Efficient Route Planning SS 2011

Lecture 8, Friday July 8th, 2011 (Transit Node Routing)

Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

Overview of this lecture

Organizational

- Your feedback from Ex. Sheet #5 (contraction hierarchies)
- Transit Node Routing (TNR)
 - Our last algorithm in the lecture for routing on road networks
 - The (algorithmically) fastest one to date
 - Based on a very simple and intuitive idea
 - Very simple query algorithm
 - Various possibilities for the pre-computation ... we will look at one based on contraction hierarchies (CH)
 - Historically TNR came (two years) before CH
 - Exercise Sheet #6: Implement a part of TNR

Feedback on ES#5 (contract hierarchies)

Summary / excerpts

- The extra week was helpful
- Pity that no web app with a Java backend was shown
- Implementation advice (in general and for contraction hierarchies) was useful, but came too late
- Pre-processing takes too long (1 hour)

BURG

REI

Transit Node Routing 1/5

Intuition

- When you go from your home to somewhere far away ...
 then the initial portion of your route will be one of a few standard routes
- Let's look at a few examples on Google Maps
- How can we use this to speed up shortest path queries?

Transit Node Routing 2/5

We want to have the following

For each pair of nodes u and v a locality criterion
 L(u, v) that yields true or false

Intuitively: if L(u, v) = false, then u and v are "far away"

For each node u sets X(u) and Y(u) of access nodes such that for each v with L(u, v) = false, there exists
x ∈ X(u) on SP(u, v), and for each w with L(w, u) = false, there exists y ∈ Y(u) on SP(w, u)

Intuitively: X(u) are the nodes via which you leave the neighbourhood of u when you **go to** somewhere far away, and Y(u) are the nodes via which you enter the neighbourhood of u when you **come from** far away

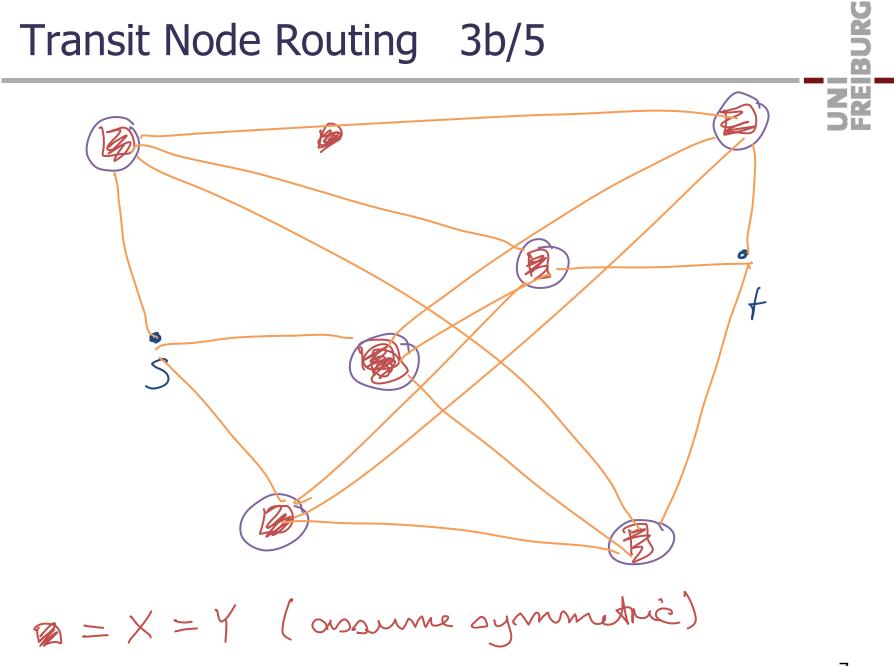
- Note: for symmetric graphs, X(u) = Y(u)

Precomputation (abstract; concrete comes later)

- Compute something such that L(u, v) can be evaluated quickly for given u and v
- Compute and store the X(u) and Y(u) for each node u, as well as dist(u, x) for each x $\in X(u)$ and dist(y, u) for each y $\in Y(u)$

• These are $\Sigma_u (X(u) + Y(u))$ nodes and distances

- Compute and store the unions $X = U_u X(u)$ and $Y = U_u Y(u)$ and the dist(x, y) for all pairs x and y with x $\in X$ and y $\in Y$
 - These are $|X| \cdot |Y|$ distances
 - Our goal will be that both |X| and |Y| are on the order of \sqrt{n} and not n, so that $|X| \cdot |Y| = O(n)$



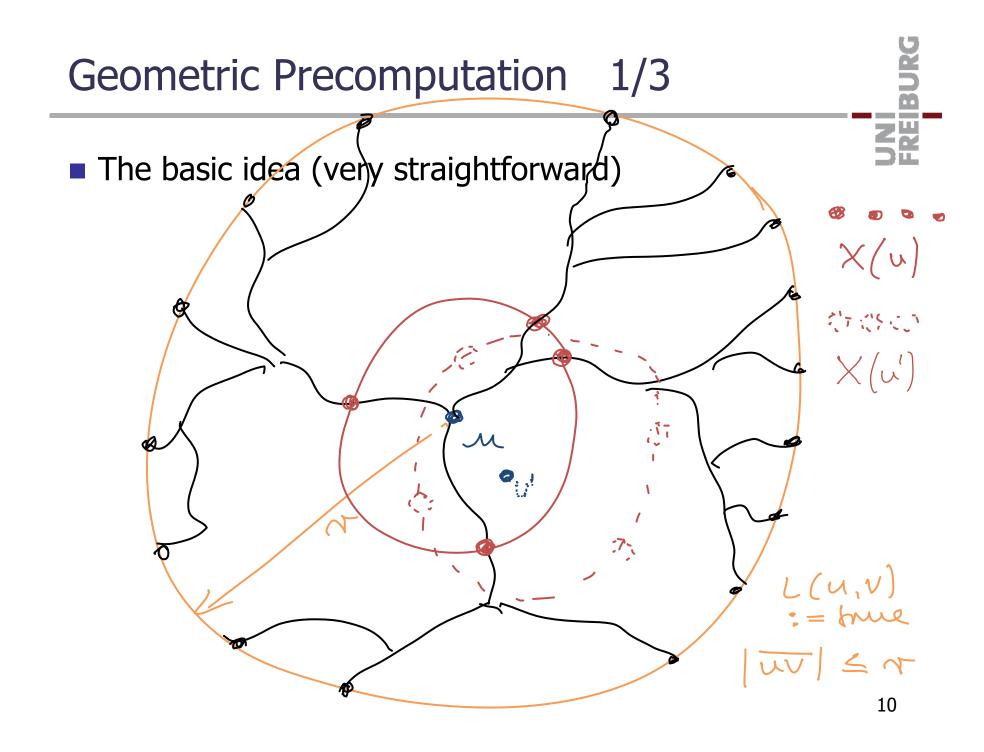
Transit Node Routing 4/5

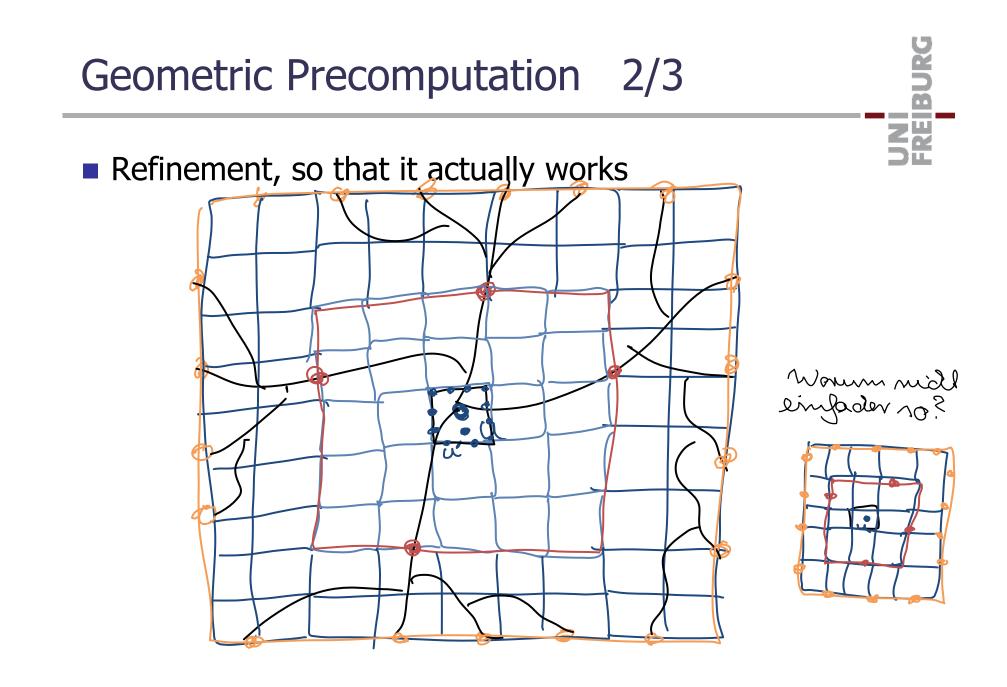
Processing a query from s to t

- If L(s, t) = true, compute dist(s, t) with another algorithm, for example ordinary Dijkstra; otherwise:
- Fetch the set X(s) and the d(s, x) for all $x \in X(s)$
- Fetch the set Y(t) and the d(y, t) for all $y \in Y(t)$
- Fetch the d(x, y) for all x, y with $x \in X(s)$ and $y \in Y(t)$
- Compute the minimum dist(s, x) + dist(x, y) + dist(y, t) over all x, y with $x \in X(s)$ and $y \in Y(t)$
 - this is the minimum over $|X(s)| \cdot |Y(t)|$ terms
 - in practice |X(s)| and |Y(t)| can be made as small as
 5 on average, hence the extremely fast query times

Efficiency

- Goal 1: L(u, v) is easy to evaluate and L(u, v) = true if and only if SP(u, v) is cheap to compute
 - then we can easily determine whether we have to resort to the fallback algorithm, and if so, it will be cheap
- Goal 2: X(u) and Y(u) are \leq a small C for (almost) all u
 - then the X(u) and Y(u) and the distances to / from them can be stored in ~ C ⋅ n space, and queries can be processed in time C²
- Goal 3: $|X = U_u X(u)|$ and $|Y = U_v Y(v)|$ are $O(\sqrt{n})$
 - then the pairwise distaces dist(x, y) with x ∈ X and Y ∈ Y can be stored in O(n) space





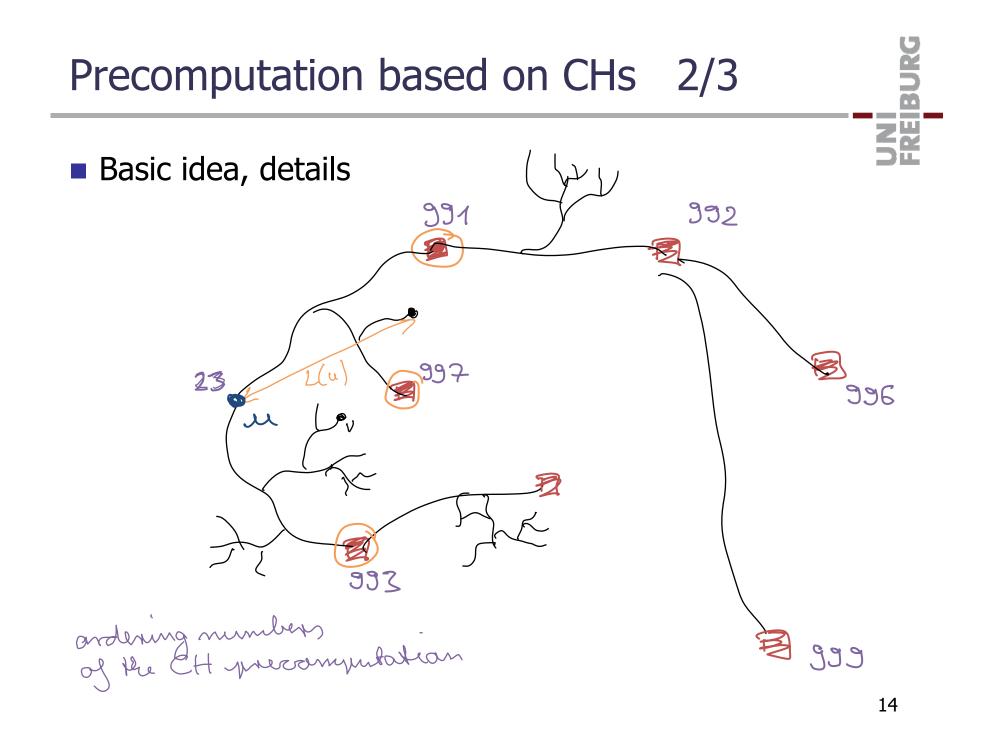
Geometric Precomputation 3/3

Resource requirements

- Small sets of access and transit nodes
- But precomputation time comparable to that for arc flags (we need a Dijkstra for each boundary node of each cell)
- There are various tricks to make this faster
- And we can also make it hierarchical; see later slide
- See the references for details
- But let's now look at a precomputation based on CHs

Basic idea

- Do the CH precomputation on the given graph
- Let X = Y be the set of nodes with ordering number above a certain threshold T (we want $|X| = |Y| \sim \sqrt{n}$)
- For each node u in the graph do a forward search in the upward graph, and for each settled node v compute the first node x ∈ X on SP(u, v) if any; let X(u) be the union of all these x
- Similarly, compute Y(v) for each node v in the graph via a backward search in the downward graph



Locality criterion

- Along with the computation of X(u) from the forward search from u also compute the maximal geometric distance L(u) of a node v where SP(u, v) does not contain a node from X(u)
- Then we can set define L(u, v) = true if and only if the geometric distance from u to v is $\leq L(u)$
- We can also do the same for Y(v) and thus possibly further improve this locality criterion
- For more refined locality criteria, see references

TNR can be made hierarchical, too

- Here is an explanation for two levels of transit nodes
- For each node, precompute and store the distances to the "closest" level-1 transit nodes (that is, the first level-1 transit nodes on paths to anywhere else)
- For each level-1 transit node, precompute and store the distances to the "closest" level-2 transit nodes
- Precompute and store the distances between all pairs of level-2 transit nodes
- For a query from s to t, now try all combination of (s, x1, x2, y2, y1, t), where x1 and y1 are the level-1 access nodes of s and t, respectively, and x2 and y2 are the level-2 access nodes of the respective x1 and y1

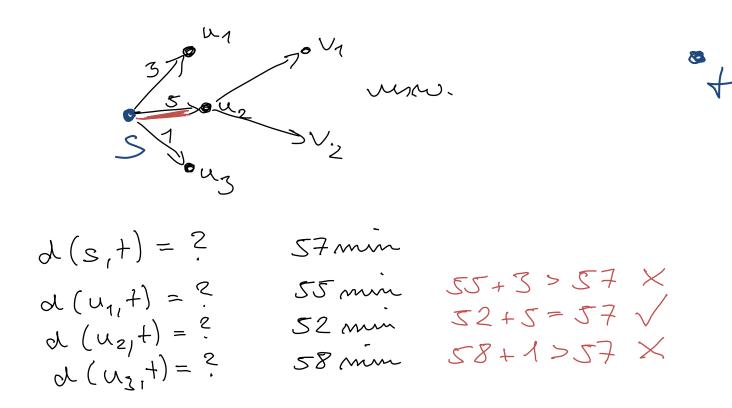
Why does this make sense?

- We need the pairwise distances only for the level-2 transit nodes
- Therefore we can have more level-1 transit nodes and hence a better locality criterion = local searches needed only when s and t are very close together
- But we have to try out more combinations at query time
- Can be generalized to an arbitrary number of levels
- Experiments suggest 5 levels for the road network of a whole continent (Western Europe or the US)
- See the references for details

Computing the arcs on the SP

Here is a generic method

... that works for any algorithm that can compute the cost of a shortest path between any two nodes u and v



References

UNI FREIBURG

Transit Node Routing, original paper Ultrafast Shortest-Path Queries Via Transit Nodes Bast, Funke, Matijevic, DIMACS Shortest Path Challenge http://www.mpi-inf.mpg.de/~bast/papers/transit-dimacs.pdf Transit Node Routing, based on HH and CH PhD thesis from Dominik Schultes (HH), Chapter 6 http://algo2.iti.kit.edu/schultes/hwy/schultes_diss.pdf Master thesis from Robert Geisberger (CH), Section 4.2 http://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf Transit Node Routing, article in Science Magazine Fast Routing in Road Networks with Transit Nodes

http://www.sciencemag.org/content/316/5824/566.short