
Efficient Route Planning
SS 2011

Lecture 11, Friday July 29th, 2011
(T f P tt l ti)(Transfer Patterns, course evaluation)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

 Organizational
– Your results from Ex. Sheet #7 (Transit Networks, GTFS)

– This is the second to last lecture

 Transfer patterns
– A technique for fast routing on transit networks

– We will also discuss why our previous methods
have problems for transit networks

 Exercise sheet … the last one!
– Fill out the evaluation form for this course  10 points !

– Compute the number of transfer patterns between each
pair of stations

2

Feedback from ES#7 (GTFS)()

 Summary / excerpts

– Verständnisprobleme mit der (optionalen) frequencies.txt

– GTFS bothersome to parseGTFS bothersome to parse

– Implementation advice zum Netzwerk kam etwas spät

– Neuer Rekord: 5-fach verschachtelte Schleife– Neuer Rekord: 5-fach verschachtelte Schleife

– Hin- und Rückrichtung sind zwei verschiedene "stations"

Wichtige Termine standen an Unser Volk hungert– Wichtige Termine standen an. Unser Volk hungert.

– Difficult to find the motivation

bl d d l– Zeitprobleme jetzt gegen Ende der Vorlesungszeit

– Kein Unterschied zwischen Dijkstra und A*, warum?

3

Summary of our algorithms so fary g

 For computing the shortest path from A to B

– In the following list, Q = average query time, and P =
precomputation time for the OSM network of BaWü

– Times are only the order of magnitude, not exact, hence ~

– Dijkstra's algorithm ... Q ~ 0.5 sec, P ~ 0j g Q ,

– A* with the straightline heuristic ... Q ~ 0.2 sec, P ~ 0

– A* with the landmark heuristic ... Q ~ 0.1 sec, P ~ 10 secA with the landmark heuristic ... Q 0.1 sec, P 10 sec

– Arc flags ... Q ~ 1 msec, P ~ 10 hours

– Contraction Hierarchies Q ~ 1 msec P ~ 1 minContraction Hierarchies ... Q ~ 1 msec, P ~ 1 min

– Transit Node Routing ... Q ~ 10 – 100 µsec, P ~ 1 min

Performance on (time expanded) transit networks?– Performance on (time-expanded) transit networks?

4

Dijkstra's algorithmsj g

 Performance on time-expanded transit networks

– One iteration takes ~ 1 µsec / node, as usual

– But graphs are bigger, for exampleBut graphs are bigger, for example

New York area: ~ 50 000 stations, ~ 2 million nodes

– When travel time from source to target is T we settle– When travel time from source to target is T, we settle
evything that can be reached within time T, like with the
Dijkstra for road networks

– When T is large or ∞ we search the whole graph ... this
happens more often than in road networks, reasons e.g.:

bad connectivity by bus / train

overnight connections

5

A* algorithm with straightline heuristicg g

 Performance on time-expanded transit networks

– Experiment on the Wiki show hardly any improvement
over Dijkstra's algorithm, why?

– Consider Bus 10 from Bärenweg to Siegesdenkmal

– Takes 10 minutes, straightline distance is ≈ 2.5 km, g

– Let's say the maximum speed is 100 km/h (trains!)

– That gives a lower bound of 1.5 minutesThat gives a lower bound of 1.5 minutes

6

A* algorithm with landmark heuristicg

 Performance on time-expanded transit networks

– Also not much improvement over Dijkstra, why?

7

A* algorithm with landmark heuristicg

 Performance on time-expanded transit networks

– Also not much improvement over Dijkstra, why?

8

Arc flags 1/2g

 Performance on time-expanded transit networks

– Goal direction works well, good query times, why?

9

Arc flags 2/2g

 Performance on time-expanded transit networks

– But precomputation cost (for the much larger transit
graph is enormous)  calls for hierarchical version

– But hierarchical version does not work, why?

10

Transit-node routingg

 Performance on time-expanded transit networks

– We can also find small sets of transit / access nodes

– But how do we compute them efficiently?But how do we compute them efficiently?

– Also, local queries are not necessarily cheap in transit
networks  the "15 hours to the next village problem"g p

11

Contraction Hierarchies 1/5

 Performance on time-expanded transit networks

– Certain nodes can be contracted very well

– We have already seen that the departure nodes can beWe have already seen that the departure nodes can be
contracted trivially, and this even saves us arcs

– It seems like arrival nodes can also be contracted
without loss

12

Contraction Hierarchies 2/5

 Performance on time-expanded transit networks

– When we start to contract transfer nodes, the degree
explodes:

13

Contraction Hierarchies 3/5

 Performance on time-expanded transit networks

– Here is one surprising explanation why we need to add so
many arcs in transit networks but not in road networks

– Note that in transit networks (with cost = travel time),
whenever we contract a node (with in and out degree > 0),

l d t dd ll th t ti ll h t twe always need to add all the potentially necessary shortcuts

– In road networks this is not the case, why this difference?

14

Contraction Hierarchies 4/5

 Performance on time-expanded transit networks

– The reason is that (when cost = travel time), every path in
the time-expanded transit network is a shortest path

– What? This can't be true.

– But it is true:

15

Contraction Hierarchies 5/5

 Performance on time-expanded transit networks

– For multi-criteria costs the situation becomes even worse

– We have seen that in that case, a part P' of a shortest pathWe have seen that in that case, a part P of a shortest path
from A to B might be a non-optimal path itself, and this P'
can be arbitrarily far away from A and B

– How are we supposed to figure out that we need P' (when
contracting a node on P') with local Dijkstra computations

this is at the heart of contraction hierarchies

16

Summary until herey

 None of our algorithms so far

– ... that is: Dijkstra, A* with the straightline heuristic, A*
with the landmark heuristic, arc flags, contraction
hierarchies, and transit node routing

– ... is practical for large transit networks

– And matters seem to become hopeless when realistic
features like transfer buffers and multi-criteria cost
function come into playfunction come into play

– And fully-realistic models pose even more challenges:

i d hi l t i ti fi di it blservice days, vehicle restrictions, finding a suitable source
and target station, walking between stations, ...

17

Transfer Patterns 1/3

 An algorithm designed for transit networks

– Trying to exploit what is special about transit networks

– But what could this be? So far we have only seen thingsBut what could this be? So far we have only seen things
which are harder on transit networks than on road networks

– Here is one thing special about transit networks:g p

transfers

– Even when you take a very long trip, the number ofEven when you take a very long trip, the number of
transfers is almost always a very small number

– And more than that, for a given source and destination, g
there is only a very limited number of "patterns" where it
makes sense to transfer

18

Transfer Patterns 2/3

19

Transfer Patterns 3/3

 The basic idea on one slide

– The transfer pattern of a path = the sequence of stations
on the path where one boards, transfers, or alights

– Idea: for each pair of stations, precompute all transfer
patterns of all optimal paths (at all times) and store them

– Then, at query time, do a time-dependent Dijkstra computation j
on this so-called query graph, where each arc evaluation is
again a shortest path query, but restricted to no transfers

– Such direct-connection queries are easy to compute fast

20

Direct-Connection QueriesQ

 One table per "line", let’s call this one L17
Stations: S154 S97 S987 S111 …

Time from start: 0min 7min 12min 21min …

Start times: 8:15 9:15 10:15 11:20 12:20 …

 Lines per station (with positions in the respective line table)p
Station S97: (L8, 4) (L17, 2) (L34, 5) (L87, 17) …

Station S111: (L9, 1) (L13, 5) (L17, 4) (L55, 16) …

 Example query from S97 @ 10:20 to S111
– Intersect the lists of the two stations : (L17, 2  4) …

– Find time from start to S97 and to S111 : 7min and 21min

– Find first start time after 10:20 – 7min : 10:15  depart 10:22

– Compute arrival time at S111 : 10:15 + 21min  arrive 10:36

21

Transfer patterns precomputation 1/4p p p

 Can be done via a Set-Dijkstra search

– For each station A, do a Dijkstra starting from all nodes at
that station (all with cost = travel time zero)

– For each other node u in the graph, this will give us the
path from the latest node at A so that u can still be reached

22

Transfer patterns precomputation 2/4p p p

 Now we have all optimal paths at all times

– To obtain the transfer patterns for a station pair (A, B),
simply trace back, in the Dijkstra search from A, the paths
from all nodes in B and keep track of the transfers

23

Transfer patterns precomputation 3/4p p p

 Beware of non-optimal paths to arrival nodes

– Note that there are no arcs between the arrival nodes at
the target station

– They would harm the Dijkstra search (because they would
allow us to switch between lines when we shouldn't)

– But after the Dijkstra search is done, we need them to
discard non-optimal paths

24

Transfer patterns precomputation 4/4p p p

 Arrival-loop algorithm for a target station B

– Order the arrival nodes by time t1 ≤ t2 ≤ t3 ≤ ... and call
the corresponding arrival nodes a1, a2, a3, ...

– Do the following in the order of increasing time

– Let Ti-1 and Ti be the travel time of the shortest path to i 1 i p
ai-1 and ai, respectively

– If Ti' := Ti-1 + (ti – ti-1) ≤ Ti, replace the travel time at ai
by Ti' and make ai-1 the predecessor on the SP to ai

25

References

 Road Networks vs. Transit Networks
Car or Public Transport — Two Worlds
Hannah Bast, Efficient Algorithms 2009, LNCS 5760
http://www.springerlink.com/content/y46257m66372x730/

 Transfer Patterns
Fast Routing in Very Large Transportation Networks
using Transfer Patterns
Bast, Carlsson, Eigenwillig, Geisberger, Harrelson,
Rachyev, Viger ESA 2010
http://www springerlink com/content/c873271685124v42/http://www.springerlink.com/content/c873271685124v42/

26

27

