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Overview of this lecture

 Organizational
– Your feedback and results on Exercise Sheet 1

– Course Systems:  Jenkins

 Dijkstra's Algorithm
– Idea + Example

– Correctness proof

– Implementation advice

– Connected Components (CCs) using Dijkstra

– Exercise Sheet 2:  Implement Dijkstra + use it to 
compute the largest CC + use it for some random 
shortest path queries on Saarland and BaWü
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Your Feedback on Exercise Sheet 1

 Summary / excerpts             last checked May 2, 15:42

– Interesting / entertaining, but also quite time-consuming

6 hours for some, up to 15 / 20 / 30 hours for others

lack of programming practice

setup problems: gtest, SVN, Linux, IDE, etc.

– Implementation advice from the lecture was useful

– Memory problems with Java and the BaWü dataset

– Parsers like Xerces are slow and use a lot of memory

– Some fights with checkstyle / cpplint

– How to compute with latitude-longitude coordinates?

– Let's look at your results ...
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Computing with lat-lng coordinates

 Distance in meters between two such coordinates

– You can use the following approximations

one degree of latitude = 111,229 meters

one degree of longitude = 71,695 meters

– Using this, you can easily compute

int diffLat = ...;  // Difference of latitude in meters.

int diffLng = ...;  // Difference of longitude in meters.

– From that you can compute the distance in meters

int dist = sqrt(diffLat * diffLat + diffLng * diffLng);
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Shortest Path Queries

 Point to point queries

– For most of this lecture, we are interested in finding the 
shortest path (path of minimal cost) between two given 
nodes A and B, called source and target node

– The cost of a path is simply the sum of the costs of the 
arcs along the graph

– The standard algorithm for this task is Dijkstra's algorithm
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Dijkstra's algorithm

 You have probably heard it before, here is a recap:

– Maintains a priority queue of active nodes with tentative 
distances

– Initially only the start node is active, with tentative distance 0, 
all other tentative distances are ∞

– In each iteration, pick the active node with the smallest
tentative distance and change its status from active to settled

if all arc costs are non-negative, the tentative distance of 
each settled node is guaranteed to be the correct distance

– Relax the outgoing arcs = see if the tentative distances of the 
adjacent nodes can be improved, if yes do so

– Stop when the target node is settled
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Dijkstra's algorithm — Example
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Dijkstra's algorithm — Schematically

8



Dijkstra's algorithm — Properties
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 Some basic properties

– When the target node has been settled, with cost c, than all
other nodes with cost < c have been settled, too

wost case: all nodes reachable from source are settled

– Running time is O((m + n) · log n), where

m = number of relaxed arcs (worst case: all arcs)

n = number of settled nodes (worst case: all nodes)

– The log n is the cost of a priority queue (PQ) operation

one (potential) insert per arc, one deleteMin per node

for a state-of-the-art PQ:  1 µs / deleteMin dominates

hence Dijkstra can settle ≈ 1 million nodes / second



Dijkstra — Correctness proof   1/3
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 Let s be our source node

– Let's first make the simplifying assumptions that the
dist(s, u) are distinct for all nodes u

– Then we can order the nodes u1, u2, u3, ...

such that dist(s, u1) < dist(s, u2) < dist(s, u3) < ...

– We want to prove that, at the end of the computation,

the tentative distance dist[ui] for each node ui

satisfies dist[ui] = dist(s, ui)

– More specifically, we can show that in the i-th iteration

Dijkstra's algorithm settles node ui

And at that point dist[ui] = dist(s, ui)



Dijkstra — Correctness proof   2/3
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 We show by induction over i

– that in the i-th iteration, we have dist[uj] = dist(s, uj) for 
all j ≤ i, and node ui will be settled in that iteration 



Dijkstra — Correctness proof   3/3
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Dijkstra — Implementation advice   1/3

 Where to implement it in your code, two options:

– As another method in your class RoadNetwork

– In a separate class DijkstrasAlgorithm

– I recommend the second option, reasons include:

gives you more freedom to extend it later

has or will have quite some complexity on its own, 
and so merits a class on its own

each of the more sophisticated algorithms to come 
will also have a class on their own

enables base class for all shortest path algorithms

– You find a skeleton for the second option on the Wiki
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Dijkstra — Implementation advice   2/3

 Stopping criterion

– It will be useful to support two modes of operation

stop when a given target node is settled

stop when all reachable nodes are settled

– You can easily support both of these by always passing 
two arguments, sourceNode and targetNode, and for the 
second mode call with a value -1 for targetNode
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Dijkstra — Implementation advice   3/3
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 Standard Dijkstra requires a decrease-key operation
– The tentative distance of a node in the priority queue (PQ) 

can decrease several times over the course of the execution

– Requires an operation to decrease the key of a given PQ item

– But PQs like the std::priority_queue, don't support this

 There is a simple trick to avoid this operation
– Instead of a decrease-key, insert the node (again) with the 

smaller tentative distance

– Whenever a node with key larger than the already known 
tentative distance is removed from the PQ, ignore it

– Works fine as long as there are relatively few decrease-key 
operations, which is the case for road networks       why?



Connected Components   1/2

 Definition

– On an undirected graph, a connected component (CC) is a 
maximal subset C of nodes such that for all pairs x, y ϵ C
there is a path between x and y

– Our two OSM graphs are likely to have more than one 
connected component

– But one will contain most of the nodes, and the other CCs 
will be relatively small
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Connected Components   2/2

 Easy to compute using Dijkstra

– Add a member variable Array<int> visitedNodes to your 
class DijkstrasAlgorithm, with one entry per node, and 
all entries initialized to 0

– Proceed in rounds 1, 2, ... and in round i do:

If no more nodes are marked 0 we are done

Pick any node still marked 0 and run Dijkstra from 
that node until all nodes are settled

Mark all nodes visited on the way with i

– Now it's easy to identify the connected components, and 
in particular the largest one

17



Jenkins

 Jenkins is a continuous build systems

– Checks out your code from our repository

– Does compile, test, and checkstyle

– Makes sure that you committed all the necessary files 
and that everything works fine

– Triggered by every SVN change or manually

– If an error occurs, an email will be sent to you

– You find the link to Jenkins on your Daphne page

– From now on check that whatever you commit passes 
through Jenkins without errors, and if not correct it
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