Efficient Route Planning
SS 2011

Lecture 1, Friday May 6t", 2011
(Introduction, Organizational, Dijkstra, A*)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

m Introduction
— Demos + what you will learn in this course
m Organizational

— Style of the course
— Course Systems: Wiki, Forum, Daphne, SVN, Jenkins, ...
— Exercises + Exam

m And then let's start

— Modelling road networks as graphs
— OpenStreetMap data

— Dijkstra and A*

— Exercise sheet for this week

Demos + what you will learn

m Google Maps

— Demo for road networks
— Demo for transit networks

— at the end of the course you will be able to build
something like this ... and maybe even better

m What you will learn in this course

— How to model road and transit networks
— Where to get good data
— Efficient algorithms for route planning on these networks

— How to build a web application around this

Style of this course

m What I will do

— Provide the framework for this course

— Explain models, data, and the various algorithms

= What you will do

— Implement the algorithms

— Do experiments

— Explore variations / new ideas

— Read some papers from time to time

— Some theoretical tasks ... but not too many

Course systems

m Various systems supporting this course

— The course Wiki is the hub page with links to each of the
following

— Daphne is our course management system

— There is an SVN repository for your submissions, in
particular for your code

— There is a Forum for asking questions

— All the course materials will be put online (links on the
Wiki): the lecture slides, the exercise sheets, the lecture
recordings, any code we write in the lectures

— We will also provide a continuous build system (Jenkins)
that automatically checks the code you commit to our SVN

Exercises + Exam

m There will be one exercise sheet per week

— Usually a practical one

— You can work on the sheets in groups of 2-3 people
— Submit the code to our SVN show how to register
— Follow some basic guidelines for coding — next slide

— There is no right or wrong for the exercise sheets but
you will get points for your effort

— Each group must provide master solutions at least once
m Exam in the end

— Will be written or oral, depending on the #participants

— You need 50% of the points to be admitted

Code

m Please follow these guidelines when writing code

— Write your programs in C++ or in Java
— Follow a stylesheet

» for C++ you find a style checker cpplint.py when you
check out your subdirectory from our SVN

— Write unit tests for all major functions / methods

otherwise all the results you produce are wrong with
high probability

— Provide a standard Makefile / Antfile for compilation

— Document each class and each method

Road networks

* f’ ‘-l"‘"‘ .. ‘,‘:.tzﬁ-l-

S S
m Model as graph T _,.’l"': @gfﬁ %
— each crossing of two or _ _ 11{@3»7“,
road segments is a node T RGN ﬁi‘i"ﬂ —x

in the graph N

— each road segment is a
directed arc in the graph

— in the simplest model,
the cost of an arc is the
time to travel along the
corresponding road
segment

Shortest Path Queries

m Point to point queries

— For the first lectures, we are interested in finding the
shortest path (path of minimal cost) between two given
nodes A and B, called source and target node

— The cost of a path is simply the sum of the costs of the
arcs along the graph

OpenStreetMap

m OpenStreetMap (OSM)

— Is an open-source initiative for gathering geo data

not only road network data; e.g. also all kinds of
other map data

— Started in 2004, quite good coverage by now
-1 billion nodes, many 100 billions of arcs (May 2011)

— Data can be downloaded for free show it

— For now we (in particular for Exercise Sheet 1) we need

nodes (each with a latitude and a longitude)

ways (several arcs together) with <tag k="highway" ...

» See Wiki for translations of highway types to speeds

10

Travel time along an arc

m The OSM data provides node coordinates ...

— and road types, from which we can infer speeds
— This gives us travel time via the formula
speed = distance traveled / travel time (v=s/1t)

m How to get the distance between two nodes?

— The obvious formula is the euclidean distance between
the two points

— However, note that the path between two points on the
earths surface is not a straight line, but follows a so-
called great circle (GroBkreis)

» http://en.wikipedia.org/wiki/Great circle

» but ok to use Euclidean distance for Exercise Sheet 1

11

Dijkstra's algorithm

m Quick recap

— Maintains a priority queue of active nodes with tentative
distances

— Initially only the start node is active, with tentative distance O,
all other tentative distances are oo

— In each iteration, pick the active node with the smallest
tentative distance and change its status from active to settled

. if all arc costs are non-negative, the tentative distance of
each settled node is guaranteed to be the correct distance

— Relax the outgoing arcs = see if the tentative distances of the
adjacent nodes can be improved, if yes do so

— Stop when the target node is settled

12

Dijkstra's algorithm

m Example execution

13

Dijkstra on road network

—_

UNI
[

FREIBURG

A* algorithm

m A* is a simple extension of Dijkstra

— In addition to the arc costs, we have a heuristic value h for
each node that estimates the cost from there to the target

— A* then proceeds like Dijkstra, except that the keys with
which an active nodes is put into the priority queue is not
its tentative distance, but its tentative distance plus its h
value

— If for each node, the value h is < the true cost to the
target, the algorithm is correct = it will find the shortest
path from the source to the target

— if for each node, the values h is 0, we have plain Dikjstra

— if for each node, the value h is the exact distance to the
target, A* performs the least number of operations

15

BURG

A* algorithm

m Example executign

16

A* heuristic for road networks

m Straight-line distance

— Also called "as the crow flies" distance ("Luftlinie")

— The straight-line distance from a node to the target,
divided by the maximum speed, certainly gives a lower
bound on the travel time along an optimal path from
that node to the target

— Let's see (in the exercise) how much that helps!

17

Day and time for the next lectures

m Next Friday (May 13)

— The lecture starts at 2.45 pm (and goes for one hour only)

("Begehung Akkreditierung”, meeting of the Akkreditierungs-
Board with all the professors)

— Or is there consensus on a better day and time?

18

References

m OpenStreetMap

— http://www.openstreetmap.org/

— http://en.wikipedia.org/wiki/OpenStreetMap

— http://wiki.openstreetmap.ora/wiki/XML

— http://wiki.openstreetmap.org/wiki/Data Primitives

— http://wiki.openstreetmap.org/wiki/Map Features

m Dijkstra's algorithm and A*
— http://en.wikipedia.org/wiki/Dijkstras algorithm

— http://en.wikipedia.org/wiki/A* search algorithm

19

20

