
Efficient Route Planning
SS 2011

Lecture 12, Friday August 5th, 2011
(C l ti lt T f P tt II)(Course evaluation results, Transfer Patterns II)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

Organizational
– Your results from Ex. Sheet #8 (Transfer Patterns)

– Summary of your evaluation of the whole course

– This is the last lecture

Transfer patterns
– Short recap

– The direct-connection data structure

– Feasible pre-computation using important stations

Exam

Current work at the chair

2

Feedback from ES#8 (Transfer Patterns)()

Summary / excerpts Stand 5.8 2:38

– Aufgabe 1 (Evaluationsbogen) mit Hingabe ausgeführt

– Gute Idee das zu belohnenGute Idee das zu belohnen

– Ansonsten haben nur wenige die Aufgabe gemacht wegen
keine Zeit und schon genug Punkteg g

3

Course evaluation results 1/5

Contents of the course

– Very interesting & relevant topic and algorithms (many)

– Very practical, that's good (many)Very practical, that s good (many)

– Good balance between theory and practice (several)

– Google Maps stuff was interesting (several)– Google Maps stuff was interesting (several)

4

Course evaluation results 2/5

Style of the course

– Competent and interesting explanations (many)

... but sometimes not in the first attempt (several)... but sometimes not in the first attempt (several)

– Good, relaxed atmosphere (many)

manchmal etwas zu viel "Späße" (one)... manchmal etwas zu viel Späße (one)

– Much interaction with students (many)

– Doing drawings / proofs "online" is instructive (several)– Doing drawings / proofs online is instructive (several)

– Implementation advice / live programming helps (several)

" t hi f 30 i t t i t fi th d i... "watching someone for 30 minutes trying to fix the code is a
waste of everyone's time" (one)

5

Course evaluation results 3/5

Exercises 1/2

– Very interesting but also very time-consuming (many)

... but with the extra weeks it was ok (several)... but with the extra weeks it was ok (several)

– Implementing very useful for understanding (many)

"By implementing all the algorithms you really learn something for lifetime"By implementing all the algorithms, you really learn something for lifetime

– Give more implementation advice earlier on (many)

a lot of time spent in refactoring of old code (several)... a lot of time spent in refactoring of old code (several)

– Experimentation results were interesting / incentive (several)

l l h l ()... Experimentation results useless without clear params (one)

6

Course evaluation results 4/5

Exercises 2/2

– More feedback on the code would have been nice (several)

"Hire more tutors which can actually help with the code" (one)Hire more tutors which can actually help with the code (one)

"Offer a tutorial to discuss problems with the exercises.
Sometimes questions are too complicated for a Forum" (one)

– A lot of unnecessary code to write (one)

"While it was stated that it was considered to be a valuable part of the
learning process, it felt more like an excuse for not having prepared
anything on the lecturers part."

"It felt like we are doing one algorithm after the other" (one)– "It felt like we are doing one algorithm after the other" (one)

7

Course evaluation results 5/5

Other

– Video recordings were extremely helpful (many)

– Java programmers had a big disadvantage (many)Java programmers had a big disadvantage (many)

"Als Javanutzer fühlt man sich ein wenig wie der Depp"

"Viele Implementierungsvorschläge gehen nur in C (hash map)"Viele Implementierungsvorschläge gehen nur in C (hash map)

– The grade should depend on the exercise solutions (one)

– Having an exam for this kind of lecture seems odd (one)– Having an exam for this kind of lecture seems odd (one)

– See other people's code after the deadline (one)

8

Transfer Patterns

The basic idea on one slide

– The transfer pattern of a path = the sequence of stations
on the path where one boards, transfers, or alights

– Idea: for each pair of stations, precompute all transfer
patterns of all optimal paths (at all times) and store them

– Then, at query time, do a time-dependent Dijkstra computation j
on this so-called query graph, where each arc evaluation is
again a shortest path query, but restricted to no transfers

– Such direct-connection queries are easy to compute fast

9

Components of a Transfer Pattern Routerp

Transfer patterns precomputation
– Compute (parts of) all transfer patterns of all optimal paths

Direct-connection tables precomputationDirect connection tables precomputation
– Compute data structure for fast direct connection queries

Query Graph ConstructionQuery Graph Construction
– Build the query graph of all transfer patterns between A and B

Q G h E l tiQuery Graph Evaluation
– Dijkstra search on query graph, with arcs = direct connections

Various Refinements / Optimizations
– For example: filter out rare transfer patterns, …

10

Direct-Connection QueriesQ

One table per "line", let’s call this line L17
Stations: S154 S97 S987 S111 …

Time from start: 0min 7min 12min 21min …

Start times: 8:15 9:15 10:15 11:20 12:20 …

Lines per station … with positions in the respective line tablep
Station S97: (L8, 4) (L17, 2) (L34, 5) (L87, 17) …

Station S111: (L9, 1) (L13, 5) (L17, 4) (L55, 16) …

Example query … from S97 @ 10:20 to S111
– Intersect the lists of the two stations : (L17, 2 4) …

– Find time from start to S97 and to S111 : 7min and 21min

– Find first start time after 10:20 – 7min : 10:15 depart 10:22

– Compute arrival time at S111 : 10:15 + 21min arrive 10:36

11

Important Stations 1/3p

The pre-computation so far is quadratic

– Full Dijkstra to the whole graph for every station

– Let m = #stations and n = #nodesLet m #stations and n #nodes

– This amounts to a total of ~ m · n · L Dijkstra iterations

where L is the average number of labels per nodewhere L is the average number of labels per node

– A multi-label Dijkstra is ≈ 10 times slower per iteration
than an ordinary Dijkstra (due to label set maintenance)than an ordinary Dijkstra (due to label set maintenance)

– Example 1: m = 10K, n = 1M, L = 3, 10 µs / Dijkstra iter.

30K seconds ≈ 80 hours30K seconds ≈ 80 hours

– Example 2: m = 1M, n = 1G, L = 3, 10 µs / Dijkstra iter.

3G seconds ≈ 8 million hours ≈ 1000 years3G seconds ≈ 8 million hours ≈ 1000 years

12

Important Stations 2/3p

How to improve on this?
– Idea: Select 1% of all stations as “important”

– Heuristic: where many paths transfer + geographic diversityy p g g p y

– For each important station compute a global Dijkstra as before

– For each non-important station, compute a local Dijkstra, that p p j
is, compute all local paths = all paths until an important
station or without any important station on them

13

Important Stations 3/3p

Local Dijkstra search from a station s ... problem:
– The number of (nodes on the) local paths is indeed small

– But we have the usual "15 hours to the next village problem":

If only one of the local paths has a large cost, say 15 hours,
then the Dijkstra computation needs to search everything
that can be reached from s within 15 hoursthat can be reached from s within 15 hours

– Unfortunately, almost every station has at least one local path
of high cost, and hence our local Dijkstra searches end upof high cost, and hence our local Dijkstra searches end up
being no less expensive than the global Dijkstra searches

– Simple heuristic remedy: only consider local paths up to two
transfers, that is, paths where more than two transfers are
needed to get to an important station will be lost

E pe ience sho s that these a e er rare in p actice– Experience shows that these are very rare in practice

14

Query graph construction (sketch) Q y g p ()

For given source and target location A and B
– Compute the sets N(A) and N(B) of stations near A and B

– Get the precomp. local transfer patterns of these stations

– Get the sets I(A) and I(B) of important stations where the
local paths from A and from B end

– Get the global transfer patterns for each pair of important
stations (a, b) where a I(A) and b I(B)

Assemble this to form the query graph of all transfer– Assemble this to form the query graph of all transfer
patterns relevant for this query

15

Query graph searchQ y g p

Time-dependent Dijkstra search

– Start at the source location

– For arcs from the source location to nearby stationFor arcs from the source location to nearby station
launch road network query (or have these precomputed)

Same for arcs to the target locationg

– For arcs between stations, ask direct-connection table

16

Exam 1/2

The exam will be on Monday, August 15 at 2:00 pm

– Here in HS 026 + it will last (only) 90 minutes

– There will be 4 tasks, out of which you can select 3 tasksThere will be 4 tasks, out of which you can select 3 tasks

– Three kinds of tasks are possible

Execute an algorithm from the lecture or some variantExecute an algorithm from the lecture, or some variant
of it, on a given example (on paper)

Write a small program to solve a variant of a problemWrite a small program to solve a variant of a problem
we have seen in the lecture

Compute, reason about, or prove a non-trivial (but also
not very difficult) property of an algorithm or data
structure from the lecture, or some variant of it

– See the Search Engines WS 2009/2010 exam for examples

17

Exam 2/2

The bachelor students (and only those)

– ... must take an oral exam

– On Wednesday, August 17, starting from 2:00 pmOn Wednesday, August 17, starting from 2:00 pm

– In my office: building 51, 2nd floor, room 028

– Questions will be of a similar kind as in the written– Questions will be of a similar kind as in the written
exam, but of course not exactly the same

18

Work in my groupy g p

Chair for Algorithms and Data Structures
– Our work roughly subdivides as

1/3 theory (new algorithms, complexity analysis, etc.)y (g , p y y ,)

1/3 algorithm engineering (efficient implementations)

1/3 software engineering (good, durable software)g g (g ,)

– Current projects

Route planningp g

Search engines, in particular: CompleteSearch & Broccoli

– Current readingsg

http://ad.informatik.uni-freiburg.de/papers

19

References

Transfer Patterns
Fast Routing in Very Large Transportation Networks

using Transfer Patterns

Bast, Carlsson, Eigenwillig, Geisberger, Harrelson,

Rachyev, Viger ESA 2010

http://www.springerlink.com/content/c873271685124v42/

http://ad.informatik.uni-freiburg.de/papers

20

21

