Efficient Route Planning SS 2011

Lecture 3, Friday May 20th, 2011 (A* with landmarks, correctness proofs)

Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

Overview of this lecture

- Announcement
 - No lecture next week!
- Feedback from the exercises
 - Your experimental results
 - Your experiences
- A new algorithm
 - Landmarks: a better heuristic for A*
 - How to select good landmarks?
 - Correctness proofs
- Exercises
 - Implement landmark A*
 - Extend proofs + check preconditions

Announcement

There is no lecture next Friday!

 The next lecture is on Friday, June 3 (same time, same place) UNI FREIBURG

See the table on the Wiki

- Many results still missing, please put them there!
- The results which are there are quite conclusive:
 - Plain Dijkstra on Ba-Wü around 0.5 seconds
 - 20% of all nodes settled on average (= a lot)
 - A* with the straight-line heuristic is at best twice faster
 - A single iteration takes around 0.5 µs
 - ... depending on the priority queue implementation

– ... so please tell me about it now

Basic idea

- Consider an arbitrary node ℓ and call it a landmark
- Then for two arbitrary nodes u, v it holds:

 $dist(u, l) \le dist(u, v) + dist(v, l)$ "triangle inequality"

hence dist(u, ℓ) – dist(v, ℓ) ≤ dist(u, v)

- When is the left hand side a good lower bound?
- That is, when is dist(u, l) close to dist(u, v) + dist(v, l)?

BURG

, REI

11

• When is dist(u, l) close to dist(u, v) + dist(v, l)?

– When v lies "close to" the shortest path from u to $\boldsymbol{\ell}$

• Note: if it lies on the shortest path we have equality!

@]

7

- This is likely if
 - v lies close to the straight line between u and $\boldsymbol{\ell}$
 - *l* is not too far from v (and so, in fact, behind v)
- Obviously we can't have this for all nodes \boldsymbol{u} and \boldsymbol{v}

Pick a set L of landmarks

- For each $\ell \in L$ we have dist (u, ℓ) dist $(v, \ell) \leq$ dist(u, v)
- Hence also $\max_{\ell \in L} \{ dist(u, \ell) dist(v, \ell) \} \le dist(u, v)$
- When is the left hand side a good lower bound?
 - The more landmarks the better
 - But to make good use of the lower bound above, we need to precompute (and store) distances from each landmark to all other nodes in the graph
 - For a given number of landmarks, the more "distributed" they are over the graph, the better

- We look at two heuristics
 - Random selection
 - not bad, but will not give perfect distribution
 - Greedy farthest node selection
 - start with a random node, then iteratively add more
 - in each iteration, pick the node that is farthest from the set of nodes already selected
 - let the already selected set be L'
 - then pick node u which maximizes $\min_{\ell \in L'} dist(\ell, u)$
 - how do we pick that node?

BURG

NNI Rel

Dijkstra from a set of nodes

Implementation

- Initially put all nodes from the set S in the priority queue, with distance 0, then run ordinary Dijkstra
- Then the distance computed for each node u will be

 $\min_{s \in S} dist(s, u)$... which we write as dist(S, u)

- It's not obvious that this is true, so we should prove it
 - This will be one of the exercises
 - Extension of correctness proof for ordinary Dijkstra
 - which I will hence show you again now

Basic Dijkstra correctness proof 1/3

Let s be our source node

- Let's first make the simplifying assumptions that the dist(s, u) are distinct for all nodes u
- Then we can order the nodes u_1 , u_2 , u_3 , ...

such that dist(s, u_1) < dist(s, u_2) < dist(s, u_3) < ...

- We want to prove that, at the end of the computation,
 - the tentative distance dist[u_i] for each node u_i satisfies dist[u_i] = dist(s, u_i)
- More specifically, we can show that in the i-th iteration
 - Dijkstra's algorithm settles node u_i
 - and at that point dist[u_i] = dist(s, u_i)

We show by induction over i

- that in the i-th iteration, we have $dist[u_j] = dist(s, u_j)$ for all $j \le i$, and node u_i will be settled in that iteration

i = 1:
$$u_1 = 3$$
; dist[3] = 0 = dist(3,3)
i -> i+1: for u_1, \dots, u_i be claim 20ds
dist(s, v)
= dist(s, u_{i+1}) det's about u_{i+1} ?
- $c(v_1, u_{i+1})$ det's look at the shortest path
- $c(v_1, u_{i+1})$ from s to u_{i+1}
< dist($s_1 u_{i+1}$)
> v is one of the
 u_{1}, \dots, u_i for v_{i+1} predecessor of u_{i+1} and
 u_{1}, \dots, u_i $j \leq i$ for shortest path
12

Basic Dijkstra correctness proof 3/3 U' U' $V = U_1$, $j \leq l$ \implies dist $[u_j] = dist (s_i u_j).$ and uj was settled in iteration j When uj was settled, dist [Ui+1] received the value dist [Uij] + c (UD, Uc+1) $= dist(s, u_i)$ j > i + 1: $dist[u_j] \ge dist(s, u_j)$ > dust (s, u(i+1) = dust [u, in] => Uit, is settled in iteration i+1 and dist[uizi] = dist(s[uizi]) 13

A* correctness proof 1/2

We make the following assumptions

- Let t be the target node, and let h(u) be the estimated distance to that target for node u
- We assume that $h(u) \le dist(u, t)$ "h is admissible"
- And that for each arc (u, v) with cost c(u, v) it holds that $h(u) \le c(u, v) + h(v)$ "h is monotone"
- For simplicity, we first assume **strict** monotonicity, that is h(u) < c(u, v) + h(v)

and that dist(s, u) + h(u) are **distinct** for all nodes u

- Then we have an ordering of the nodes u_1 , u_2 , u_3 , ... with dist(s, u_1) + h(u_1) < dist(s, u_2) + h(u_2) <

What about the straightline heuristic for h ?

- It's easy to see that it is admissible and monotone
- Is it also strictly monotone?
- This is one of the exercises
- What about the landmark heuristic for h ?
 - Let L be the set of landmarks and t be the target node
 - Then we have $h(u) = \max_{\ell \in L} \{dist(u, \ell) dist(t, \ell)\}$
 - Admissible: we already showed that $h(u) \leq dist(u, t)$
 - Monotone: we have to show that for all arcs (u,v)

 $h(u) \le c(u, v) + h(v)$

UNI FREI Let (u,v) be an arbitrary arc with cost c(u, v)

- We have to show that $h(u) \le c(u, v) + h(v)$
 - where $h(x) = \max_{\ell \in L} \{ dist(x, \ell) dist(t, \ell) \}$ for all x

- Let us first show something related for a fixed $\ell \in L$ dist(u, ℓ) \leq c(u, v) + dist(v, ℓ) "triangle inequality"

→ dist(u, ℓ) - dist(t, ℓ) ≤ c(u, v) + dist(v, ℓ) - dist(t, ℓ)

– If we now do $\max_{\ell \in \mathsf{L}}$ on both sides, we are done

– But is this ok?

 BURG

IREI

References

UNI FREIBURG

The original landmark paper

Computing the shortest path: A* search meets graph theory A. Goldberg and C. Harrelson, SODA 2005 <u>http://portal.acm.org/citation.cfm?doid=1070432.1070455</u> <u>http://www.avglab.com/andrew/pub/soda05.pdf</u>