
Efficient Route Planning
SS 2011

Lecture 3, Friday May 20th, 2011
(A* ith l d k t f)(A* with landmarks, correctness proofs)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

Announcement
– No lecture next week!

Feedback from the exercises
– Your experimental results

– Your experiences

A new algorithm
– Landmarks: a better heuristic for A*

– How to select good landmarks?

– Correctness proofs

Exercises
– Implement landmark A*

– Extend proofs + check preconditions

2

Announcement

There is no lecture next Friday!

– The next lecture is on Friday, June 3

(same time, same place)(same time, same place)

3

Experimental results from Ex. Sheet 1p

See the table on the Wiki

– Many results still missing, please put them there!

– The results which are there are quite conclusive:The results which are there are quite conclusive:

Plain Dijkstra on Ba-Wü around 0.5 seconds

20% of all nodes settled on average (= a lot)20% of all nodes settled on average (= a lot)

A* with the straight-line heuristic is at best twice faster

A single iteration takes around 0 5 µsA single iteration takes around 0.5 µs

... depending on the priority queue implementation

4

Your experiences with Ex. Sheet 1p

You didn't write much in the SVN

– ... so please tell me about it now

5

A* with landmarks 1/3

Basic idea

– Consider an arbitrary node ℓ and call it a landmark

– Then for two arbitrary nodes u, v it holds:Then for two arbitrary nodes u, v it holds:

dist(u, ℓ) ≤ dist(u, v) + dist(v, ℓ) "triangle inequality"

hence dist(u ℓ) – dist(v ℓ) ≤ dist(u v)hence dist(u, ℓ) – dist(v, ℓ) ≤ dist(u, v)

– When is the left hand side a good lower bound?

That is when is dist(u ℓ) close to dist(u v) + dist(v ℓ) ?– That is, when is dist(u, ℓ) close to dist(u, v) + dist(v, ℓ) ?

6

A* with landmarks 2/3

When is dist(u, ℓ) close to dist(u, v) + dist(v, ℓ) ?

– When v lies "close to" the shortest path from u to ℓ

Note: if it lies on the shortest path we have equality!Note: if it lies on the shortest path we have equality!

– This is likely if

v lies close to the straight line between u and ℓv lies close to the straight line between u and ℓ

ℓ is not too far from v (and so, in fact, behind v)

Obviously we can't have this for all nodes u and v– Obviously we can't have this for all nodes u and v

7

A* with landmarks 3/3

Pick a set L of landmarks

– For each ℓ L we have dist(u, ℓ) – dist(v, ℓ) ≤ dist(u, v)

– Hence also maxℓ L {dist(u ℓ) – dist(v ℓ)} ≤ dist(u v)Hence also maxℓ L {dist(u, ℓ) dist(v, ℓ)} ≤ dist(u, v)

– When is the left hand side a good lower bound?

The more landmarks the betterThe more landmarks the better

But to make good use of the lower bound above, we
need to precompute (and store) distances fromneed to precompute (and store) distances from
each landmark to all other nodes in the graph

For a given number of landmarks, the moreFor a given number of landmarks, the more
"distributed" they are over the graph, the better

8

Landmark selection

We look at two heuristics

– Random selection

not bad, but will not give perfect distributionnot bad, but will not give perfect distribution

– Greedy farthest node selection

start with a random node then iteratively add morestart with a random node, then iteratively add more

in each iteration, pick the node that is farthest from
the set of nodes already selectedthe set of nodes already selected

let the already selected set be L'

then pick node u which maximizes minℓ L' dist(ℓ u)then pick node u which maximizes minℓ L' dist(ℓ, u)

how do we pick that node?

9

Dijkstra from a set of nodesj

Implementation

– Initially put all nodes from the set S in the priority queue,
with distance 0, then run ordinary Dijkstra

– Then the distance computed for each node u will be

mins S dist(s, u) ... which we write as dist(S, u)s S (,) (,)

– It's not obvious that this is true, so we should prove it

This will be one of the exercisesThis will be one of the exercises

Extension of correctness proof for ordinary Dijkstra

which I will hence show you again nowwhich I will hence show you again now

10

Basic Dijkstra correctness proof 1/3j p

Let s be our source node

– Let's first make the simplifying assumptions that the
dist(s, u) are distinct for all nodes u

– Then we can order the nodes u1, u2, u3, ...

such that dist(s, u1) < dist(s, u2) < dist(s, u3) < ...(, 1) (, 2) (, 3)

– We want to prove that, at the end of the computation,

the tentative distance dist[ui] for each node uithe tentative distance dist[ui] for each node ui

satisfies dist[ui] = dist(s, ui)

– More specifically, we can show that in the i-th iteration

Dijkstra's algorithm settles node ui

and at that point dist[ui] = dist(s, ui)and at that point dist[ui] dist(s, ui)

11

Basic Dijkstra correctness proof 2/3j p

We show by induction over i

– that in the i-th iteration, we have dist[uj] = dist(s, uj) for
all j ≤ i, and node ui will be settled in that iteration

12

Basic Dijkstra correctness proof 3/3j p

13

A* correctness proof 1/2p

We make the following assumptions

– Let t be the target node, and let h(u) be the estimated
distance to that target for node u

– We assume that h(u) ≤ dist(u, t) "h is admissible"

– And that for each arc (u, v) with cost c(u, v) it holds that (,) (,)
h(u) ≤ c(u, v) + h(v) "h is monotone"

– For simplicity, we first assume strict monotonicity, that is
h(u) < c(u, v) + h(v)

and that dist(s, u) + h(u) are distinct for all nodes u

– Then we have an ordering of the nodes u1, u2, u3, ... with

dist(s, u1) + h(u1) < dist(s, u2) + h(u2) <

14

A* correctness proof 2/2p

15

Admissible and monotone h for A*

What about the straightline heuristic for h ?

– It's easy to see that it is admissible and monotone

– Is it also strictly monotone?Is it also strictly monotone?

– This is one of the exercises

What about the landmark heuristic for h ?What about the landmark heuristic for h ?

– Let L be the set of landmarks and t be the target node

– Then we have h(u) = maxℓ L {dist(u, ℓ) – dist(t, ℓ)}

– Admissible: we already showed that h(u) ≤ dist(u, t)

– Monotone: we have to show that for all arcs (u,v)

h(u) ≤ c(u, v) + h(v)

16

Monotonicity of landmark heuristicy

Let (u,v) be an arbitrary arc with cost c(u, v)

– We have to show that h(u) ≤ c(u, v) + h(v)

where h(x) = maxℓ L {dist(x, ℓ) – dist(t, ℓ)} for all xwhere h(x) maxℓ L {dist(x, ℓ) dist(t, ℓ)} for all x

– Let us first show something related for a fixed ℓ L

dist(u ℓ) ≤ c(u v) + dist(v ℓ) "triangle inequality"dist(u, ℓ) ≤ c(u, v) + dist(v, ℓ) triangle inequality

dist(u, ℓ) – dist(t, ℓ) ≤ c(u, v) + dist(v, ℓ) – dist(t, ℓ)

If we now do max on both sides we are done– If we now do maxℓ L on both sides, we are done

– But is this ok?

17

References

The original landmark paper
Computing the shortest path: A* search meets graph theory
A. Goldberg and C. Harrelson, SODA 2005
http://portal acm org/citation cfm?doid 1070432 1070455http://portal.acm.org/citation.cfm?doid=1070432.1070455
http://www.avglab.com/andrew/pub/soda05.pdf

18

19

