
Efficient Route Planning
SS 2012

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 2, Wednesday May 2nd, 2012
(Dijkstra's algorithm, Connected Components)

Overview of this lecture

 Organizational
– Your feedback and results on Exercise Sheet 1

– Course Systems: Jenkins

 Dijkstra's Algorithm
– Idea + Example

– Correctness proof

– Implementation advice

– Connected Components (CCs) using Dijkstra

– Exercise Sheet 2: Implement Dijkstra + use it to
compute the largest CC + use it for some random
shortest path queries on Saarland and BaWü

2

Your Feedback on Exercise Sheet 1

 Summary / excerpts last checked May 2, 15:42

– Interesting / entertaining, but also quite time-consuming

6 hours for some, up to 15 / 20 / 30 hours for others

lack of programming practice

setup problems: gtest, SVN, Linux, IDE, etc.

– Implementation advice from the lecture was useful

– Memory problems with Java and the BaWü dataset

– Parsers like Xerces are slow and use a lot of memory

– Some fights with checkstyle / cpplint

– How to compute with latitude-longitude coordinates?

– Let's look at your results ...

3

Computing with lat-lng coordinates

 Distance in meters between two such coordinates

– You can use the following approximations

one degree of latitude = 111,229 meters

one degree of longitude = 71,695 meters

– Using this, you can easily compute

int diffLat = ...; // Difference of latitude in meters.

int diffLng = ...; // Difference of longitude in meters.

– From that you can compute the distance in meters

int dist = sqrt(diffLat * diffLat + diffLng * diffLng);

4

Shortest Path Queries

 Point to point queries

– For most of this lecture, we are interested in finding the
shortest path (path of minimal cost) between two given
nodes A and B, called source and target node

– The cost of a path is simply the sum of the costs of the
arcs along the graph

– The standard algorithm for this task is Dijkstra's algorithm

5

Dijkstra's algorithm

 You have probably heard it before, here is a recap:

– Maintains a priority queue of active nodes with tentative
distances

– Initially only the start node is active, with tentative distance 0,
all other tentative distances are ∞

– In each iteration, pick the active node with the smallest
tentative distance and change its status from active to settled

if all arc costs are non-negative, the tentative distance of
each settled node is guaranteed to be the correct distance

– Relax the outgoing arcs = see if the tentative distances of the
adjacent nodes can be improved, if yes do so

– Stop when the target node is settled

6

Dijkstra's algorithm — Example

7

Dijkstra's algorithm — Schematically

8

Dijkstra's algorithm — Properties

9

 Some basic properties

– When the target node has been settled, with cost c, than all
other nodes with cost < c have been settled, too

wost case: all nodes reachable from source are settled

– Running time is O((m + n) · log n), where

m = number of relaxed arcs (worst case: all arcs)

n = number of settled nodes (worst case: all nodes)

– The log n is the cost of a priority queue (PQ) operation

one (potential) insert per arc, one deleteMin per node

for a state-of-the-art PQ: 1 µs / deleteMin dominates

hence Dijkstra can settle ≈ 1 million nodes / second

Dijkstra — Correctness proof 1/3

10

 Let s be our source node

– Let's first make the simplifying assumptions that the
dist(s, u) are distinct for all nodes u

– Then we can order the nodes u1, u2, u3, ...

such that dist(s, u1) < dist(s, u2) < dist(s, u3) < ...

– We want to prove that, at the end of the computation,

the tentative distance dist[ui] for each node ui

satisfies dist[ui] = dist(s, ui)

– More specifically, we can show that in the i-th iteration

Dijkstra's algorithm settles node ui

And at that point dist[ui] = dist(s, ui)

Dijkstra — Correctness proof 2/3

11

 We show by induction over i

– that in the i-th iteration, we have dist[uj] = dist(s, uj) for
all j ≤ i, and node ui will be settled in that iteration

Dijkstra — Correctness proof 3/3

12

Dijkstra — Implementation advice 1/3

 Where to implement it in your code, two options:

– As another method in your class RoadNetwork

– In a separate class DijkstrasAlgorithm

– I recommend the second option, reasons include:

gives you more freedom to extend it later

has or will have quite some complexity on its own,
and so merits a class on its own

each of the more sophisticated algorithms to come
will also have a class on their own

enables base class for all shortest path algorithms

– You find a skeleton for the second option on the Wiki

13

Dijkstra — Implementation advice 2/3

 Stopping criterion

– It will be useful to support two modes of operation

stop when a given target node is settled

stop when all reachable nodes are settled

– You can easily support both of these by always passing
two arguments, sourceNode and targetNode, and for the
second mode call with a value -1 for targetNode

14

Dijkstra — Implementation advice 3/3

15

 Standard Dijkstra requires a decrease-key operation
– The tentative distance of a node in the priority queue (PQ)

can decrease several times over the course of the execution

– Requires an operation to decrease the key of a given PQ item

– But PQs like the std::priority_queue, don't support this

 There is a simple trick to avoid this operation
– Instead of a decrease-key, insert the node (again) with the

smaller tentative distance

– Whenever a node with key larger than the already known
tentative distance is removed from the PQ, ignore it

– Works fine as long as there are relatively few decrease-key
operations, which is the case for road networks why?

Connected Components 1/2

 Definition

– On an undirected graph, a connected component (CC) is a
maximal subset C of nodes such that for all pairs x, y ϵ C
there is a path between x and y

– Our two OSM graphs are likely to have more than one
connected component

– But one will contain most of the nodes, and the other CCs
will be relatively small

16

Connected Components 2/2

 Easy to compute using Dijkstra

– Add a member variable Array<int> visitedNodes to your
class DijkstrasAlgorithm, with one entry per node, and
all entries initialized to 0

– Proceed in rounds 1, 2, ... and in round i do:

If no more nodes are marked 0 we are done

Pick any node still marked 0 and run Dijkstra from
that node until all nodes are settled

Mark all nodes visited on the way with i

– Now it's easy to identify the connected components, and
in particular the largest one

17

Jenkins

 Jenkins is a continuous build systems

– Checks out your code from our repository

– Does compile, test, and checkstyle

– Makes sure that you committed all the necessary files
and that everything works fine

– Triggered by every SVN change or manually

– If an error occurs, an email will be sent to you

– You find the link to Jenkins on your Daphne page

– From now on check that whatever you commit passes
through Jenkins without errors, and if not correct it

18

References

 Dijkstra's Algorithm

– http://en.wikipedia.org/wiki/Dijkstra's_algorithm

 Connected Components
– http://en.wikipedia.org/wiki/Connected_component_(graph_theory)

 Jenkins

– https://daphne.informatik.uni-freiburg.de/jenkins

19

20

