Efficient Route Planning
SS 2011

Lecture 10, Friday July 22", 2011
(Transit networks again, multi-label Dijkstra)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

m Organizational
— Your results from Ex. Sheet #6 (transit node routing)
— This is the third to last lecture

m Transit Networks Reloaded

— Transfer buffers in the time-dependent model

— Details about the arcs between arrival, departure and transfer
nodes in the time-expanded model

m Multi-criteria costs
— How to model — Pareto sets
— How to compute shortest paths — Multi-label Dijkstra

m Exercise sheet
— You get one more week for Exercise Sheet #7

Transfer buffers 1/5

m Time-expanded model

— This is non-trivial, because we need to distinguish between
staying on a vehicle at a station (which must not require
any transfer time) and changing the vehicle, for example:

“Thronns QH‘%%W

1

/’g@w ol CEREA 2o
2< =

e Z TP TC R
. &E Le
ARJ:00 .
DI 30

Transfer buffers 2/5

m Time-expanded model, solution

— Split up each node from before into an arrival node and a
departure node, and add an arc between the two
(we can also model layover time that way now)

— For each arrival node A@t, add a transfer node A@t' and an
arc from A@t to A@t', where t' — t is the transfer buffer

— For each transfer node A@t, add an arc to the departure node

A@t" with the smallest t' > t / -
AT 00
— Have the waiting arcs between transfer nodes only®&*

— Departure at the source is now from a departure node, and

arrival at the target is at an arrlval node
@‘U‘C

S —>e
or=Easeger e
J.CE *\de
:ve 40
foeS ;o Nm B @\'KA 4

ce A2

Transfer buffers 3/5

m Time-dependent model, solution 1

— We also have to distinguish here between staying on a
vehicle and changing the vehicle at a station

— It looks like we can do this by simply remembering for each
node, along with the tentative arrival time t[u], the id £ of
the vehicle with which we arrive at u

— Then we can build the transfer buffer into the cost function

costulv(t,) = time to reach v, if we are at u at time t sitting
in vehicle ¢

— Unfortunately, Dijkstra's algorithm will not always correctly
compute the shortest path anymore then ... why?

ZiEL

Transfer buffers 4/5 O,

m Time-dependent model, problem

1ce/

Zc\ey\b/
302
/ 3: 00
Rb* RD 2

Prfoass of Rovhest yohlr

O START one moX MLQ,Q/J’BM') i
OQW“' ()O-XQ/’W cea

Transfer buffers 5/5

m Time-dependent model, solution 2

— Have separate arrival and departure nodes, too
— One arrival and one departure node per line suffices

— But we no longer only have one node per station then

m Time-dependent model, solution 3

— When we can arrive at a station at two different times
t; and t, with different vehicles, and |t; — t;| is < the
transfer buffer, pursue both possibilities

— Then we need to do a multi-label Dijkstra (Dijkstra
maintaining several shortest paths to the same node),
see second half of this lecture

Arrival, departure, transfer nodes 1/4

oTea g:ao

m Step 1: Parse from GTFS (reprise from If\s}/tbé/]cture)

— Create all nodes while processing stop_timgs.txt
o— > © —>° >C-T 7

— And also the following arcs: <er g:ec sregios @EF C:0F ARR 642

» between arrival and departure nodes ("traveling arcs")

» from arrival nodes to transfer nodes ("alighting arcs")

Arrival, departure, transfer nodes 2/4

m Step 1: Parse from GTFS , continued ...

— While processing stop_times.txt, also maintain for each
station the list of departure and transfer nodes of that
station, with their time and type (departure or transfer)

std::vector<std::vector<Node> > nodesPerStation;

Note: in GTFS the stations are strings, but it's more efficient
to convert them into consecutive station ids during the
parsing of stops.txt; remember the correspondence like this:

hash_map<std::string, int> _stationldPerName;
— It remains to add the following arcs:
from transfer nodes to departure nodes ("boarding arcs")

» from one transfer node to the next ("waiting arcs")

Arrival, departure, transfer nodes 3/4

m Step 2: After the parse, add the missing arcs

— For each station: sort the nodes by time, and for equal times,
sort the transfer nodes before the departure nodes; with ties
between nodes of the same kind broken arbitrarily_¢ ™A & = 4+

— Then for each transfer node x A DEC 3 ‘:42
in the sorted sequence ngtP ROF
» add an arc to the next Raali ’01
transfer node in the sequence TeA 3:02
» add an arc to each departure ¢ 8:00
node that comes after x DEP 2:00
without another transfer node Tea 3:00
inbetween (none, if next node 50 TRA 3:00
after x is a transfer node) A2 7:5¢ ©
ARR F:8T o o

Arrival, departure, transfer nodes 4/4

m Optimizations

o TKA ¥:00
— If a station has several /
arrival nodes at the same

time, it suffices to add a Aer F:8<
single transfer node for
all of them

— We can trivially contract
all departure nodes: this
decreases the number of
arcs that were incident to
the departure nodes by a
factor of 3/2

Road vs. Transit Networks

m Assume the time-expanded model

— Then we can run all our algorithms so far also for
transit networks

— But will the speed-up over ordinary Dijkstra be the
same?

— More about this in the next lecture

12

Multi-criteria cost functions 1/5

m So far our costs were always scalar numbers

— ... hamely the travel time

— But there are many other criteria a user might want to
optimize, too:
» price (both road and transit networks)
» beauty of the trip (both road and transit networks)
» Minimize walking between stations (transit only)

» Minimize number of transfers (transit only)

— For the sake of explanation let us look at two criteria
costs for the rest of the lecture: travel time and penalty

(the penalty grows with more walking and more transfers)

13

Multi-criteria cost functions 2/5

m More than one solution

— With two (or more) criteria, there is now the possibility
of more than one optimal solution

3 hours with 0 transfers is incomparable to

2 hours with 1 transfer

— However, some solutions are strictly better than others:

2 hours with 1 transfer is better than

3 hours with 2 transfers

14

Multi-criteria cost functions 3/5

m Formally

— Costs are pairs (X, y) of scalars

— We write (x,y) < (X', y)ifandonlyif x < x"andy <y’

— We write (x, y) = (X', y) ifandonly if x =x"and y = V'

— We write (x, y) < (X, y) iff (x, y) < (X, y)and (x, y) # (X, y)

— We write (x, y) (X', y') are incomparable < A
LY oY T PR V4 \ - 1 1 LAY L 7 1 LAY - [\ (ao.o 3 @
if neither (x, y) < (X', y') nor (X', y') < (X, y) TRA,
O/X:OS_

ARR.

— If the second component is simply #transfers, an arc from an ¢og
arrival node at time 8:00 to a transfer node at time 8:05 would
have cost (0:05, 1), and all other arcs would have costs (..., 0)

15

Multi-criteria cost functions 4/5

m Lemma

— For each set of costs C there exists a subset C' of C such that
for each ¢y, ¢, € C' with ¢; # ¢, ¢4 is incomparable to ¢,
» foreach ceC, thereexistsac' e C'withc' < c

— Proof: as long as C contains c,, ¢, with ¢; < ¢,, remove ¢,

m For a given query

— ... let C be the set of costs of all possible paths

— Then we want to compute a subset C' like above, called the
set of optimal solutions or the Pareto set of C

— As usual, we discuss only how to obtain the costs, and it will
be easy to see in the end how to get paths with these costs

16

Multi-criteria cost functions 5/5

m For a given C, is this subset C' unique?

— Let C; and C, be two subsets of optimal solutions

CQ_(PVNU\'U
J c o
CAGC,, _:_,)C_/Iec :—o;}c_aeCZ c, £Cy
! /
Cz,ec 7D Qc{eg e
Cﬂ‘?»dc
/
! Z —— C = C
C/\ Torto =D C1=C“\ =7 C‘ch": <

Multi-label Dijkstra 1/5

m How to compute these sets of solutions

— Again, a variant of Dijkstra's algorithm does it

— Consider ordinary Dijkstra, and think of the tentative costs
at the nodes as labels (contain a single scalar, namely the
tentative cost)

— Initially there is only one label at the source, holding 0

— All (not yet settled) labels are in a priority queue, according
to some order on the set of possible labels

— When processing the smallest label from the PQ, we settle
it, and relax the outgoing arcs of the node to which it
belongs, creating new labels at the adjacent nodes

— At the adjacent nodes keep only the optimal labels

18

Multi-label Dijkstra 2/5

m We can do the exact same thing

— ... with sets of labels at each node, example:

B
O
QA\/D
(1,08)

®)
AM\)

o

C
(3.2) ﬁ

Sob

19

(3503 <«(s1)

Multi-label Dijkstra 3/5

m In which order should we process the labels?

— The order must be a refinement of the partial order
we have for comparing labels, that is

(x,y) < (X,y) = (x,y) must be processed before (x', y")
— Why does it work? Why is that required? See next slide

— For example, we can just look at the first component
and if that is equal for two labels, look at the second comp.

— Or we could also just look at the second component
and if that is equal for two labels, look at the first comp.

— Or we process by the order of the sum of the components

20

o
Multi-label Dijkstra 4/5 G NG
-(thT
m Correctness proof (sketch) <

— For a given source node s, consider the union C of the sets of
optimal costs from s at all nodes

— As in our correctness proof for ordinary Dijkstra (Lecture 3),
assume we have a strict order between all costs in C

(X]_I Y1) < (XZI YZ) < (X3I YB) <..

— Consider an arbitrary cost (x, y) from C at a node u, and let v
be the predecessor of u of a shortest path to u with that cost

— Let (X', y') be the cost of the path until v; note (X', y') < (X, y)

— If the PQ order is a refinement of the label order, then (X', y')
was processed earlier, and by way of induction everything was
correct up to this point

21

Multi-label Dijkstra 5/5

= How about on a time-dependent graph?

— Then we have a similar problem as with the transfer buffers

— That is, labels computed along prefixes of shortest paths do
not necessarily belong to shortest paths

— Now it does not even suffice to keep all labels the time of
which differs only by the transfer buffer time:

T

[SE

22

References

m Road Networks vs. Transit Networks
Car or Public Transport — Two Worlds
Hannah Bast, Efficient Algorithms 2009, LNCS 5760
http://www.springerlink.com/content/y46257m66372x730/

m Multi-label Dijkstra
Optimal paths in graphs with [...] multidimensional weights
Ronald Prescott Loui, CACM 26(9), 1983
http://portal.acm.org/citation.cfm?doid=358172.358406

23

24

