
Efficient Route Planning
SS 2011

Lecture 2, Friday May 13th, 2011
(I l t ti Ad i B ild T t St l)(Implementation Advice, Build, Test, Style)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

 Implementation advice
– Graph representation

– Dijkstra with a priority queue without decrease keyj p y q y

 Unit tests
– A short HowToA short HowTo

 Make / Ant + Jenkins
Make / Ant build framework for C++ / Java– Make / Ant = build framework for C++ / Java

– Jenkins = our continuous build system

I will provide a short HowTo for both– I will provide a short HowTo for both

 Visualization of geo data
– Google Maps, Google Fusion Tables, Google Earth (KML)

2

Graph representationp p

 Adjacency matrix

– Store the arc costs in an n x n matrix, where n = #nodes

if arc does not exist, put some special value, e.g. ∞if arc does not exist, put some special value, e.g. ∞

– Needs space Θ(n2)

– Ok when m = #arcs is very large (so-called dense graphs)– Ok when m = #arcs is very large (so-called dense graphs)

 Adjacency lists

– For each node, store an array of the outgoing arcs + their costs

– Needs space Θ(n + m)

– Method of choice when m << n2 (so-called sparse graphs)

3

Graph representationp p

 Adjacency lists: Algorithm engineering
– The straightforward implementation is

vector<vector<Arc> > adjacencyLists;j y ;

– An alternative would be

vector<Arc> adjancencyLists; // size = #arcsj y
vector<int> adjacencyListsOffsets; // size = #nodes

where the first vector is the concatenation of all adjacency
lists and the second vector contains for each node thelists, and the second vector contains, for each node, the
start of the adjacency list of that node in that concatenation

more space-efficient (each vector has space-overhead)more space efficient (each vector has space overhead)

more time-efficient (all adjacency lists are contiguous in
memory, hence better cache-efficiency)

the straightforward implement. is fine for now though
4

Dijkstra without decrease keyj y

 Ordinary Dijkstra
– The tentative distance of a node in the priority queue (PQ)

can decrease several times over the course of the execution

 seems we need a PQ with a decrease-key operation

– However, the std::priority_queue does not support this

– There is a simple trick to avoid this operation

instead of a decrease-key, insert the node (again) with the
smaller tentative distancesmaller tentative distance

whenever a node with key larger than the already known
tentative distance is removed from the PQ, ignore ittentative distance is removed from the PQ, ignore it

works fine as long as there are relatively few decrease-key
operations, which is the case for road networks why?

5

Dijkstra's algorithmj g

 Example execution (slide copied from last lecture)

6

Make / Ant + Jenkins

 Jenkins is our continuous build system

– See link on your Daphne page (linked from the Wiki)

– Will build your code (from the SVN) on one of our serversWill build your code (from the SVN) on one of our servers

Important to ensure that it does not only work on your
local machine

– Jenkins assumes a build file in your SVN

Makefile for C++, build.xml for JavaMakefile for C++, build.xml for Java

The build file should provide four targets

compile test checkstyle cleancompile, test, checkstyle, clean

Let's see an example of this ...

7

Unit Tests

 Test functionality of each (major) method
– Otherwise 1: debugging becomes a nightmare

– Otherwise 2: no trust in your experimental resultsy p

– Let's write a unit test together ...

 Problem: testing equality of complex objectsProblem: testing equality of complex objects
– For example, a whole road network object

– Simple solution: for each class provide a methodSimple solution: for each class provide a method
DebugString which outputs the object in a simple human-
readable form

– Then your test can check simple string equality, e.g.

rn.readFromOsmFile("RoadNetworkTest.TMP.osm");

ASSERT_EQ("[3,2,{(1,2)},{2,3},{3,1}]", rn.DebugString());

8

Unit Tests

 Which framework to use?

– For C++ please use gtest

– For Java please use JUnitFor Java please use JUnit

9

Style checkingy g

 A consistent style is important when you write code

– Especially when you work in a team, but not only then

– Please use the following style checkers:Please use the following style checkers:

cpplint.py for C++

implements Google's code conventionsimplements Google s code conventions

you find cpplint.py in your SVN subdirectory

checkstyle for Javacheckstyle for Java

highly configurable, i.p. to SUN's code conventions

f d h k l d h k lyou find checkstyle.jar and sun_checks.xml in your SVN
directory (do svn update to get it)

Set the checkstyle target in your build file accordingly– Set the checkstyle target in your build file accordingly

10

Visualizing your datag y

 How to visualize nodes / arcs?

– Later in the course we will see how to write a simple UI
using the Google Maps API

– In the meantime, the following might be useful

In Google Maps you can just enter a coordinate g p y j
(latitude, longitude) into the search field

With Google Fusion Tables you can import CSV files
with geo information and visualize them

With Google Earth you can visualize KML files (an XML
di l t f ti i l i f ti)dialect for representing simple geo information)

11

References

 Unit testing frameworks
– http://code.google.com/p/googletest/
– http://www.junit.org/

Make / Ant Make / Ant
– http://www.gnu.org/software/make/
– http://ant apache org/– http://ant.apache.org/

 Checkstyle
– http://google-styleguide.googlecode.com/svn/trunk/cppguide.xmlhttp://google styleguide.googlecode.com/svn/trunk/cppguide.xml
– http://checkstyle.sourceforge.net/

 Data Visualization
– http://maps.google.com/
– http://www.google.com/fusiontables
– http://code.google.com/apis/kml/

12

13

