Efficient Route Planning SS 2012

Lecture 3, Wednesday May 9th, 2012 (A*, Landmarks, Set Dijkstra)

Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

REIBURG

Overview of this lecture

- Organizational
 - Feedback and results from Exercise Sheet 2
 - Public SVN snapshot of code from past exercises
- A* algorithm
 - $A^* = Dijkstra with a heuristic for goal direction$
 - Heuristic 1: straight line distance
 - Heuristic 2: landmarks
- Exercise Sheet 3
 - Implement A^* + run some queries for both heuristics
 - Some **optional** theoretical tasks (useful for exam preparation)

Summary / excerpts last checked May 9, 15:57

- Less work than last sheet, but still more than expected
- -6-8 hours for most, but a few needed **much** longer
- How to debug ... watch corresponding C++ lecture
- Some spent quite some time on refactoring code from ES 1
- Reduction to LCC was trickier than expected (node remapping)
- "Not the first time I heard about Dijkstra"
- Implementation advice from the lecture was useful again
- Thanks a lot for the detailed advice from the tutor!
- Result table is interesting + good correctness check
- Problem with ant on Jenkins ... but fixed now
- Machine to test code under equal conditions would be nice

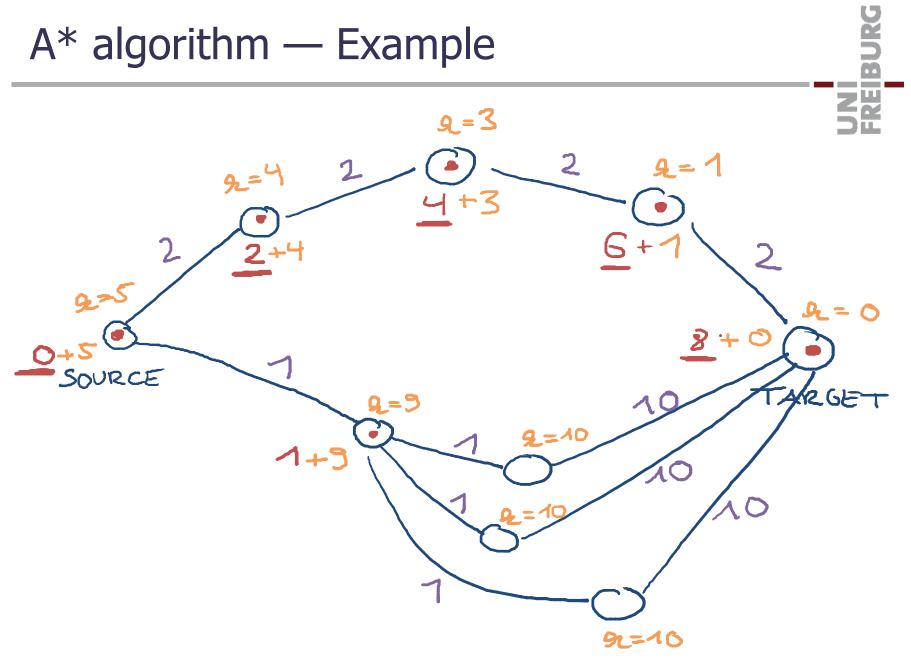
See the table on the Wiki

- #arcs in LCC is \approx 99% of #arcs in original graph
- #nodes is only $\approx 20\%$... reason: **non**-highway nodes
- Average query time is \approx 1s for 1 million settled nodes
 - at least in C++, much slower in some Java implement.
- On the avrg, $\approx 50\%$ of all nodes settled per query ... a lot!
- Average SP cost \approx 1.5 hours on BaWü ... makes sense!
 - note that a random node does not give a random point on the map (many more nodes in city areas)

SVN snapshot of code from past Exercise Sheets

- After the deadline of an Exercise Sheet is over:
 - we will copy all **code** files from all user to a public subfolder snaphost of the course SVN ... see Wiki
- That way you can
 - ... get inspiration from the code of others
 - ... continue even if you missed a previous Ex. Sheet
- Feel free to ask if something is unclear in the code
 - For that purpose, please make sure that your code contains a copyright notice + email address

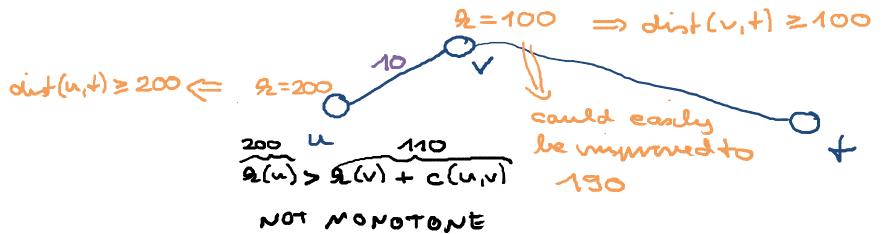
- A* is a simple variant of Dijkstra's algorithm
 - Additionally: for each node u, a value h[u] that estimates dist(u, t), where t is the target
 - h is often called the heuristic function of A*
 - Difference to Dijkstra: value of a node u in the priority queue is not dist[u] but dist[u] + h[u]
 - therefore, if h[u] = 0 for all u, then $A^* = Dijkstra$
 - Works if h is admissable and monotone ... later slide
 - Best results when h[u] = dist(u, t) for all u
 - then A* settles only the nodes on a shortest path



The heuristic h must be admissable

- For each node u it must hold: $h(u) \leq dist(u, t)$

- Informally: the heuristic must never overestimate
- The heuristic h must be **monotone**
 - For each arc (u,v) it must hold: $h(u) \le cost(u,v) + h(v)$
 - Informally: heuristic must obey the triangle inequality
 - Counterexample that shows why this is meaningful:

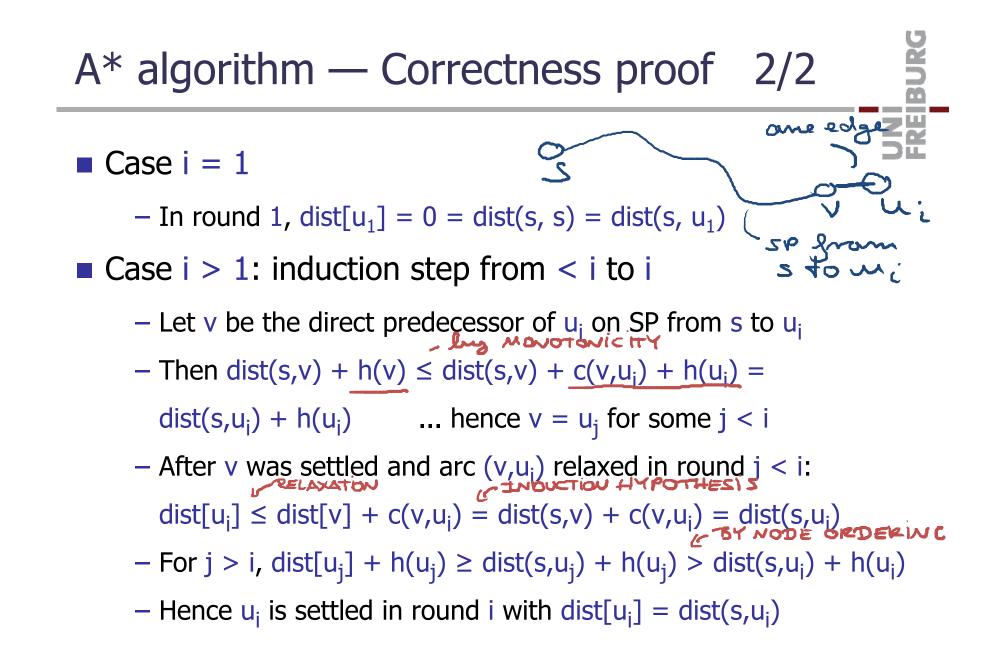


FREIBURG

- Variant of the correctness proof for Dijkstra
 - Similarly as for Dijkstra, we make the simplifying assumption that the dist(s, u) + h(u) are **all different**
 - Then we can order the nodes u_1 , u_2 , u_3 , ... such that dist(s, u_1) + h(u_1) < dist(s, u_2) + h(u_2) <
 - Just as for Dijkstra we now prove by induction over i:

In round i, node u_i is settled and dist $[u_i] = dist(s, u_i)$

 Since we have already seen the proof for Dijkstra, we give this proof in condensed form ... verify for yourself!



Straight-line distance (also: as-the-crow-flies distance)

- Take h(u) = eucl(u, t) / v_{max}
 - where eucl(u,t) is the Euclidean distance from u to t
 - and v_{max} is the maximum speed
- Admissible and monotone because of triangle inequality
- Optional theoretical exercise: verify this!
- Landmark heuristic
 - Informally: for every node u, precompute distances to a set of pre-selected nodes, called landmarks
 - How to obtain a heuristic function from that ... next slides

 $v = \frac{S}{+}$

Basic idea (first explained for directed graphs)

- Consider an arbitrary node $\boldsymbol{\ell}$ and call it a landmark
- Our SP distance function dist satisfies the triangle inequality: $dist(u, v) \le dist(u, w) + dist(w, v)$ for all nodes u, v, w
- Then, in particular, for all landmarks ℓ and all nodes u, v
 dist(u,ℓ) ≤ dist(u,v)+dist(v,ℓ) ⇒ dist(u,ℓ)-dist(v,ℓ) ≤ dist(u,v)
 dist(ℓ,v) ≤ dist(ℓ,u)+dist(u,v) ⇒ dist(ℓ,v)-dist(ℓ,u) ≤ dist(u,v)
- Hence, for a landmark l, a target node t, and any node u h(u) := max(dist(u,l)-dist(t,l), dist(l,t)-dist(l,u)) \leq dist(u,t)
- For undirected graphs, dist(x,y) = dist(y,x) for all x,y and thus: $h(u) := |dist(\ell,u)-dist(\ell,t)| \le dist(u,t)$

FREI

SP

30

LL.

When is this a good lower bound?

- When one of these two inequalities is "close" to equality $dist(u,l) \le dist(u,t)+dist(t,l)$ or $dist(l,t) \le dist(l,u)+dist(u,t)$
- For the first inequality, this happens when t lies "close" to the shortest path from u to l ... landmark "behind" target
- For the second inequality, this happens when u lies "close" to the shortest path from l to t ... landmark "before" u

11

- Intuitively, landmark must be close to line through u and t
- There is no l which achieves this for all u and t

SP

Pick a set L of landmarks

– For each $l \in L$ we have

 $max(dist(u, l)-dist(t, l), dist(l, t)-dist(l, u)) \leq dist(u, t)$

Hence also

 $max_{\ell \in L} \{max(dist(u, \ell) - dist(t, \ell) , dist(\ell, t) - dist(\ell, u))\} \le dist(u, t)$

- When is the left hand side a good lower bound?
 - Obviously, the more landmarks the better
 - But for each landmark l, we need to precompute and store dist(u, l) and dist(l, u) for all nodes u
 - Also, computing the lower bound at query time is $\sim |L|$
 - For a fixed number of landmarks, the more "distributed" over the graph they are the better

- Precomputation of landmark distances
 - We need dist(u, ℓ) and dist(ℓ , u) for all ℓ and u
 - Important: no need to do a Dijkstra for each u !
 - A single Dijkstra from ℓ gives us dist(ℓ, u) for all u
 - Similarly, a single Dijkstra on the graph with all arcs
 reversed gives us dist(u, l) for all u
 - For our graphs, dist(u, l) = dist(l, u) and the reversed graph is the same, and so a single Dijkstra per l suffices

• Heuristic is then $h(u) = \max_{\ell \in L} |dist(\ell, u) - dist(\ell, t)|$

Let (u,v) be an arbitrary arc with cost c(u, v)

– We have to show that $h(u) \le c(u,v) + h(v)$, where

 $h(u) = \max_{\ell \in L} \{\max(dist(u,\ell) - dist(t,\ell), dist(\ell,t) - dist(\ell,u))\}$

- For a fixed $\ell \in L$: dist(u, ℓ) $\leq c(u,v)+dist(v,\ell)$ "triangle inequality"

 $\rightarrow \operatorname{dist}(u,\ell) - \operatorname{dist}(t,\ell) \le c(u,v) + \operatorname{dist}(v,\ell) - \operatorname{dist}(t,\ell) \quad (1)$

- Similarly: $dist(\ell, v) \le dist(\ell, u) + c(u, v)$

 $\rightarrow \operatorname{dist}(\ell, t) - \operatorname{dist}(\ell, u) \le c(u, v) + \operatorname{dist}(\ell, t) - \operatorname{dist}(\ell, v) \quad (2)$

– Max of (1) and (2) gives us $h(u) \le c(u,v) + h(v)$ for a single ℓ

- If we then do $\max_{\ell \in L}$ on both sides, we are done
- Lemma: if $x_i \le y_i$ for all $i \in I \implies \max_{i \in I} x_i \le \max_{i \in I} y_i$

$$\max_{i \in I} x_i = x_j \leq y_j \leq \max_{i \in I} y_i =$$

$$\int_{a_i} x_i = x_j \leq y_j \leq \max_{i \in I} y_i =$$

UNI FREI Landmark selection

- We look at two heuristics
 - Random selection
 - Not bad, but suboptimal distribution
 - Greedy farthest node selection
 - Start with a random node, then iteratively add more
 - In each iteration, pick the node u which maximizes min_{l ∈ L'} dist(l, u), where L' = nodes already selected
 intuitively: u is "farthest" from all nodes in L'
 - How to compute u with $\min_{\ell \in L'} dist(\ell, u)$ for given L'?

BURG

REI

Dijkstra from a set of nodes

- Implementation
 - Initially put all nodes from the set S in the priority queue, with distance 0, then run ordinary Dijkstra
 - Then the distance computed for each node u will be

 $\min_{s \in S} dist(s, u)$... which we write as dist(S, u)

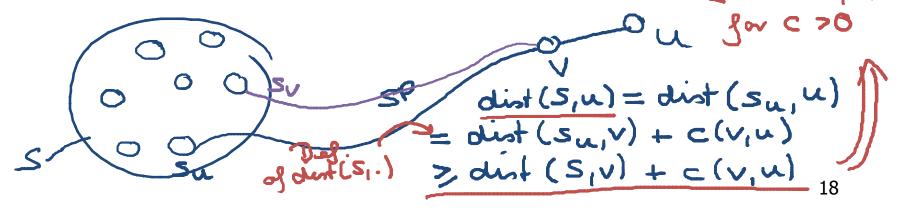
- It's not obvious that this is true, so we should prove it
 - This is one of the **optional** exercises on Ex. Sheet 3.

6

5 X

SP

• Good thing to do when you prepare for the exam dust (Su)



- No need to implement a new class
 - You can easily extend your class DijsktrasAlgorithm
 - Just add a member variable Array<int> heuristic ... see Wiki
- Landmark precomputation
 - Important: don't execute one Dijsktra for each node
 - For undirected graphs, one Dijkstra per landmark suffices
 - for each ℓ, this gives you dist(ℓ, u) for all u
 - heuristic is $h(u) = \max_{\ell \in L} \{ |dist(\ell, u) dist(\ell, t)| \}$
 - Note that the heuristic h must be computed per query
 - for simplicity, for a given query, first compute h(u) for all nodes u ... see design suggestion linked from Wiki

References

UNI FREIBURG

The original "A* with landmarks" paper
 Computing the shortest path: A* search meets graph theory
 A. Goldberg and C. Harrelson, SODA 2005
 http://portal.acm.org/citation.cfm?doid=1070432.1070455
 http://www.avglab.com/andrew/pub/soda05.pdf