
Efficient Route Planning
SS 2011

Lecture 6, Friday June 24th, 2011
(Hi h & C t ti Hi hi)(Highway & Contraction Hierarchies)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

 Exercise Sheet 4 (Maps API etc.)
– Your web applications

– Your feedback

 Today: two new algorithms
– Both based on the inherent hierarchy in road networks

– Highway Hierarchies (from 2005): intuitive and simple, but
quite complex to implement in practice (even the basics)

– Contraction Hierarchies (from 2008): similar idea, but
simpler (in its basic form) and faster

– I will given you the idea and an outline for HHs and theI will given you the idea and an outline for HHs and the
details, including correctness proofs, for CHs

– Exercise Sheet for this week: implement Contraction
Hierarchies and test its performance …

2

Feedback for Exercise Sheet 4 (Maps API etc.)(p)

 Summary / excerpts last update 24.6 01:15

– Interesting exercise sheet

– This time, the amount of work was okThis time, the amount of work was ok

– Technologies involved were well explained

– Web applications are fun– Web applications are fun

– Please leave time to improve code from previous exercises

Exercise was boring and unnecessary the exercises on the– Exercise was boring and unnecessary, the exercises on the
algorithms were much more interesting

3

A* with Landmarks — Reprisep

 Note the following optimization (thanks, Robin)

– We used the following lower bound on dist(u, v)

dist(u, ℓ) ≤ dist(u, v) + dist(v, ℓ)dist(u, ℓ) ≤ dist(u, v) + dist(v, ℓ)

hence dist(u, ℓ) – dist(v, ℓ) ≤ dist(u, v)

– Similarly using distances from ℓ we get– Similarly, using distances from ℓ, we get

dist(ℓ, v) ≤ dist(ℓ, u) + dist(u, v)

hence dist(ℓ v) dist(ℓ u) ≤ dist(u v)hence dist(ℓ, v) – dist(ℓ, u) ≤ dist(u, v)

– For us, dist(u, ℓ) = dist(ℓ, u) and dist(v, ℓ) = dist(ℓ, v)

h |d () d ()| d ()hence |dist(u, ℓ) – dist(v, ℓ)| ≤ dist(u, v)

– According to Robin, factor 3-4 smaller search space

4

Arc flags — Repriseg p

 The following had to be done for Exercise Sheet 3

– Compute rectangular regions

KD-tree was quite some extra work, but voluntaryKD tree was quite some extra work, but voluntary

– Compute boundary nodes for each region

– Full Dijkstra computation from each boundary node– Full Dijkstra computation from each boundary node

– Maintain parent pointers during Dijkstra computation
and backtrack them to get arcs on shortest pathsand backtrack them to get arcs on shortest paths

– Set arc flags accordingly; use a vector<bool> !

– At query time outside target region check arc flagsAt query time, outside target region, check arc flags

– Writing tests is more than half of the work

But for good reason without tests you are doomed– But for good reason, without tests you are doomed

5

Arc flags — Repriseg p

6

Highway Hierarchies 1/5g y

 Basic idea

– Road networks have an inherent hierarchy of more and
more important roads: residential roads, national roads,
motorways, etc.

– Intuitively, far away from source and target it suffices to
l i t t duse only more important roads

– Let's see some examples on Google Maps ...

– The question is: how to make "far away" and "important"
precise, so that it's not just a heuristic with approximate
results but an exact algorithmresults, but an exact algorithm

7

Highway Hierarchies 2/5g y

 Precomputation (for undirected graphs)

– Don't rely on road labels, but compute a level for each arc

– Initially all arcs have level 0Initially all arcs have level 0

– Consider the graph of all arcs with level ℓ

– Let r be a suitably chosen neighbourhood radius for that level– Let rℓ be a suitably chosen neighbourhood radius for that level

– Neighbourhood of a node N(u) = {v : dist(u, v) ≤ rℓ}

Raise an arc (u v) to level ℓ + 1 if and only if– Raise an arc (u, v) to level ℓ + 1 if and only if

there exists a shortest path (s, ..., u, v, ..., t)
such that v is not in N(s) and u is not in N(t)such that v is not in N(s) and u is not in N(t)

Intuitively: (u, v) is in the middle of a long shortest path

8

Highway Hierarchies 3/5g y

 Query algorithm (high-level description)

– Bidirectional Dijkstra from source and target

– For each node, maintain not only the tentative distance,For each node, maintain not only the tentative distance,
but also the current level and the distance gap to the next
applicable neighbourhood border

– Initially (at source and target), the level is 0 and the gap
is the neighbourhood radius r0

– When relaxing an arc from a node with level ℓ (= try to
improve tentative distance of the head node of the arc)

id l f t l l hi hconsider only arcs of current level or higher

if cost of arc is > gap, increase level for adjacent node

9

Highway Hierarchies 4/5g y

 Optimizations

– Without further ado, there will be long chains of
degree-2 nodes on the higher level

– Those can and should be contracted

– This contraction can be generalized to higher degreesThis contraction can be generalized to higher degrees

will be explained in detail for contraction hierarchies

– Important for performance but makes query algorithmImportant for performance, but makes query algorithm
even more complicated and error-prone than it already is

10

Highway Hierarchies 5/5g y

 Performance

– Can preprocess the road network of Western Europe in
less than 1 hour, with small space overhead

– Achieves average query times around 1 millisecond

 ProblemsProblems

– Non-trivial to get the levels right

Complicated rule for when to switch to the next level in– Complicated rule for when to switch to the next level in
the Dijkstra computation at query time

especially when the various optimizations are adedespecially when the various optimizations are aded

– Easy to make mistakes, and then optimal paths are lost

11

Contraction Hierarchies

 Precomputation of a given graph G = (V, E)

– Consider an arbitrary ordering of the nodes

the algorithm that follows is correct for any order, but itthe algorithm that follows is correct for any order, but it
is more efficient for some orders than for others

– Process the nodes in this order, let v be the next node,

– Then v will be contracted as follows

Let {u1,...,ul} be the incoming arcs, i.e. (ui, v) ϵ ELet {u1,...,ul} be the incoming arcs, i.e. (ui, v) ϵ E

Let {w1,...,wk} be the outgoing arcs, i.e. (v, wj) ϵ E

For each pair {ui wj} if (ui v wj) is the only shortestFor each pair {ui, wj}, if (ui, v, wj) is the only shortest
path from ui to wj, add the shortcut arc (ui, wj)

Then remove v and its adjacent arcs from the graphThen remove v and its adjacent arcs from the graph

12

Contraction Hierarchies

 Example

13

Contraction Hierarchies

 Query algorithm

– Given a source s and a target t

– Do a full Dijkstra computation from s forwards, consideringDo a full Dijkstra computation from s forwards, considering
only arcs (u, v) with u < v

we call G = (V, {(u, v) : u < v}) the upward graph(, {(,) }) p g p

– Do a full Dijkstra computation from t backwards, considering
only arcs (u, v) with u > v

we call G = (V, {(u, v): u > v}) the downward graph

– Let I be the set of nodes settled in both Dijkstrasj

– Take dist(s, t) = min {dist(s, v) + dist(v, t) : v ϵ I}

– Is this correct and if yes why?Is this correct and if yes why?

14

CH — Correctness Proof 1/4

 Contraction preserves shortest paths

– Lemma: Let G = (V, E) be an arbitrary graph, and let
G' = (V', E') be the graph after the contraction of an
arbitrary node v ϵ V, that is, V' = V – {v}.

Then for all s, t ϵ V' it holds that distG'(s, t) = distG(s, t)

15

CH — Correctness Proof 2/4

 Proof of Lemma continued ...

16

CH — Correctness Proof 3/4

 The query algorithm is correct

– Lemma: dist(s, t) = min {dist(s, v) + dist(v, t) : v ϵ I}

– Let P be the shortest path from s to t in GLet P be the shortest path from s to t in G

– Let v be the largest node (wrt the node ordering) on P in G

– Consider the prefix maxima on the path from s to v– Consider the prefix maxima on the path from s to v,
that is, the nodes u0 < u1 < ... < uk such that P is

s = u0 * u1 * u2 * ... * uk = vs u0 u1 u2 ... uk v

where the subpaths ui-1 * ui use only nodes < ui-1

– Claim: P' = (u0 u1 uk) is the shortest path fromClaim: P = (u0, u1, ..., uk) is the shortest path from
s to v in the upward graph (and we can prove a similar
thing for the path from v to t in the downward graph)

17

CH — Correctness Proof 4/4

 Proof of the claim

18

Shortcuts 1/2

 How to determine when a shortcut is needed?

– Recall: when contracting node v, we need to insert the
shortcut arc (u, w), if and only if (u, v) ϵ E and (v, w) ϵ E
and (u, v, w) is the only shortest path from u to w

– As before, {ui} = incoming arcs and {wj} = outgoing arcs

– Straightforward approach: for each ui, do a Dijkstra
computation until all wj are settled and see for which wj
v lies on the shortest path from u to wv lies on the shortest path from ui to wj

– Improvement 1: We can stop the search when we settle a
node with cost > dist(ui v) + maxj cost(v wj)node with cost > dist(ui, v) + maxj cost(v, wj)

– Improvement 2 (sketch): A "1-hop backward search" from
each of the wi gives an even better bound  see paperi g p p

19

Shortcuts 2/2

 How to determine when a shortcut is needed?
– Improvement 3 (heuristic): For each Dijkstra computation

(from each of the ui), put a limit on the number of hops
(di t i b f f) d th i f(distance in number of arcs from ui) and on the size of
the search space (number of nodes settled)

With this heuristic we may fail to find a shortest pathWith this heuristic, we may fail to find a shortest path
from ui to wj that does not use v, and thus insert the
shortcut (ui, wj) unnecessarily

But unnecessary shortcuts do not harm correctness,
only performance (if there are too many of them)

So there is a trade-off: if the heuristic saves a lot of
time in the precomputation at the cost of only a few
unnecessary shortcuts, than it is worth ity ,

20

Implementation advicep

 How to add shortcuts / remove contracted nodes?

– If you implemented the adjacency lists with a
vector<vector<Arc> >, adding arcs is straightforward

– Removing nodes / arcs from the graph is more
cumbersome, but luckily there is no need to do that

– Instead, you can just ignore the respective nodes / arcs

In the precomputation, ignore all nodes with smaller
id than the current one, and their incident arcs

At query time, for a Dijkstra search in the upward
h l id () ith dgraph only consider arcs (u, v) with u < v, and

similarly for the downward graph

21

Node ordering 1/3g

 General approach

– Maintain the nodes in a priority queue, in the order of
how attractive it is to contract the respective node next

– Intuitively: the less shortcuts we have to add, the better

– For each node, maintain the edge difference (ED):, g ()

S = the number of shortcuts that would have to be
added if that node were contracted

E = the number of arcs incident to that node

Then the edge difference is simply ED = S – Eg

– Note that when we contract a node, the edge difference
of other nodes (not only the neighbours) may get affected

22

Node ordering 2/3g

 How to maintain the ED for each node?

– Initially compute the ED for each node (linear time)

– Straightforward approach: recompute for all nodes afterStraightforward approach: recompute for all nodes after
each single contraction  quadratic running time

– Lazy approach: update EDs "on demand" as follows:y pp p

Before contracting node with currently smallest ED,
recompute its ED and see if it is still the smallest

If not pick next smallest one, recompute its ED and see if
that is the smallest now; if not, continue in same way ...

– Neighbour heuristic: after each contraction, recompute EDs,
but only for the neighbours of the contracted node

– Periodic update heuristic: Full recomputation every x rounds

23

Node ordering 3/3g

 Other criteria

– Spatial uniformity is also important, here is an example:

– Simple heuristic: for each node maintain a count of the
number of neighbours that have already beennumber of neighbours that have already been
contracted, and add this to the ED

 the more neighbours have already been contracted,the more neighbours have already been contracted,
the later this node will be contracted

24

Getting the arcs on the shortest pathg p

 The query algorithm as described so far ...

... gives a shortest path P' in the graph with shortcuts

find the v which minmizes dist(s, v) + dist(v, t)find the v which minmizes dist(s, v) + dist(v, t)

backtrack path to v in the forward search from s

backtrack path to v in the backward search from tbacktrack path to v in the backward search from t

– How to obtain the shortest path P in the original graph?

During the precomputation for each shortcut arc e re– During the precomputation, for each shortcut arc e re-
member the contracted node due to which e was inserted

– Replace each shortcut arc e = (u w) in P' by the two arcsReplace each shortcut arc e = (u, w) in P by the two arcs
(u, v), (v, w), where v is the node remembered for e

– Repeat until no more shortcut arcs leftRepeat until no more shortcut arcs left

25

References

 Highway Hierarchies
Engineering Highway Hierarchies

Highway Hierarchies Hasten Exact Shortest Path Queries

Dominik Schultes and Peter Sanders, ESA 2005 & 2006

http://algo2.iti.uka.de/schultes/hwy/esa06HwyHierarchies.pdf

http://algo2.iti.uka.de/schultes/hwy/esaHwyHierarchies.pdf

 Contraction Hierarchies
Contraction Hierarchies: Faster and Simpler Hierarchical
Routing in Road Networks

Geisberger, Sanders, Schultes, Delling, WEA 2008

http://algo2.iti.uka.de/schultes/hwy/contract.pdf

26

27

