Efficient Route Planning SS 2011

Lecture 11, Friday July 29th, 2011 (Transfer Patterns, course evaluation)

Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

Overview of this lecture

Organizational

- Your results from Ex. Sheet #7 (Transit Networks, GTFS)
- This is the second to last lecture
- Transfer patterns
 - A technique for fast routing on transit networks
 - We will also discuss why our previous methods have problems for transit networks
- Exercise sheet ... the last one!
 - Fill out the evaluation form for this course \rightarrow **10 points !**
 - Compute the number of transfer patterns between each pair of stations

Feedback from ES#7 (GTFS)

Summary / excerpts

- Verständnisprobleme mit der (optionalen) frequencies.txt
- GTFS bothersome to parse
- Implementation advice zum Netzwerk kam etwas spät
- Neuer Rekord: 5-fach verschachtelte Schleife
- Hin- und Rückrichtung sind zwei verschiedene "stations"
- Wichtige Termine standen an. Unser Volk hungert.
- Difficult to find the motivation
- Zeitprobleme jetzt gegen Ende der Vorlesungszeit
- Kein Unterschied zwischen Dijkstra und A*, warum?

Summary of our algorithms so far

- For computing the shortest path from A to B
 - In the following list, Q = average query time, and P = precomputation time for the OSM network of BaWü
 - Times are only the order of magnitude, not exact, hence \sim
 - Dijkstra's algorithm ... Q ~ 0.5 sec, P ~ 0
 - A* with the straightline heuristic ... Q \sim 0.2 sec, P \sim 0
 - A* with the landmark heuristic ... Q \sim 0.1 sec, P \sim 10 sec
 - Arc flags ... Q ~ 1 msec, P ~ 10 hours
 - Contraction Hierarchies ... Q ~ 1 msec, P ~ 1 min
 - Transit Node Routing ... Q \sim 10 100 µsec, P \sim 1 min
 - Performance on (time-expanded) transit networks?

Dijkstra's algorithms

Performance on time-expanded transit networks

- One iteration takes $\sim 1 \ \mu sec$ / node, as usual
- But graphs are bigger, for example
 - New York area: ~ 50 000 stations, ~ 2 million nodes
- When travel time from source to target is T, we settle evything that can be reached within time T, like with the Dijkstra for road networks
- When T is large or ∞ we search the whole graph ... this happens more often than in road networks, reasons e.g.:
 - bad connectivity by bus / train
 - overnight connections

A* algorithm with straightline heuristic

- Performance on time-expanded transit networks
 - Experiment on the Wiki show hardly any improvement over Dijkstra's algorithm, why?
 - Consider Bus 10 from Bärenweg to Siegesdenkmal
 - Takes 10 minutes, straightline distance is \approx 2.5 km
 - Let's say the maximum speed is 100 km/h (trains!)

- Goal direction works well, good query times, why?

- We can also find small sets of transit / access nodes
- But how do we compute them efficiently?
- Also, local queries are not necessarily cheap in transit networks → the "15 hours to the next village problem"

REI

Contraction Hierarchies 1/5

Performance on time-expanded transit networks

- Certain nodes can be contracted very well
- We have already seen that the departure nodes can be contracted trivially, and this even saves us arcs
- It seems like arrival nodes can also be contracted without loss

- Performance on time-expanded transit networks
 - When we start to contract transfer nodes, the degree explodes:

- Here is one surprising explanation why we need to add so many arcs in transit networks but not in road networks
- Note that in transit networks (with cost = travel time), whenever we contract a node (with in and out degree > 0), we always need to add all the potentially necessary shortcuts

- In road networks this is not the case, why this difference?

12 no need to 2 add 32 scontrut

FREIBURG

Performance on time-expanded transit networks

- The reason is that (when cost = travel time), every path in the time-expanded transit network is a shortest path
- What? This can't be true.
- But it is true:

A6 \$:00

b J@ 14:00

6:00 h

- For multi-criteria costs the situation becomes even worse
- We have seen that in that case, a part P' of a shortest path from A to B might be a non-optimal path itself, and this P' can be arbitrarily far away from A and B
- How are we supposed to figure out that we need P' (when contracting a node on P') with local Dijkstra computations

• this is at the heart of contraction hierarchies

Faster

Summary until here

None of our algorithms so far

- — ... that is: Dijkstra, A* with the straightline heuristic, A*
 with the landmark heuristic, arc flags, contraction
 hierarchies, and transit node routing
- ... is practical for large transit networks
- And matters seem to become hopeless when realistic features like transfer buffers and multi-criteria cost function come into play
- And fully-realistic models pose even more challenges: service days, vehicle restrictions, finding a suitable source and target station, walking between stations, ...

An algorithm designed for transit networks

- Trying to exploit what is special about transit networks
- But what could this be? So far we have only seen things which are harder on transit networks than on road networks
- Here is one thing special about transit networks:

transfers

- Even when you take a very long trip, the number of transfers is almost always a very small number
- And more than that, for a given source and destination, there is only a very limited number of "patterns" where it makes sense to transfer

Transfer Patterns 2/3

Ž

Transfer Patterns 3/3

The basic idea on one slide

- The transfer pattern of a path = the sequence of stations on the path where one boards, transfers, or alights
- Idea: for each pair of stations, precompute all transfer patterns of all optimal paths (at all times) and store them Sevel SISC 10:00, 17 Reiling Hy
- Then, at query time, do a time-dependent Dijkstra computation on this so-called **query graph**, where each arc evaluation is again a shortest path query, but restricted to **no transfers**
- Such direct-connection queries are easy to compute fast

Direct-Connection Queries

FREIBURG

One table per "line", let's call this one L17

 Stations:
 S154
 S97
 S987
 S111
 ...

 Time from start:
 Omin
 7min
 12min
 21min
 ...

 Start times:
 8:15
 9:15
 10:15
 11:20
 12:20
 ...

- Lines per station (with positions in the respective line table)
 Station S97: (L8, 4) (L17, 2) (L34, 5) (L87, 17) ...
 Station S111: (L9, 1) (L13, 5) (L17, 4) (L55, 16) ...
- Example query from S97 @ 10:20 to S111
 - Intersect the lists of the two stations : (L17, 2 \rightarrow 4) ...
 - Find time from start to S97 and to S111 : 7min and 21min
 - Find first start time after 10:20 7min: $10:15 \rightarrow depart 10:22$
 - Compute arrival time at S111 : 10:15 + 21min \rightarrow arrive 10:36

Transfer patterns precomputation 3/4

Beware of non-optimal paths to arrival nodes

ICE74

- Note that there are no arcs between the arrival nodes at
 the target station
- They would harm the Dijkstra search (because they would allow us to switch between lines when we shouldn't)
 - But after the Dijkstra search is done, we need them to does not grow when a does not grow we have the search is done, we need them to does not grow when a search is done, we need them to does not grow when a search is done, we need them to does not grow when a search is done, we need them to does not grow when a search is done, we need them to does not grow when a search is done, we need them to does not grow when a search is done, we need them to does not grow when a search is done, we need them to does not grow when a search is done, we need them to does not grow when a search is done, we need them to does not grow when a search is done, we have the search is do

10:12

AKN

ICE7

Transfer patterns precomputation 4/4

- Arrival-loop algorithm for a target station B
 - Order the arrival nodes by time $t_1 \le t_2 \le t_3 \le ...$ and call the corresponding arrival nodes $a_1, a_2, a_3, ...$

Do the following in the order of increasing time

- Let T_{i-1} and T_i be the travel time of the shortest path to
 ai-1 and ai, respectively
 - → If $T_i' := T_{i-1} + (t_i t_{i-1}) \le T_i$, replace the travel time at a_i by T_i' and make a_{i-1} the predecessor on the SP to a_i

References

UNI FREIBURG

Road Networks vs. Transit Networks

Car or Public Transport — Two Worlds Hannah Bast, Efficient Algorithms 2009, LNCS 5760 http://www.springerlink.com/content/y46257m66372x730/

Transfer Patterns

Fast Routing in Very Large Transportation Networks

using Transfer Patterns

Bast, Carlsson, Eigenwillig, Geisberger, Harrelson,

Rachyev, Viger ESA 2010

http://www.springerlink.com/content/c873271685124v42/