
Efficient Route Planning
SS 2011

Lecture 10, Friday July 22nd, 2011
(T it t k i lti l b l Dijk t)(Transit networks again, multi-label Dijkstra)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

 Organizational
– Your results from Ex. Sheet #6 (transit node routing)

– This is the third to last lecture

 Transit Networks Reloaded
– Transfer buffers in the time-dependent model

– Details about the arcs between arrival, departure and transfer
nodes in the time-expanded model

 Multi-criteria costs
– How to model  Pareto sets

– How to compute shortest paths  Multi-label Dijkstra

 Exercise sheet
– You get one more week for Exercise Sheet #7

2

Transfer buffers 1/5

 Time-expanded model

– This is non-trivial, because we need to distinguish between
staying on a vehicle at a station (which must not require
any transfer time) and changing the vehicle, for example:

3

Transfer buffers 2/5

 Time-expanded model, solution

– Split up each node from before into an arrival node and a
departure node, and add an arc between the two
(we can also model layover time that way now)

– For each arrival node A@t, add a transfer node A@t' and an
f A@t t A@t' h t' t i th t f b ffarc from A@t to A@t', where t' – t is the transfer buffer

– For each transfer node A@t, add an arc to the departure node
A@t' with the smallest t' > tA@t with the smallest t > t

– Have the waiting arcs between transfer nodes only

D t t th i f d t d d– Departure at the source is now from a departure node, and
arrival at the target is at an arrival node

4

Transfer buffers 3/5

 Time-dependent model, solution 1

– We also have to distinguish here between staying on a
vehicle and changing the vehicle at a station

– It looks like we can do this by simply remembering for each
node, along with the tentative arrival time t[u], the id ℓ of
th hi l ith hi h i tthe vehicle with which we arrive at u

– Then we can build the transfer buffer into the cost function

costu,v(t, ℓ) = time to reach v, if we are at u at time t sitting
in vehicle ℓ

U f t t l Dijk t ' l ith ill t l tl– Unfortunately, Dijkstra's algorithm will not always correctly
compute the shortest path anymore then ... why?

5

Transfer buffers 4/5

 Time-dependent model, problem

6

Transfer buffers 5/5

 Time-dependent model, solution 2

– Have separate arrival and departure nodes, too

– One arrival and one departure node per line sufficesOne arrival and one departure node per line suffices

– But we no longer only have one node per station then

 Time dependent model solution 3 Time-dependent model, solution 3

– When we can arrive at a station at two different times
t and t with different vehicles and |t t | is ≤ thet1 and t2 with different vehicles, and |t2 – t1| is ≤ the
transfer buffer, pursue both possibilities

– Then we need to do a multi-label Dijkstra (DijkstraThen we need to do a multi label Dijkstra (Dijkstra
maintaining several shortest paths to the same node),
see second half of this lecture

7

Arrival, departure, transfer nodes 1/4, p ,

 Step 1: Parse from GTFS (reprise from last lecture)

– Create all nodes while processing stop_times.txt

– And also the following arcs:And also the following arcs:

between arrival and departure nodes ("traveling arcs")

from arrival nodes to transfer nodes ("alighting arcs")from arrival nodes to transfer nodes (alighting arcs)

8

Arrival, departure, transfer nodes 2/4, p ,

 Step 1: Parse from GTFS , continued ...

– While processing stop_times.txt, also maintain for each
station the list of departure and transfer nodes of that
station, with their time and type (departure or transfer)

std::vector<std::vector<Node> > _nodesPerStation;

Note: in GTFS the stations are strings, but it's more efficient
to convert them into consecutive station ids during the
parsing of stops txt; remember the correspondence like this:parsing of stops.txt; remember the correspondence like this:

hash_map<std::string, int> _stationIdPerName;

It i t dd th f ll i– It remains to add the following arcs:

from transfer nodes to departure nodes ("boarding arcs")

from one transfer node to the next ("waiting arcs")

9

Arrival, departure, transfer nodes 3/4, p ,

 Step 2: After the parse, add the missing arcs

– For each station: sort the nodes by time, and for equal times,
sort the transfer nodes before the departure nodes, with ties
between nodes of the same kind broken arbitrarily

– Then for each transfer node x
i th t din the sorted sequence

add an arc to the next
transfer node in the sequencetransfer node in the sequence

add an arc to each departure
node that comes after xnode that comes after x
without another transfer node
inbetween (none, if next node
f f d)after x is a transfer node)

10

Arrival, departure, transfer nodes 4/4, p ,

 Optimizations

– If a station has several
arrival nodes at the same
time, it suffices to add a
single transfer node for
all of themall of them

– We can trivially contract
all departure nodes: this p
decreases the number of
arcs that were incident to
the departure nodes by athe departure nodes by a
factor of 3/2

11

Road vs. Transit Networks

 Assume the time-expanded model

– Then we can run all our algorithms so far also for
transit networks

– But will the speed-up over ordinary Dijkstra be the
same?

– More about this in the next lecture

12

Multi-criteria cost functions 1/5

 So far our costs were always scalar numbers

– ... namely the travel time

– But there are many other criteria a user might want toBut there are many other criteria a user might want to
optimize, too:

price (both road and transit networks)p ()

beauty of the trip (both road and transit networks)

minimize walking between stations (transit only)minimize walking between stations (transit only)

minimize number of transfers (transit only)

– For the sake of explanation let us look at two criteriaFor the sake of explanation let us look at two criteria
costs for the rest of the lecture: travel time and penalty

(the penalty grows with more walking and more transfers)(the penalty grows with more walking and more transfers)

13

Multi-criteria cost functions 2/5

 More than one solution

– With two (or more) criteria, there is now the possibility
of more than one optimal solution

3 hours with 0 transfers is incomparable to

2 hours with 1 transfer

– However, some solutions are strictly better than others:

2 hours with 1 transfer is better than2 hours with 1 transfer is better than

3 hours with 2 transfers

14

Multi-criteria cost functions 3/5

 Formally

– Costs are pairs (x, y) of scalars

– We write (x, y) ≤ (x', y') if and only if x ≤ x' and y ≤ y'We write (x, y) ≤ (x , y) if and only if x ≤ x and y ≤ y

– We write (x, y) = (x', y') if and only if x = x' and y = y'

– We write (x y) < (x' y') iff (x y) ≤ (x' y') and (x y) ≠ (x' y')– We write (x, y) < (x , y) iff (x, y) ≤ (x , y) and (x, y) ≠ (x , y)

– We write (x, y) (x', y') are incomparable

if neither (x y) ≤ (x' y') nor (x' y') ≤ (x y)if neither (x, y) ≤ (x', y') nor (x', y') ≤ (x, y)

 Example

– If the second component is simply #transfers, an arc from an
arrival node at time 8:00 to a transfer node at time 8:05 would
have cost (0:05 1) and all other arcs would have costs (0)have cost (0:05, 1), and all other arcs would have costs (…, 0)

15

Multi-criteria cost functions 4/5

 Lemma

– For each set of costs C there exists a subset C' of C such that

for each c1, c2 ϵ C' with c1 ≠ c2, c1 is incomparable to c2for each c1, c2 ϵ C with c1 ≠ c2, c1 is incomparable to c2

for each c ϵ C, there exists a c' ϵ C' with c' ≤ c

– Proof: as long as C contains c c with c ≤ c remove c– Proof: as long as C contains c1, c2 with c1 ≤ c2, remove c2

 For a given query

– ... let C be the set of costs of all possible paths

– Then we want to compute a subset C' like above, called the
t f ti l l ti th P t t f Cset of optimal solutions or the Pareto set of C

– As usual, we discuss only how to obtain the costs, and it will
be easy to see in the end how to get paths with these costsbe easy to see in the end how to get paths with these costs

16

Multi-criteria cost functions 5/5

 For a given C, is this subset C' unique?

– Let C1 and C2 be two subsets of optimal solutions

17

Multi-label Dijkstra 1/5j

 How to compute these sets of solutions

– Again, a variant of Dijkstra's algorithm does it

– Consider ordinary Dijkstra, and think of the tentative costsConsider ordinary Dijkstra, and think of the tentative costs
at the nodes as labels (contain a single scalar, namely the
tentative cost)

– Initially there is only one label at the source, holding 0

– All (not yet settled) labels are in a priority queue, according
to some order on the set of possible labels

– When processing the smallest label from the PQ, we settle
it d l th t i f th d t hi h itit, and relax the outgoing arcs of the node to which it
belongs, creating new labels at the adjacent nodes

At the adjacent nodes keep only the optimal labels– At the adjacent nodes keep only the optimal labels

18

Multi-label Dijkstra 2/5j

 We can do the exact same thing

– ... with sets of labels at each node, example:

19

Multi-label Dijkstra 3/5j

 In which order should we process the labels?

– The order must be a refinement of the partial order
we have for comparing labels, that is

(x, y) < (x', y')  (x, y) must be processed before (x', y')

– Why does it work? Why is that required? See next slidey y q

– For example, we can just look at the first component
and if that is equal for two labels, look at the second comp.

– Or we could also just look at the second component
and if that is equal for two labels, look at the first comp.

– Or we process by the order of the sum of the components

20

Multi-label Dijkstra 4/5j

 Correctness proof (sketch)

– For a given source node s, consider the union C of the sets of
optimal costs from s at all nodes

– As in our correctness proof for ordinary Dijkstra (Lecture 3),
assume we have a strict order between all costs in C

(x1, y1) < (x2, y2) < (x3, y3) < …

– Consider an arbitrary cost (x, y) from C at a node u, and let v
be the predecessor of u of a shortest path to u with that cost

– Let (x', y') be the cost of the path until v; note (x', y') < (x, y)

– If the PQ order is a refinement of the label order, then (x', y')
was processed earlier, and by way of induction everything was
correct up to this pointcorrect up to this point

21

Multi-label Dijkstra 5/5j

 How about on a time-dependent graph?

– Then we have a similar problem as with the transfer buffers

– That is, labels computed along prefixes of shortest paths doThat is, labels computed along prefixes of shortest paths do
not necessarily belong to shortest paths

– Now it does not even suffice to keep all labels the time of p
which differs only by the transfer buffer time:

22

References

 Road Networks vs. Transit Networks
Car or Public Transport — Two Worlds
Hannah Bast, Efficient Algorithms 2009, LNCS 5760
http://www.springerlink.com/content/y46257m66372x730/

 Multi-label Dijkstra
Optimal paths in graphs with […] multidimensional weights
Ronald Prescott Loui, CACM 26(9), 1983
http://portal.acm.org/citation.cfm?doid=358172.358406

23

24

