Efficient Route Planning
SS 2011

Lecture 6, Friday June 24th, 2011
(Highway & Contraction Hierarchies)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

m Exercise Sheet 4 (Maps API etc.)

— Your web applications
— Your feedback

m Today: two new algorithms
— Both based on the inherent hierarchy in road networks

— Highway Hierarchies (from 2005): intuitive and simple, but
quite complex to implement in practice (even the basics)

— Contraction Hierarchies (from 2008): similar idea, but
simpler (in its basic form) and faster

— I will given you the idea and an outline for HHs and the
details, including correctness proofs, for CHs

— Exercise Sheet for this week: implement Contraction
Hierarchies and test its performance ...

Feedback for Exercise Sheet 4 (Maps API etc.)

m Summary / excerpts last update 24.6 01:15

— Interesting exercise sheet

— This time, the amount of work was ok

— Technologies involved were well explained

— Web applications are fun

— Please leave time to improve code from previous exercises

— Exercise was boring and unnecessary, the exercises on the
algorithms were much more interesting

A* with Landmarks — Reprise

m Note the following optimization (thanks, Robin)

— We used the following lower bound on dist(u, v)
dist(u, £) < dist(u, v) + dist(v, ©)
hence dist(u, £) — dist(v, £) < dist(u, v)

— Similarly, using distances from £, we get
dist({, v) < dist(, u) + dist(u, v)
hence dist(, v) — dist(f, u) < dist(u, v)

— For us, dist(u, £) = dist(f, u) and dist(v, {) = dist({, v)
hence |dist(u, £) — dist(v, £)| < dist(u, v)

— According to Robin, factor 3-4 smaller search space

Arc flags — Reprise

m The following had to be done for Exercise Sheet 3

— Compute rectangular regions

KD-tree was quite some extra work, but voluntary
— Compute boundary nodes for each region
— Full Dijkstra computation from each boundary node

— Maintain parent pointers during Dijkstra computation
and backtrack them to get arcs on shortest paths

— Set arc flags accordingly; use a vector<bool> !
— At query time, outside target region, check arc flags
— Writing tests is more than half of the work

— But for good reason, without tests you are doomed

BURG

Arc flags — Reprise

Highway Hierarchies 1/5

m Basic idea

— Road networks have an inherent hierarchy of more and
more important roads: residential roads, national roads,
motorways, eftc.

— Intuitively, far away from source and target it suffices to
use only more important roads

— Let's see some examples on Google Maps ...

— The question is: how to make "far away" and "important”
precise, so that it's not just a heuristic with approximate
results, but an exact algorithm

Highway Hierarchies 2/5

m Precomputation (for undirected graphs)

— Don't rely on road labels, but compute a level for each arc
— Initially all arcs have level 0
— Consider the graph of all arcs with level £
— Let r, be a suitably chosen neighbourhood radius for that level
— Neighbourhood of a node N(u) = {v : dist(u, v) < r;}
— Raise an arc (u, v) to level { + 1 if and only if

» there exists a shortest path (s, ..., u, v, ..., t)

such that v is not in N(s) and u is not in N(t)

Intuitively: (u, v) is in the middle of a long shortest path

Highway Hierarchies 3/5

m Query algorithm (high-level description)
— Bidirectional Dijkstra from source and target

— For each node, maintain not only the tentative distance,
but also the current level and the distance gap to the next
applicable neighbourhood border

— Initially (at source and target), the level is 0 and the gap
is the neighbourhood radius r

— When relaxing an arc from a node with level { (= try to
improve tentative distance of the head node of the arc)

consider only arcs of current level or higher

if cost of arc is > gap, increase level for adjacent node

Highway Hierarchies 4/5

m Optimizations

— Without further ado, there will be long chains of

degree-2 nodes on the higher level
3 é_’Z/_\”_\i%@:[%125@
e
- o

b

— Those can and should be contracted
— This contraction can be generalized to higher degrees
» Will be explained in detail for contraction hierarchies

— Important for performance, but makes query algorithm
even more complicated and error-prone than it already is

10

Highway Hierarchies 5/5

m Performance

— Can preprocess the road network of Western Europe in
less than 1 hour, with small space overhead

— Achieves average query times around 1 millisecond

m Problems

— Non-trivial to get the levels right

— Complicated rule for when to switch to the next level in
the Dijkstra computation at query time

» especially when the various optimizations are aded

— Easy to make mistakes, and then optimal paths are lost

11

Contraction Hierarchies

m Precomputation of a given graph G = (V, E)
— Consider an arbitrary ordering of the nodes

the algorithm that follows is correct for any order, but it
is more efficient for some orders than for others

— Process the nodes in this order, let v be the next node
— Then v will be contracted as follows

- Let {uy,...,u;} be the incoming arcs, i.e. (u;, v) € E

» Let {w;y,...,w} be the outgoing arcs, i.e. (v, wj) €E

For each pair {u;, w; }, if (u;, v, w) is the only shortest
path from u; to w add the shortcut arc (u;, w)

» Then remove v and its adjacent arcs from the graph

12

I
um:mnm_m y
I A

13

Contraction Hierarchies

m Example

AL O\c;él\.

Contraction Hierarchies

m Query algorithm
— Given a source s and a target t

— Do a full Dijkstra computation from s forwards, considering
only arcs (u, v) withu < v

» we call GT = (V, {(u, v) : u < v}) the upward graph

— Do a full Dijkstra computation from t backwards, considering
only arcs (u, v) with u > v

» we call G! = (V, {(u, v): u > v}) the downward graph
— Let I be the set of nodes settled in both Dijkstras
— Take dist(s, t) = min {dist(s, v) + dist(v, t) : ve I}

— Is this correct and if yes why?

14

CH — Correctness Proof 1/4

m Contraction preserves shortest paths

— Lemma: Let G = (V, E) be an arbitrary graph, and let
G' = (V', E') be the graph after the contraction of an
arbitrary node v e V, that is, V' =V — {v}.

Then for all s, t € V' it holds that distg(s, t) = di_stG(s, t)

iu“r/ﬂ)ﬂﬁa(-guz_ S B/\/O\M/\Sd@ o &
Cong @ v does mad 9ccny o = P oo

(}.WX‘&M o C;[= Ox/‘fﬁtgf (S{VLB < d'/\/ai'C;CX,VLX

C oo \/d\ﬂﬂomw@ CP=3, AV W]4
Ny P = Sohenk (o) eE!

)

W(’ = s, W o T o e ‘(JQ
itk oorme kg (5 4) £ ot (S

CH — Correctness Proof 2/4

m Proof of Lemma continued ... | ’
So gw are. Ouore o9uusn OLA/’LG,CSHL)iolvaGCSIJ’)
\LA&.L ARG
ﬁwv/)zﬁ DLLS\OWSQLMLWQ
cgoa_ \F WM@W LE, a0

W%PIMW\E = V”/MO_Q,DOO\M/Q-
WG => olM""CS(] oLv.vL (s\")

—_ DML (s #) = ohuokgy Csit)

7
%W Con) oy (L«[\J[U\JX =

16

CH — Correctness Proof 3/4

m The query algorithm is correct
— Lemma: dist(s, t) = min {dist(s, v) + dist(v, t) : ve I}
— Let P be the shortest path from sto tin G
— Let v be the largest node (wrt the node ordering) on P in G

— Consider the prefix maxima on the path from s to v,
that is, the nodes uy < u; < ... < ug such that P is

S=U.0_’* LJ.]__’*U.Z_’*”= _’*U.k=\./
where the subpaths u;_; —* u; use only nodes < u;_4

— Claim: P' = (ug, uy, ..., uy) is the shortest path from
s to v in the upward graph (and we can prove a similar
thing for the path from v to t in the downward graph)

17

CH — Correctness Proof 4/4

. k)\ < \A«\C T = 4*
m Proof of the claim © >
2 - %
?: ANy — n, —> .- \\).\'l

v
S

<
\O/ = Wo Yar - P 4 o0 o v T
/Bb {\lp_ /VWWNO\AM -Q_,Q/vwvvvvé\) (LAL:_J'j MC\ (= Ej\
O\/\/\Ok Nu;ﬂ \\‘J’\&OO\N\A& CO-»J’ o u\b-_/‘ __g,*uc

WWMM%M:~»

18

“ /7\""4
Shortcuts 1/2 o T e

_\\%

m How to determine when a shortcut is needed?

— Recall: when contracting node v, we need to insert the
shortcut arc (u, w), if and only if (u, v) € Eand (v, w) € E
and (u, v, w) is the only shortest path from u to w

— As before, {u;} = incoming arcs and {WJ-} = outgoing arcs

— Straightforward approach: for each u;, do a Dijkstra
computation until all w; are settled and see for which W;

v lies on the shortest path from u; to w;

— Improvement 1: We can stop the search when we settle a

node with cost > dist(u;, v) + max; cost(v, w;)

— Improvement 2 (sketch): A "1-hop backward search" from
each of the w; gives an even better bound — see paper

19

Shortcuts 2/2

m How to determine when a shortcut is needed?

— Improvement 3 (heuristic): For each Dijkstra computation
(from each of the u;), put a limit on the number of hops
(distance in number of arcs from u;) and on the size of
the search space (number of nodes settled)

With this heuristic, we may fail to find a shortest path
from u; to w; that does not use v, and thus insert the
shortcut (u;, W]-) unnecessarily

» But unnecessary shortcuts do not harm correctness,
only performance (if there are too many of them)

So there is a trade-off: if the heuristic saves a lot of
time in the precomputation at the cost of only a few
unnecessary shortcuts, than it is worth it

20

Implementation advice

m How to add shortcuts / remove contracted nodes?

— If you implemented the adjacency lists with a
vector<vector<Arc> >, adding arcs is straightforward

— Removing nodes / arcs from the graph is more
cumbersome, but luckily there is no need to do that

— Instead, you can just ignore the respective nodes / arcs

In the precomputation, ignore all nodes with smaller
id than the current one, and their incident arcs

At query time, for a Dijkstra search in the upward
graph only consider arcs (u, v) with u < v, and
similarly for the downward graph

21

Node ordering 1/3

m General approach

— Maintain the nodes in a priority queue, in the order of
how attractive it is to contract the respective node next

— Intuitively: the less shortcuts we have to add, the better
— For each node, maintain the edge difference (ED):

. S = the number of shortcuts that would have to be
added if that node were contracted

» E = the number of arcs incident to that node
» Then the edge difference is simply ED =S - E

— Note that when we contract a node, the edge difference
of other nodes (not only the neighbours) may get affected

22

Node ordering 2/3

m How to maintain the ED for each node?

— Initially compute the ED for each node (linear time)

— Straightforward approach: recompute for all nodes after
each single contraction — quadratic running time

— Lazy approach: update EDs "on demand" as follows:

» Before contracting node with currently smallest ED,
recompute its ED and see if it is still the smallest

» If not pick next smallest one, recompute its ED and see if
that is the smallest now; if not, continue in same way ...

— Neighbour heuristic: after each contraction, recompute EDs,
but only for the neighbours of the contracted node

— Periodic update heuristic: Full recomputation every x rounds

23

Node ordering 3/3

m Other criteria

— Spatial uniformity is also important, here is an example:

- 7’—5':’—3::’?9——-50——90-—7-9" =
12 314 & 72

e, P

e e——e D D = =<

45’27’576“-{2

— Simple heuristic: for each node maintain a count of the
number of neighbours that have already been
contracted, and add this to the ED

— the more neighbours have already been contracted,
the later this node will be contracted

24

Getting the arcs on the shortest path

m The query algorithm as described so far ...

... gives a shortest path P' in the graph with shortcuts
find the v which minmizes dist(s, v) + dist(v, t)
» backtrack path to v in the forward search from s
backtrack path to v in the backward search from t
— How to obtain the shortest path P in the original graph?
— During the precomputation, for each shortcut arc e re-
member the contracted node due to which e was inserted

— Replace each shortcut arc e = (u, w) in P' by the two arcs
(u, v), (v, w), where v is the node remembered for e

— Repeat until no more shortcut arcs left

25

References

m Highway Hierarchies
Engineering Highway Hierarchies
Highway Hierarchies Hasten Exact Shortest Path Queries
Dominik Schultes and Peter Sanders, ESA 2005 & 2006
http://algo2.iti.uka.de/schultes/hwy/esa06HwyHierarchies.pdf
http://algo?2.iti.uka.de/schultes/hwy/esaHwyHierarchies.pdf

m Contraction Hierarchies

Contraction Hierarchies: Faster and Simpler Hierarchical
Routing in Road Networks

Geisberger, Sanders, Schultes, Delling, WEA 2008
http://algo2.iti.uka.de/schultes/hwy/contract.pdf

26

27

