
Efficient Route Planning
SS 2011

Lecture 9, Friday July 15th, 2011
(T it N t k GTFS)(Transit Networks, GTFS)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

 Organizational
– Your feedback from Ex. Sheet #6 (transit node routing)

 Transit Networks
– In the US, "transit" means "public transportation"

– Transit node routing has nothing to do with this "transit"

– We will see how to model a transit network

– GTFS = General Transit Feed Specification

– Do our algorithms so far work on transit networks?

– Exercise Sheet #7: Parse a transit network from GTFS and
run Dijkstra on it, and if possible, your other alg's too

2

Feedback on ES#6 (transit node routing)(g)

 Summary / excerpts Stand 15.7 12:59

– Noch beim Debuggen von contraction hierarchies

– Gerade Endsemesterstress bei vielenGerade Endsemesterstress bei vielen

3

Coding standardsg

 Sind jetzt auch für Java ausgearbeitet

– Siehe Link auf Ihrer Daphne-Seite

https://daphne.informatik.uni-freiburg.de/svn/CodingStandards/https://daphne.informatik.uni freiburg.de/svn/CodingStandards/

– Sie finden dort

Eine README deutsch txtEine README.deutsch.txt

Ein vollständiges Code-Beispiel für C++

Ein vollständiges Code Beispiel für JavaEin vollständiges Code-Beispiel für Java

Für eigene Projekte, einfach den entsprechenden Ordner
kopieren und Code schreiben sollte dann gehenkopieren und Code schreiben, sollte dann gehen

4

Transit Networks

 What kind of data have we got?

– Stations (train stations, bus stops, etc.)

– Lines (trains, buses, trams, etc.)Lines (trains, buses, trams, etc.)

– The schedule of these lines, that is, on which days do
they serve which stations at which timesy

– Since we want to compute shortest path queries also for
transit networks (best way to get from A to B), we want
to model them as (directed) graphs, too, just like road
networks ... but how?

5

Time-dependent model 1/2p

 The first thing that comes to mind

– Each station is a node

– There is an arc between two nodes u and v, if there is aThere is an arc between two nodes u and v, if there is a
vehicle (train, bus, tram, ...) going non-stop from u to v

– However, that arc can only be used at certain times, and , y ,
the time it takes to travel across the arc depends on the
vehicle commuting at that time

– We can model this via a cost function for each arc (u, v)

costu,v(t) = the time to get from u at time t ... to v

6

Time-dependent model 2/2p

 Example

– Stations A and B with two lines L1 and L2

– L1 takes 1 hour from A to B (non-stop) and departsL1 takes 1 hour from A to B (non stop) and departs
from A at 10:00, 14:00 and 18:00

– L2 takes 2 hours from A to B (non-stop) and departs (p) p
from A at 13:00 and 17:00

7

Time-dependent Dijkstra 1/2p j

 How to compute shortest paths on such a graph?

– A simple variant of Dijkstra's algorithm does it

– Tentative distances at the nodes are now times of dayTentative distances at the nodes are now times of day

We will store absolute times (like 10:20) and call
them t[u] for node u, but we could also store times [] ,
relative to the start time (like 40 minutes)

– Start with t[s] = start time and all other t[u] = ∞

– When relaxing an arc (u, v) we compute c = cu,v(t[u]) and
take t[v] = t[u] + c if that improves on the previous t[v]

– As for ordinary Dijkstra process the node u with the
smallest t[u] next, and stop when this is the target node

8

Time-dependent Dijkstra 2/2p j

 Example

9

Time-expanded model 1/3p

 A node = a particular time at a particular station

– Only at times, where something (= an arrival or a
departure) is happening

– For example, Freiburg Hbf @ 13:57

– There is an arc between two nodes A@t1 and B@t2 if
there is a vehicle departing from A at time t1 and
arriving at B at time t2, without stops inbetween

– The cost of the arc is simply the travel time t2 – t1

– There is also an arc from A@t1 to that node A@t2 with
th ll t t2 t1 ll th itithe smallest t2 > t1 ... we call these waiting arcs

10

Time-expanded model 2/3p

 Example

11

Time-expanded model 3/3p

 How do we compute shortest paths in this model?

– It's an ordinary directed graph with non-negative arc
costs, so we can use ordinary Dijkstra

– Only problem: we do not have a target node, we only
have a target station

– Solution: Run Dijsktra until anyone node from the target
station is settled (which will be the first one reached)

12

Time-expanded vs. time-dependentp p

 So far, not much difference

– Given a query A@t  B, consider the sequence of arcs
relaxed by a (time-dependent) Dijkstra on the time-
dependent graph

– The Dijkstra on the time-expanded graph relaxes the
i th d l dditi lsame arcs in the same order, plus some additional

waiting arcs to some additional nodes and the arcs
leaving from these nodesg

– Intuitively, the time-dependent Dijkstra considers
waiting and normal arcs in one (time-dependent) arc

– The big advantage of the time-expanded model is that
we have an ordinary directed graph and can thus use all

l hour previous algorithms on it

13

Advanced modelling issuesg

 For example, what about ...

– Transfer buffers

We need a minimal amount of time to transferWe need a minimal amount of time to transfer
between two vehicles  next slide

– Service daysy

Different schedules on different weekdays, holidays,
etc.  later slide

– Multi-criteria cost functions

Maybe we can get from A@t to B in 3 hours with 0 g
transfers, or in 2 hours with 2 transfers

Which one is better depends on user preference, so
we should compute both  next lecture

14

Transfer buffers 1/5

 Time-expanded model

– This is non-trivial, because we need to distinguish between
staying on a vehicle at a station (which must not require
any transfer time) and changing the vehicle, for example:

15

Transfer buffers 2/5

 Time-expanded model, solution

– Split up each node from before into an arrival node and a
departure node, and add an arc between the two
(we can also model layover time that way now)

– For each arrival node A@t, add a transfer node A@t' and an
f A@t t A@t' h t' t i th t f b ffarc from A@t to A@t', where t' – t is the transfer buffer

– For each transfer node A@t, add an arc to the departure node
A@t' with the smallest t' > tA@t with the smallest t > t

– Have the waiting arcs between transfer nodes only

D t t th i f d t d d– Departure at the source is now from a departure node, and
arrival at the target is at an arrival node

16

Transfer buffers 3/5

 Time-dependent model, solution 1

– We also have to distinguish here between staying on a
vehicle and changing the vehicle at a station

– It looks like we can do this by simply remembering for each
node, along with the tentative arrival time t[u], the id ℓ of
th hi l ith hi h i tthe vehicle with which we arrive at u

– Then we can build the transfer buffer into the cost function

costu,v(t, ℓ) = time to reach v, if we are at u at time t sitting
in vehicle ℓ

U f t t l Dijk t ' l ith ill t l tl– Unfortunately, Dijkstra's algorithm will not always correctly
compute the shortest path anymore then

17

Transfer buffers 4/5

 Time-dependent model, problem

18

Transfer buffers 5/5

 Time-dependent model, solution 2

– Have separate arrival and departure nodes, too

– One arrival and one departure node per line sufficesOne arrival and one departure node per line suffices

– But still, we no longer only have one node per station

 Time dependent model solution 3 Time-dependent model, solution 3

– When we can arrive at a station at two different times
t1 and t2 with different vehicles and |t2 t1| is ≤ thet1 and t2 with different vehicles, and |t2 – t1| is ≤ the
transfer buffer, pursue both possibilities

– Then we need to do a multi-label Dijkstra (DijkstraThen we need to do a multi label Dijkstra (Dijkstra
maintaining several shortest paths to the same node),
see next lecture

19

GTFS

 General Transit Feed Specification

– Standard format established by Google in 2005

– Here is a nice story about it: http://tinyurl.com/6yczek2Here is a nice story about it: http://tinyurl.com/6yczek2

– See the references to the GTFS specification

– Relatively complex because there are so many– Relatively complex, because there are so many
pecularities, special cases, etc. for transit networks

– For a simple graph model, it is easy thoughFor a simple graph model, it is easy though

20

GTFS

 Basic concepts

– stop = what we call a station

e.g. Freiburg Hbf or Bertoldsbrunnene.g. Freiburg Hbf or Bertoldsbrunnen

– trip = journey of a particular vehicle at a particular time

e g the journey of Bus 11 from Munzinger Straße ate.g. the journey of Bus 11 from Munzinger Straße at
9:28 to Paduaalle at 10:11

– route = trips that have a common descriptionroute trips that have a common description

e.g. all journeys of Bus 11 over the day

– service days = days of the week when a trip is availableservice days = days of the week when a trip is available

e.g. on weekdays (Mo-Fr) or on the weekend (Sa-Su)

21

GTFS

 The files we need for exercise sheet #7

– stop_times.txt : the actual schedule information, what
eventually becomes the arcs in the transit graph

– frequencies.txt : some lines repeat in exactly the same
way over the same day, then you have the schedule only

i t ti t t d th i di it honce in stop_times.txt, and the periodicity here

– calendar.txt : service day patterns, and which days of the
week belong to itweek belong to it

– trips.txt : tells us which trips commute on which service
days (via the patterns from calendar txt)days (via the patterns from calendar.txt)

– All files are in CSV format = a table with one record per
line, columns separated by a comma, headings in first line, p y , g

22

Implementation Advice 1/7p

 Write a class CsvParser

– With a method readNextLine() that reads the next line
from the file and makes the columns available via
another method getItem(int i)

– You find my CsvParser.h and CsvParserTest.cpp in the
SVN d f ld l tcourse SVN under folder lectures

– Note: for efficiency reasons, I let my getItem method
return a const char* which points to part of an internalreturn a const char* which points to part of an internal
string object containing the last line read

It's slightly easier if you just return an std::string butIt s slightly easier if you just return an std::string, but
then you get one or two additional copies / allocations

23

Implementation Advice 2/7p

 Graph class

– If you have a graph class with members

vector<Node> nodes;vector<Node> _nodes;
vector<vector<Arc> > _adjacencyLists;

you can use that for the (time-expanded) transit y (p)
network as well

– That way, you can run your algorithms with little or no
modifications on the transit network as well

– You might want to add some additional info to the Node
l (lik th t ti t hi h d b l) d tclass (like the station to which a node belongs) and to

the Arc class (like the name of the GTFS route)

24

Implementation Advice 3/7p

 Parse the GTFS files in this order and way

– First parse calendar.txt and remember (in a hash set)
those service ids which contain the given weekday

– Then parse trips.txt and remember (in a hash set) those
trip ids with a valid (= remembered) service id

– Then parse stops.txt and store (in a hash map) the
names and coordinates by stop id

Th f i t t d t b t i id– Then parse frequencies.txt and store by trip id

– Then parse stop_times.txt and for each block of lines in
the file with the same trip id add the correspondingthe file with the same trip id, add the corresponding
nodes and arcs to your graph

25

Implementation Advice 4/7p

 Blocks with same trip id in stop_times.txt

– For the last step, it is very convenient to have all lines
with the same trip id together in one block, and within
this block have them sorted by stop_sequence

– You can easily achieve this with a command-line sort

sort –t, -k1,1r –k5,5n stop_times.txt > new_file.txt

– If you have frequency information for the trip id of a line
from stop_times.txt, repeat accordingly, for example:

26

Implementation Advice 5/7p

 Arrival, departure, transfer nodes

– Create all nodes already while processing stop_times.txt

– And also the arcs from arrival to departure nodes and viceAnd also the arcs from arrival to departure nodes and vice
versa, and from arrival nodes to transfer nodes

– While processing stop_times.txt, maintain (in a hash map) for p g p , (p)
each station the list of nodes of that station, their time, and
their type (arrival, departure, transfer)

– After processing stop_times.txt, for each station do:

Sort the nodes by time; then it is easy to add the missing
f th t f d (iti t th tarcs from the transfer nodes (waiting arcs to the next

transfer node, and boarding arcs to the next departure node)

Beware: several nodes with exactly the same timeBeware: several nodes with exactly the same time

27

Implementation Advice 6/7p

 Arcs from transfer nodes, example

28

Implementation Advice 7/7p

 Tricks to save some arcs

– We can trivially contract all departure nodes

– This replaces pairs of a boarding and a traveling arc by aThis replaces pairs of a boarding and a traveling arc by a
single arc ... and actually descrease the total number
of arcs in the graph, for example:

29

Road vs. Transit Networks

 Assume the time-expanded model

– Then we can all our algorithms so far also for transit
networks

– But will the speed-up over ordinary Dijsktra be the
same?

30

References

 Transit network models
Timetable information: Models and Algorithms
Müller-Hannemann, Schulz, Wagner, Zaroliagis, ATMOS 2007
http://www.springerlink.com/content/x54715k627860283/

 Road Networks vs. Transit Networks
Car or Public Transport — Two Worlds
Hannah Bast, Efficient Algorithms 2009, LNCS 5760
http://www.springerlink.com/content/y46257m66372x730/

 GTFS
– http://code.google.com/transit/spec/

transit_feed_specification.html

31

32

