
Efficient Route Planning
SS 2011

Lecture 1, Friday May 6th, 2011
(I t d ti O i ti l Dijk t A*)(Introduction, Organizational, Dijkstra, A*)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg



Overview of this lecture

 Introduction
– Demos + what you will learn in this course

 OrganizationalOrganizational
– Style of the course

– Course Systems: Wiki Forum Daphne SVN JenkinsCourse Systems: Wiki, Forum, Daphne, SVN, Jenkins, …

– Exercises + Exam

 And then let's start And then let s start
– Modelling road networks as graphs

OpenStreetMap data– OpenStreetMap data

– Dijkstra and A*

Exercise sheet for this week– Exercise sheet for this week
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Demos + what you will learny

 Google Maps

– Demo for road networks

– Demo for transit networksDemo for transit networks

– at the end of the course you will be able to build 
something like this ... and maybe even betterg y

 What you will learn in this course

How to model road and transit networks– How to model road and transit networks

– Where to get good data

Effi i t l ith f t l i th t k– Efficient algorithms for route planning on these networks

– How to build a web application around this 
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Style of this coursey

 What I will do

– Provide the framework for this course

– Explain models, data, and the various algorithmsExplain models, data, and the various algorithms

 What you will do

I l t th l ith– Implement the algorithms

– Do experiments

– Explore variations / new ideas

– Read some papers from time to time

– Some theoretical tasks ... but not too many
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Course systemsy

 Various systems supporting this course

– The course Wiki is the hub page with links to each of the 
following

– Daphne is our course management system 

– There is an SVN repository for your submissions, in p y y ,
particular for your code

– There is a Forum for asking questions

– All the course materials will be put online (links on the 
Wiki): the lecture slides, the exercise sheets, the lecture 

di d it i th l trecordings, any code we write in the lectures

– We will also provide a continuous build system (Jenkins) 
that automatically checks the code you commit to our SVNthat automatically checks the code you commit to our SVN
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Exercises + Exam

 There will be one exercise sheet per week

– Usually a practical one

– You can work on the sheets in groups of 2-3 peopleYou can work on the sheets in groups of 2 3 people

– Submit the code to our SVN     show how to register

– Follow some basic guidelines for coding  next slide– Follow some basic guidelines for coding  next slide

– There is no right or wrong for the exercise sheets but 
you will get points for your effortyou will get points for your effort

– Each group must provide master solutions at least once

 Exam in the end Exam in the end

– Will be written or oral, depending on the #participants

– You need 50% of the points to be admitted
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Code

 Please follow these guidelines when writing code

– Write your programs in C++ or in Java

– Follow a stylesheetFollow a stylesheet

for C++ you find a style checker cpplint.py when you 
check out your subdirectory from our SVNy y

– Write unit tests for all major functions / methods

otherwise all the results you produce are wrong withotherwise all the results you produce are wrong with 
high probability

– Provide a standard Makefile / Antfile for compilation

– Document each class and each method
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Road networks

 Model as graph

– each crossing of two or 
road segments is a node
in the graph

– each road segment is a 
di t d i th hdirected arc in the graph

– in the simplest model, 
the cost of an arc is thethe cost of an arc is the 
time to travel along the 
corresponding road 
segment
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Shortest Path QueriesQ

 Point to point queries

– For the first lectures, we are interested in finding the 
shortest path (path of minimal cost) between two given 
nodes A and B, called source and target node

– The cost of a path is simply the sum of the costs of the 
l th harcs along the graph
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OpenStreetMapp p

 OpenStreetMap (OSM)

– Is an open-source initiative for gathering geo data

not only road network data; e.g. also all kinds ofnot only road network data; e.g. also all kinds of
other map data

– Started in 2004, quite good coverage by now, q g g y

1 billion nodes, many 100 billions of arcs (May 2011)

– Data can be downloaded for free show itData can be downloaded for free   show it

– For now we (in particular for Exercise Sheet 1) we need

nodes (each with a latitude and a longitude)nodes (each with a latitude and a longitude)

ways (several arcs together) with <tag k="highway" ...>

See Wiki for translations of highway types to speedsSee Wiki for translations of highway types to speeds
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Travel time along an arcg

 The OSM data provides node coordinates ...
– and road types, from which we can infer speeds

– This gives us travel time via the formulag

speed = distance traveled / travel time   (v = s / t)

 How to get the distance between two nodes?How to get the distance between two nodes?
– The obvious formula is the euclidean distance between 

the two points

– However, note that the path between two points on the 
earths surface is not a straight line, but follows a so-
called great circle (Großkreis)called great circle (Großkreis)

http://en.wikipedia.org/wiki/Great_circle

but ok to use Euclidean distance for Exercise Sheet 1but ok to use Euclidean distance for Exercise Sheet 1
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Dijkstra's algorithmj g

 Quick recap

– Maintains a priority queue of active nodes with tentative 
distances

– Initially only the start node is active, with tentative distance 0, 
all other tentative distances are ∞

– In each iteration, pick the active node with the smallest 
tentative distance and change its status from active to settled

if all arc costs are non-negative, the tentative distance of 
each settled node is guaranteed to be the correct distance

R l th t i if th t t ti di t f th– Relax the outgoing arcs = see if the tentative distances of the 
adjacent nodes can be improved, if yes do so

Stop when the target node is settled– Stop when the target node is settled
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Dijkstra's algorithmj g

 Example execution
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Dijkstra on road networksj

 Schematic picture
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A* algorithmg

 A* is a simple extension of Dijkstra

– In addition to the arc costs, we have a heuristic value h for 
each node that estimates the cost from there to the target

– A* then proceeds like Dijkstra, except that the keys with 
which an active nodes is put into the priority queue is not 
it t t ti di t b t it t t ti di t l it hits tentative distance, but its tentative distance plus its h 
value

If for each node the value h is ≤ the true cost to the– If for each node, the value h is ≤ the true cost to the 
target, the algorithm is correct = it will find the shortest 
path from the source to the target

– if for each node, the values h is 0, we have plain Dikjstra

– if  for each node, the value h is the exact distance to the ,
target, A* performs the least number of operations
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A* algorithmg

 Example execution
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A* heuristic for road networks

 Straight-line distance

– Also called "as the crow flies" distance ("Luftlinie")

– The straight-line distance from a node to the target,The straight line distance from a node to the target, 
divided by the maximum speed, certainly gives a lower 
bound on the travel time along an optimal path from 
th t d t th t tthat node to the target

– Let's see (in the exercise) how much that helps!

17



Day and time for the next lecturesy

 Next Friday (May 13)

– The lecture starts at 2.45 pm (and goes for one hour only)

("Begehung Akkreditierung", meeting of the Akkreditierungs-( Begehung Akkreditierung , meeting of the Akkreditierungs
Board with all the professors)

– Or is there consensus on a better day and time?y
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