
Efficient Route Planning
SS 2011

Lecture 8, Friday July 8th, 2011
(T it N d R ti)(Transit Node Routing)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

 Organizational
– Your feedback from Ex. Sheet #5 (contraction hierarchies)

 Transit Node Routing (TNR)g ()
– Our last algorithm in the lecture for routing on road networks

– The (algorithmically) fastest one to date

– Based on a very simple and intuitive idea

– Very simple query algorithm

– Various possibilities for the pre-computation … we will look at
one based on contraction hierarchies (CH)

Hi t i ll TNR (t) b f CH– Historically TNR came (two years) before CH

E e cise Sheet #6 Implement a pa t of TNR– Exercise Sheet #6: Implement a part of TNR

2

Feedback on ES#5 (contract hierarchies)()

 Summary / excerpts

– The extra week was helpful

– Pity that no web app with a Java backend was shownPity that no web app with a Java backend was shown

– Implementation advice (in general and for contraction
hierarchies) was useful, but came too late) ,

– Pre-processing takes too long (1 hour)

3

Transit Node Routing 1/5g

 Intuition

– When you go from your home to somewhere far away ...

then the initial portion of your route will be one of a fewthen the initial portion of your route will be one of a few
standard routes

– Let's look at a few examples on Google Mapsp g p

– How can we use this to speed up shortest path queries?

4

Transit Node Routing 2/5g

 We want to have the following

– For each pair of nodes u and v a locality criterion
L(u, v) that yields true or false

Intuitively: if L(u, v) = false, then u and v are "far away"

– For each node u sets X(u) and Y(u) of access nodes () ()
such that for each v with L(u, v) = false, there exists
x ϵ X(u) on SP(u, v), and for each w with L(w, u) = false,
there exists y ϵ Y(u) on SP(w u)there exists y ϵ Y(u) on SP(w, u)

Intuitively: X(u) are the nodes via which you leave the
neighbourhood of u when you go to somewhere farneighbourhood of u when you go to somewhere far
away, and Y(u) are the nodes via which you enter the
neighbourhood of u when you come from far away

– Note: for symmetric graphs, X(u) = Y(u)
5

Transit Node Routing 3a/5g

 Precomputation (abstract; concrete comes later)

– Compute something such that L(u, v) can be evaluated quickly
for given u and v

– Compute and store the X(u) and Y(u) for each node u, as well
as dist(u, x) for each x ϵ X(u) and dist(y, u) for each y ϵ Y(u)

These are Σu (X(u) + Y(u)) nodes and distances

– Compute and store the unions X = Uu X(u) and Y = Uu Y(u)Compute and store the unions X Uu X(u) and Y Uu Y(u)
and the dist(x, y) for all pairs x and y with x ϵ X and y ϵ Y

These are |X| · |Y| distances| | | |

Our goal will be that both |X| and |Y| are on the order of
√n and not n, so that |X| · |Y| = O(n)

6

Transit Node Routing 3b/5g

7

Transit Node Routing 4/5g

 Processing a query from s to t

– If L(s, t) = true, compute dist(s, t) with another
algorithm, for example ordinary Dijkstra; otherwise:

– Fetch the set X(s) and the d(s, x) for all x ϵ X(s)

– Fetch the set Y(t) and the d(y, t) for all y ϵ Y(t)() (y,) y ()

– Fetch the d(x, y) for all x, y with x ϵ X(s) and y ϵ Y(t)

– Compute the minimum dist(s, x) + dist(x, y) + dist(y, t)Compute the minimum dist(s, x) + dist(x, y) + dist(y, t)
over all x, y with x ϵ X(s) and y ϵ Y(t)

this is the minimum over |X(s)| · |Y(t)| terms

in practice |X(s)| and |Y(t)| can be made as small as
5 on average, hence the extremely fast query times

8

Transit Node Routing 5/5g

 Efficiency

– Goal 1: L(u, v) is easy to evaluate and L(u, v) = true if and
only if SP(u, v) is cheap to compute

then we can easily determine whether we have to resort
to the fallback algorithm, and if so, it will be cheap

– Goal 2: X(u) and Y(u) are ≤ a small C for (almost) all u

then the X(u) and Y(u) and the distances to / from them
can be stored in ~ C· n space, and queries can be
processed in time C2

G l 3 |X U X()| d |Y U Y()| O(√)– Goal 3: |X = Uu X(u)| and |Y = Uv Y(v)| are O(√n)

then the pairwise distaces dist(x, y) with x ϵ X and Y ϵ Y
can be stored in O(n) spacecan be stored in O(n) space

9

Geometric Precomputation 1/3p

 The basic idea (very straightforward)

10

Geometric Precomputation 2/3p

 Refinement, so that it actually works

11

Geometric Precomputation 3/3p

 Resource requirements

– Small sets of access and transit nodes

– But precomputation time comparable to that for arc flagsBut precomputation time comparable to that for arc flags

(we need a Dijkstra for each boundary node of each cell)

– There are various tricks to make this faster– There are various tricks to make this faster

– And we can also make it hierarchical; see later slide

See the references for details– See the references for details

– But let's now look at a precomputation based on CHs

12

Precomputation based on CHs 1/3p

 Basic idea

– Do the CH precomputation on the given graph

– Let X = Y be the set of nodes with ordering numberLet X Y be the set of nodes with ordering number
above a certain threshold T (we want |X| = |Y| ~ √n)

– For each node u in the graph do a forward search in the g p
upward graph, and for each settled node v compute the
first node x ϵ X on SP(u, v) if any; let X(u) be the union
of all these xof all these x

– Similarly, compute Y(v) for each node v in the graph via
a backward search in the downward grapha backward search in the downward graph

13

Precomputation based on CHs 2/3p

 Basic idea, details

14

Precomputation based on CHs 3/3p

 Locality criterion

– Along with the computation of X(u) from the forward
search from u also compute the maximal geometric
distance L(u) of a node v where SP(u, v) does not
contain a node from X(u)

Th t d fi L() t if d l if th– Then we can set define L(u, v) = true if and only if the
geometric distance from u to v is ≤ L(u)

We can also do the same for Y(v) and thus possibly– We can also do the same for Y(v) and thus possibly
further improve this locality criterion

– For more refined locality criteria see referencesFor more refined locality criteria, see references

15

Hierarchical TNR (sketch only) 1/2(y)

 TNR can be made hierarchical, too
– Here is an explanation for two levels of transit nodes

– For each node, precompute and store the distances to , p p
the "closest" level-1 transit nodes (that is, the first level-
1 transit nodes on paths to anywhere else)

– For each level-1 transit node, precompute and store the
distances to the "closest" level-2 transit nodes

Precompute and store the distances between all pairs of– Precompute and store the distances between all pairs of
level-2 transit nodes

– For a query from s to t, now try all combination of (s,For a query from s to t, now try all combination of (s,
x1, x2, y2, y1, t), where x1 and y1 are the level-1 access
nodes of s and t, respectively, and x2 and y2 are the
level 2 access nodes of the respective x1 and y1level-2 access nodes of the respective x1 and y1

16

Hierarchical TNR (sketch only) 2/2(y)

 Why does this make sense?

– We need the pairwise distances only for the level-2
transit nodes

– Therefore we can have more level-1 transit nodes and
hence a better locality criterion = local searches needed

l h d t l t thonly when s and t are very close together

– But we have to try out more combinations at query time

– Can be generalized to an arbitrary number of levels

– Experiments suggest 5 levels for the road network of a
h l ti t (W t E th US)whole continent (Western Europe or the US)

– See the references for details

17

Computing the arcs on the SPp g

 Here is a generic method

... that works for any algorithm that can compute the cost
of a shortest path between any two nodes u and v

18

References

 Transit Node Routing, original paper
Ultrafast Shortest-Path Queries Via Transit Nodes
Bast, Funke, Matijevic, DIMACS Shortest Path Challenge
http://www.mpi-inf.mpg.de/~bast/papers/transit-dimacs.pdf

 Transit Node Routing, based on HH and CH
PhD thesis from Dominik Schultes (HH), Chapter 6
http://algo2.iti.kit.edu/schultes/hwy/schultes_diss.pdf
Master thesis from Robert Geisberger (CH), Section 4.2
http://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf

T it N d R ti ti l i S i M i Transit Node Routing, article in Science Magazine
Fast Routing in Road Networks with Transit Nodes
http://www sciencemag org/content/316/5824/566 shorthttp://www.sciencemag.org/content/316/5824/566.short

19

20

