Efficient Route Planning
SS 2011

Lecture 12, Friday August 5%, 2011
(Course evaluation results, Transfer Patterns II)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

m Organizational
— Your results from Ex. Sheet #8 (Transfer Patterns)
— Summary of your evaluation of the whole course
— This is the last lecture
m Transfer patterns
— Short recap
— The direct-connection data structure
— Feasible pre-computation using important stations
m Exam

m Current work at the chair

Feedback from ES#8 (Transfer Patterns)

m Summary / excerpts Stand 5.8 2:38

— Aufgabe 1 (Evaluationsbogen) mit Hingabe ausgefthrt
— Gute Idee das zu belohnen

— Ansonsten haben nur wenige die Aufgabe gemacht wegen
keine Zeit und schon genug Punkte

Course evaluation results 1/5

m Contents of the course

— Very interesting & relevant topic and algorithms (many)
— Very practical, that's good (many)
— Good balance between theory and practice (several)

— Google Maps stuff was interesting (several)

Course evaluation results 2/5

m Style of the course

— Competent and interesting explanations (many)
.. but sometimes not in the first attempt (several)

— Good, relaxed atmosphere (many)
.. manchmal etwas zu viel "SpaBe" (one)

— Much interaction with students (many)

— Implementation advice / live programming helps (several)

. "watching someone for 30 minutes trying to fix the code is a
waste of everyone's time" (one)

Course evaluation results 3/5

m Exercises 1/2

— Very interesting but also very time-consuming (many)
... but with the extra weeks it was ok (several)
— Implementing very useful for understanding (many)
"By implementing all the algorithms, you really learn something for lifetime"
— Give more implementation advice earlier on (many)
... a lot of time spent in refactoring of oid code (several)
— Experimentation results were interesting / incentive (several)

... Experimentation results useless without clear params (one)

Course evaluation results 4/5

m Exercises 2/2

— More feedback on the code would have been nice (several)

"Hire more tutors which can actually help with the code" (one)

"Offer a tutorial to discuss problems with the exercises.
Sometimes questions are too complicated for a Forum" (one)

— A lot of unnecessary code to write (one)

"While it was stated that it was considered to be a valuable part of the
learning process, it felt more like an excuse for not having prepared
anything on the lecturers part."

— "It felt like we are doing one algorithm after the other" (one)

Course evaluation results 5/5

m Other

— Video recordings were extremely helpful (many)
— Java programmers had a big disadvantage (many)
"Als Javanutzer flhlt man sich ein wenig wie der Depp"
"Viele Implementierungsvorschlage gehen nur in C (hash map)"

— The grade should depend on the exercise solutions (one)

|| Tala)
raving an

m
E

— See other people's code after the deadline (one)

Transfer Patterns

m The basic idea on one slide

— The transfer pattern of a path = the sequence of stations
on the path where one boards, transfers, or alights

— Idea: for each pair of stations, precompute all transfer

patterns of all optimal %gggs at all tilj;es and store them

2% > 9% T
Tradwney WO
— Then, at query time, do a time-dependent Dijkstra computation

on this so-called query graph, where each arc evaluation is
again a shortest path query, but restricted to no transfers

— Such direct-connection queries are easy to compute fast

Components of a Transfer Pattern Router

m Transfer patterns precomputation

— Compute (parts of) all transfer patterns of all optimal paths

m Direct-connection tables precomputation

— Compute data structure for fast direct connection queries

m Query Graph Construction
— Build the query graph of all transfer patterns between A and B

m Query Graph Evaluation

— Dijkstra search on query graph, with arcs = direct connections

— For example: filter out rare transfer patterns, ...

10

Direct-Connection Queries

m One table per "line", let’s call this line L17

Stations: S154 S97 S987 S111
Time from start: Omin 7min 12min 21min ...
Start times: 8:15 9:15 10:15 11:20 12:20 ...

m Lines per station ... with positions in the respective line table
Station S97: (L8, 4) (L17,2) (L34,5) (L87, 17) ...
Station S111: (L9, 1) (L13,5) (L17, 4) (L55, 16) ...

m Example query ... from S97 @ 10:20 to Si11

— Intersect the lists of the two stations : (L17, 2 — 4) ...
— Find time from start to S97 and to S111 : 7min and 21min

— Find first start time after 10:20 — 7min : 10:15 - depart 10:22
— Compute arrival time at S111 : 10:15 + 21min - arrive 10:36

11

Important Stations 1/3

m The pre-computation so far is quadratic

— Full Dijkstra to the whole graph for every station

— Let m = #stations and n = #nodes

— This amounts to a total of ~ m - n - L Dijkstra iterations
where L is the average number of labels per node

— A multi-label Dijkstra is = 10 times slower per iteration
than an ordinary Dijkstra (due to label set maintenance)

— Example 1: m = 10K, n = 1M, L = 3, 10 ps / Dijkstra iter.

30K seconds ~ 80 hours
— Example 2: m = 1M, n = 1G, L = 3, 10 us / Dijkstra iter.

3G seconds =~ 8 million hours = 1000 years

12

Important Stations 2/3

= How to improve on this?

— Idea: Select 1% of all stations as “important”
— Heuristic: where many paths transfer + geographic diversity
— For each important station compute a global Dijkstra as before

— For each non-important station, compute a local Dijkstra, that
is, compute all local paths = all paths until an important
station or without any important station on them

13

Important Stations 3/3

m Local Dijkstra search from a station s ... problem:
— The number of (nodes on the) local paths is indeed small
— But we have the usual "15 hours to the next village problem":

If only one of the local paths has a large cost, say 15 hours,
then the Dijkstra computation needs to search everything
that can be reached from s within 15 hours

— Unfortunately, almost every station has at least one local path
of high cost, and hence our local Dijkstra searches end up
being no less expensive than the global Dijkstra searches

— Simple heuristic remedy: only consider local paths up to two
transfers, that is, paths where more than two transfers are
needed to get to an important station will be lost

— Experience shows that these are very rare in practice

14

Query graph construction (sketch)

m For given source and target location A and B
— Compute the sets N(A) and N(B) of stations near A and B
— Get the precomp. local transfer patterns of these stations

— Get the setf I(A) ,a.nd‘rﬁ of important stations where the
local paths from A asefrom B end

— Get the global transfer patterns for each pai=e$ important
stations Ja-#) where a € I(A) aFe==KB)

— Assemble this to form the query graph of all transfer
patterns rgloexvant for thE query

15

Query graph search

m Time-dependent Dijkstra search

— Start at the source location

— For arcs from the source location to nearby station
launch road network query (or have these precomputed)

Same for arcs to the target location

— For arcs between stations, ask direct-connection table

16

Exam 1/2

m The exam will be on Monday, August 15 at 2:00 pm
— Here in HS 026 + it will last (only) 90 minutes
— There will be 4 tasks, out of which you can select 3 tasks

— Three kinds of tasks are possible

Execute an algorithm from the lecture, or some variant
of it, on a given example (on paper)

S
(D
3

» Write a small program to solve a variant of a pro
we have seen in the lecture

» Compute, reason about, or prove a non-trivial (but also
not very difficult) property of an algorithm or data
structure from the lecture, or some variant of it

— See the Search Engines WS 2009/2010 exam for examples

Exam 2/2

= The bachelor students (and only those)

— ... must take an oral exam
— On Wednesday, August 17, starting from 2:00 pm
— In my office: building 51, 2nd floor, room 028

— Questions will be of a similar kind as in the written
exam, but of course not exactly the same

18

Work in my group

m Chair for Algorithms and Data Structures

— Our work roughly subdivides as
» 1/3 theory (new algorithms, complexity analysis, etc.)
» 1/3 algorithm engineering (efficient implementations)
» 1/3 software engineering (good, durable software)
— Current projects
» Route planning
» Search engines, in particular: CompleteSearch & Broccoli

— Current readings
« http://ad.informatik.uni-freiburg.de/papers

19

References

m Transfer Patterns
Fast Routing in Very Large Transportation Networks
using Transfer Patterns
Bast, Carlsson, Eigenwillig, Geisberger, Harrelson,
Rachyev, Viger ESA 2010
http://www.springerlink.com/content/c873271685124v42/

http://ad.informatik.uni-freiburg.de/papers

20

21

