data Resources

 Corpora
 Internet pages

- in the original training 
set: 

500 mio. wep pages

 etc.
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Two examples for subsystems

I. Coupled Pattern 
Learner

II.Coupled SEAL
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I. Coupled Pattern Learner

 Free text extractor which learns contextual 
patterns and relations

 Uses part-of-speech tagging
 Gives probabilities [1, 0.5]
 Relative to number of promoted patterns c
 Formula:
 In experiments openNLP was used to check 

accuracy

1−0.5c

__________________________________________
More information in [3]
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I. Coupled Pattern Learner

Pattern learning:
- extracts category patterns from promoted 

categories if a noun is followed by a verb
- extracts relation patterns if arguments of a 

promoted relation occur more than once

Instance learning:
- extracts relation instances if both place-holders 

are valid for their categories
- Extracts category instances if proper noun 

phrase with valid specification is found

__________________________________________
More information in [3]
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II. Coupled SEAL

 Semi-structured extractor, queries the 
internet with beliefs

 Used to get new instances of a predicate
 Uses mutual exclusion relationships
 Same method for probability as CPL

__________________________________________
More information in [3]
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II. Coupled SEAL

 Searches web-pages with some predefined 
seeds for new elements

 Original SEAL had no concept of mutual 
exclusion
- CSEAL first extracts new elements by original 

SEAL Algorithm and then filters for candidates 
that violate coupling

• If carIsOfBrand(BMW) then not carIsOfBrand(Audi)



11.12.13 Präsentationstitel 15

Demo



11.12.13 Präsentationstitel 16

Many improvements

 Over time there were published over 20 new 
papers from the group with improvements 
for NELL
- One talks about human supervision in a 

NELL-system-implementation
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Human Supervision

 Two approaches:
- Active and passive looking for human 

collaboration

 Passive approach on the web-site
 Active approach autocratically seeks for 

answers in different communities
 In NELL both approaches are connected
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Problems of Human Supervision

 Computer must autonomously get help from 
humans

 Which knowledge should be out to humans 
attention?

 Who are the humans that the machine 
should look for help?

 How to understand humans answers?
 How to infer from humans answers?
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Conversing Learning

 NELL uses CL to actively seeking for 
information from human users

 only few facts are going to be validated by 
community

 Advancement to the SS-Cloud algorithm
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SS-Cloud Algorithm

Tasks:
I.Take facts from the KB

II.Build a human understandable question

III.Query the web community with the 
question
IV.Gather and resolve the answer (classify as 
positive or negative)

V.Combine the answers and produce a 
combined opinion
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Twitter: @cmunell

 https://twitter.com/cmunell
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Twitter vs. Yahoo!Answers

Unresolved Answers:
 Twitter: 

5,5%
 Yahoo!Answers:

16,5%
 Twitter and Yahoo!Answer users disagree:

45%

 Unfortunately there is no data for improve- 
ments on NELLs accuracy
- But earlier human supervision sessions improved 

from 71%  to 87% accuracy

Approved Rejected Unresolved

Twitter 51 17 4

Yahoo 124 168 58
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Results of the first NELL

Testconditions:
 Every iteration: CPL, CSEAL, CMC
 Every 10 iterations: RL

- Proposed outputs were filtered by a human 
(few minutes per iteration)

 Training Set:
- 123 categories with each 10-15 seed instances 

and 5 seed patterns
- 55 relations with each 10-15 seed instances and 

5 negative instances
- (some?) relationships between categories
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Results of the first NELL

 Runtime of 67 days
- 66 iterations

 242 453 new beliefs
- 95% instances of categories
- 5% relations
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Results of the first NELL
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Results of the first NELL

Iterations Estimated precision (%) #promotions

1-22 90 88,502

23-44 71 77,835

45-66 57 76,116
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Questions?
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Thank you for your attention.
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