
Efficient Route Planning
SS 2011

Lecture 7, Friday July 1st, 2011
(C t ti Hi hi i i l t ti d i)(Contraction Hierarchies again, implementation advice)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

Previous stuff
– Your web applications from Exercise Sheet #4

– Don't be shy to give us feedback!

– How will the exam look like?

Contraction Hierarchies again
– Recapitulation of the main parts of the algorithm

– A non-trivial working example

– All kinds of implementation advice

– Please ask questions when something is not 100% clear!

– No new exercise sheet, please finish the last one (#5) until
F ida ne t eek (J l 8 2 pm)Friday next week (July 8, 2 pm)

2

Feedback

Don't be shy to give us feedback

– If you have any questions, ask!

– If you think it's too much, say it!If you think it s too much, say it!

– Don't complain afterwards, complain before!

3

Exam

The exam will be on Monday, August 15 at 2 pm

– It will last (only) 90 minutes

– There will be 4 tasks, out of which you can select 3 tasksThere will be 4 tasks, out of which you can select 3 tasks

– Three kinds of tasks are possible

Execute an algorithm from the lecture or some variantExecute an algorithm from the lecture, or some variant
of it, on a given example (on paper)

Write a small program to solve a variant of a problemWrite a small program to solve a variant of a problem
we have seen in the lecture

Compute, reason about, or prove a non-trivial (but also
not very difficult) property of an algorithm or data
structure from the lecture, or some variant of it

– See the Search Engines WS 2009/2010 exam for examples

4

Contraction Hierarchies — Reprisep

Query algorithm, for given source s and target t

– Do a full Dijkstra computation from s forwards, considering
only arcs (u, v) with u < v

we call G = (V, {(u, v) : u < v}) the upward graph

– Do a full Dijkstra computation from t backwards, considering j p , g
only arcs (u, v) with u > v

we call G = (V, {(u, v): u > v}) the downward graph

– Let I be the set of nodes settled in both Dijkstras

– Take dist(s, t) = min {dist(s, v) + dist(v, t) : v I}

– NOTE: for symmetric graphs (like ours so far), a backwards
search in the downward graph is equivalent to a forward
search in the upward graph

5

Contraction Hierarchies — Example 1/2p

The full pre-processing for a small graph

6

Contraction Hierarchies — Example 2/2p

A query on the fully pre-processed graph

7

Implementation Advice 1p

Disclaimer:

– The following is just advice

– You don't have to do it that wayYou don t have to do it that way

– It's a good and clean way to do things, however

based on quite some experiencebased on quite some experience

with writing code in general

and with writing code for route planners in particularand with writing code for route planners in particular

8

Implementation Advice 2p

The canonical classes to have (so far)

– class RoadNetwork

– class RoutePlanningAlgorithmclass RoutePlanningAlgorithm

– class Dijkstra : public RoutePlanningAlgorithm

– class Landmarks : public RoutePlanningAlgorithm– class Landmarks : public RoutePlanningAlgorithm

– class ArcFlags : public RoutePlanningAlgorithm

class ContractionHierarchies : public RoutePlanningAlgorithm– class ContractionHierarchies : public RoutePlanningAlgorithm

– class RoutePlanner

' h l k d– Let's have a look at my code ...

9

Implementation Advice 3p

The RoadNetwork class (or however you call it)

– A good and simple implementation is with

vector<Node> nodes;vector<Node> _nodes;
vector<vector<Arc>> _adjacencyLists;

– Have a DebugString method or something like that for g g g
writing the whole graph to a human-readable strins

– Have a method for addings nodes and arcs

– Or even better: a method for parsing a graph from a
string in the same format as output by DebugString

– That will be a great asset in testing and debugging

– Let's have a look at my code ...

10

Implementation Advice 4ap

Dijkstra's algorithm and its many variants

– Have a separate Dijkstra class with member variables like

estimatedCostsToTarget (for A*, landmarks, ...)_estimatedCostsToTarget (for A , landmarks, ...)

_nodesToBeIgnored (for arc flags, contr. hierar., ...)

nodesToBeSettled (for contraction hierarchies)_nodesToBeSettled (for contraction hierarchies, ...)

_costUpperBound (for contraction hiearchies, ...)

Have setters for these member variables– Have setters for these member variables

– Have a single implementation of computeShortestPath

f h dcontaining various if statements that are executed
conditional on the values of the above member variables

11

Implementation Advice 4bp

Dijkstra's algorithm and its many variants

– Similarly, return anything else but the cost via member
variables like

size_t _numNodesSettled

size_t _numArcsRelaxed

vector<Arc> _arcsOnShortestPath

– That avoids having a computeShortestPath method withThat avoids having a computeShortestPath method with
an exorbitant number of arguments (or a complex result
object, which is only partly used by most applications)

– Let's have a look at my code

12

Implementation Advice 5p

Have a separate class ContractionHierarchies

– Which has a RoadNetwork as a member variable

– Better not to have CH-specific information (like the nodeBetter not to have CH specific information (like the node
ordering or which nodes are contracted already) in the
RoadNetwork class, but as member variables in the
C t ti Hi hi lContractionHiearchies class

vector<int> _orderingNumbers;
vector<bool> nodesContractedMarks;vector<bool> _nodesContractedMarks;

– Otherwise your RoadNetwork class (or your Node and
Arc class) will get cluttered up with information from allArc class) will get cluttered up with information from all
kinds of difference algorithms

– Let's have a look at my (preliminary) class ...y (p y)

13

Implementation Advice 6p

How to contract a node v

– For each pair of u and w with arcs (u, v) and (v, w),
we need to figure out whether dist(u, w) in the graph
with v is strictly better than the dist(u, w) in the graph
without v

C t d di t() i th h ith– Compute duv = dist(u, v) in the graph with v

will be fast because duv ≤ cost of the arc (u, v)

– Compute dvw= dist(v, w) in the graph with v

will be fast because dvw ≤ cost of the arc (v, w)

– Then compute a lower bound d'uw on dist(u, w) in the
graph without v, stopping the search after cost duv + dvw

without such a bound, this search could take very long

14

Implementation Advice 7p

How to contract a node v, optimizations

– Do the shortest path computations for all pairs (u, w)
simultaneously, in two parts

– Do a single Dijkstra from u until all neighbours are settled

– Do a single Dijkstra from each neighbour of v until all the g j g
other neighbours are settled (in the graph without v)

– Use something like the _nodesToBeSettled explained earlier

– Note: we might add slightly more shortcuts that way,
because shortcuts introduced due to one pair (u, w) can now

l i fl th t ti f th i (' ')no longer influence the computation for another pair (u', w')

I don't think this is a big issue in practice though

15

Implementation Advice 8p

How to ignore nodes in a Dijkstra search

– Use a vector<bool> with a mark for each node

(more efficient than a hash map!)(more efficient than a hash map!)

– In the Dijkstra class have one member variable which is
a pointer to such a vector<bool>, as explained beforep , p

– That way, you do not need to clutter up the Dijkstra
class with information / code that is very algorithm-
specific ... like arc flags or contracted nodes

16

Implementation Advice 9p

Augmenting the graph

– Pay attention when you add an arc by just appending it
to one of the elements from your vector<vector<Arc>>

– It could happen that you already have an arc (u, w) with
cost c1, and a contraction will add a shortcut (u, w) with

t 2 1cost c2 < c1

– It depends on your implementation of Dijkstra, whether
two arcs between the same pair of nodes is a problem ortwo arcs between the same pair of nodes is a problem or
not, but be aware of the issue

– To be on the safe side search the adjacency list beforeTo be on the safe side, search the adjacency list before
you add a new arc, and just update the cost, if the arc is
already there

17

Implementation Advice 10p

How to compute the edge difference

– You can also use the method contractNode for that

– Again, use member variables to change the calling modeAgain, use member variables to change the calling mode
and return result values

bool _computeEdgeDifferenceOnlyp g y

int _lastEdgeDifferenceComputed

18

19

