
Efficient Route Planning
SS 2011

Lecture 1, Friday May 6th, 2011
(I t d ti O i ti l Dijk t A*)(Introduction, Organizational, Dijkstra, A*)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

 Introduction
– Demos + what you will learn in this course

 OrganizationalOrganizational
– Style of the course

– Course Systems: Wiki Forum Daphne SVN JenkinsCourse Systems: Wiki, Forum, Daphne, SVN, Jenkins, …

– Exercises + Exam

 And then let's start And then let s start
– Modelling road networks as graphs

OpenStreetMap data– OpenStreetMap data

– Dijkstra and A*

Exercise sheet for this week– Exercise sheet for this week

2

Demos + what you will learny

 Google Maps

– Demo for road networks

– Demo for transit networksDemo for transit networks

– at the end of the course you will be able to build
something like this ... and maybe even betterg y

 What you will learn in this course

How to model road and transit networks– How to model road and transit networks

– Where to get good data

Effi i t l ith f t l i th t k– Efficient algorithms for route planning on these networks

– How to build a web application around this

3

Style of this coursey

 What I will do

– Provide the framework for this course

– Explain models, data, and the various algorithmsExplain models, data, and the various algorithms

 What you will do

I l t th l ith– Implement the algorithms

– Do experiments

– Explore variations / new ideas

– Read some papers from time to time

– Some theoretical tasks ... but not too many

4

Course systemsy

 Various systems supporting this course

– The course Wiki is the hub page with links to each of the
following

– Daphne is our course management system

– There is an SVN repository for your submissions, in p y y ,
particular for your code

– There is a Forum for asking questions

– All the course materials will be put online (links on the
Wiki): the lecture slides, the exercise sheets, the lecture

di d it i th l trecordings, any code we write in the lectures

– We will also provide a continuous build system (Jenkins)
that automatically checks the code you commit to our SVNthat automatically checks the code you commit to our SVN

5

Exercises + Exam

 There will be one exercise sheet per week

– Usually a practical one

– You can work on the sheets in groups of 2-3 peopleYou can work on the sheets in groups of 2 3 people

– Submit the code to our SVN show how to register

– Follow some basic guidelines for coding next slide– Follow some basic guidelines for coding next slide

– There is no right or wrong for the exercise sheets but
you will get points for your effortyou will get points for your effort

– Each group must provide master solutions at least once

 Exam in the end Exam in the end

– Will be written or oral, depending on the #participants

– You need 50% of the points to be admitted

6

Code

 Please follow these guidelines when writing code

– Write your programs in C++ or in Java

– Follow a stylesheetFollow a stylesheet

for C++ you find a style checker cpplint.py when you
check out your subdirectory from our SVNy y

– Write unit tests for all major functions / methods

otherwise all the results you produce are wrong withotherwise all the results you produce are wrong with
high probability

– Provide a standard Makefile / Antfile for compilation

– Document each class and each method

7

Road networks

 Model as graph

– each crossing of two or
road segments is a node
in the graph

– each road segment is a
di t d i th hdirected arc in the graph

– in the simplest model,
the cost of an arc is thethe cost of an arc is the
time to travel along the
corresponding road
segment

8

Shortest Path QueriesQ

 Point to point queries

– For the first lectures, we are interested in finding the
shortest path (path of minimal cost) between two given
nodes A and B, called source and target node

– The cost of a path is simply the sum of the costs of the
l th harcs along the graph

9

OpenStreetMapp p

 OpenStreetMap (OSM)

– Is an open-source initiative for gathering geo data

not only road network data; e.g. also all kinds ofnot only road network data; e.g. also all kinds of
other map data

– Started in 2004, quite good coverage by now, q g g y

1 billion nodes, many 100 billions of arcs (May 2011)

– Data can be downloaded for free show itData can be downloaded for free show it

– For now we (in particular for Exercise Sheet 1) we need

nodes (each with a latitude and a longitude)nodes (each with a latitude and a longitude)

ways (several arcs together) with <tag k="highway" ...>

See Wiki for translations of highway types to speedsSee Wiki for translations of highway types to speeds

10

Travel time along an arcg

 The OSM data provides node coordinates ...
– and road types, from which we can infer speeds

– This gives us travel time via the formulag

speed = distance traveled / travel time (v = s / t)

 How to get the distance between two nodes?How to get the distance between two nodes?
– The obvious formula is the euclidean distance between

the two points

– However, note that the path between two points on the
earths surface is not a straight line, but follows a so-
called great circle (Großkreis)called great circle (Großkreis)

http://en.wikipedia.org/wiki/Great_circle

but ok to use Euclidean distance for Exercise Sheet 1but ok to use Euclidean distance for Exercise Sheet 1

11

Dijkstra's algorithmj g

 Quick recap

– Maintains a priority queue of active nodes with tentative
distances

– Initially only the start node is active, with tentative distance 0,
all other tentative distances are ∞

– In each iteration, pick the active node with the smallest
tentative distance and change its status from active to settled

if all arc costs are non-negative, the tentative distance of
each settled node is guaranteed to be the correct distance

R l th t i if th t t ti di t f th– Relax the outgoing arcs = see if the tentative distances of the
adjacent nodes can be improved, if yes do so

Stop when the target node is settled– Stop when the target node is settled

12

Dijkstra's algorithmj g

 Example execution

13

Dijkstra on road networksj

 Schematic picture

14

A* algorithmg

 A* is a simple extension of Dijkstra

– In addition to the arc costs, we have a heuristic value h for
each node that estimates the cost from there to the target

– A* then proceeds like Dijkstra, except that the keys with
which an active nodes is put into the priority queue is not
it t t ti di t b t it t t ti di t l it hits tentative distance, but its tentative distance plus its h
value

If for each node the value h is ≤ the true cost to the– If for each node, the value h is ≤ the true cost to the
target, the algorithm is correct = it will find the shortest
path from the source to the target

– if for each node, the values h is 0, we have plain Dikjstra

– if for each node, the value h is the exact distance to the ,
target, A* performs the least number of operations

15

A* algorithmg

 Example execution

16

A* heuristic for road networks

 Straight-line distance

– Also called "as the crow flies" distance ("Luftlinie")

– The straight-line distance from a node to the target,The straight line distance from a node to the target,
divided by the maximum speed, certainly gives a lower
bound on the travel time along an optimal path from
th t d t th t tthat node to the target

– Let's see (in the exercise) how much that helps!

17

Day and time for the next lecturesy

 Next Friday (May 13)

– The lecture starts at 2.45 pm (and goes for one hour only)

("Begehung Akkreditierung", meeting of the Akkreditierungs-(Begehung Akkreditierung , meeting of the Akkreditierungs
Board with all the professors)

– Or is there consensus on a better day and time?y

18

References

 OpenStreetMap

– http://www.openstreetmap.org/

– http://en.wikipedia.org/wiki/OpenStreetMaphttp://en.wikipedia.org/wiki/OpenStreetMap

– http://wiki.openstreetmap.org/wiki/XML

– http://wiki openstreetmap org/wiki/Data Primitives– http://wiki.openstreetmap.org/wiki/Data_Primitives

– http://wiki.openstreetmap.org/wiki/Map_Features

Dijk t ' l ith d A* Dijkstra's algorithm and A*

– http://en.wikipedia.org/wiki/Dijkstras_algorithm

– http://en.wikipedia.org/wiki/A*_search_algorithm

19

20

