Overview of this lecture

- Organizational
 - Feedback and results from Exercise Sheet 5 (Web app)

- Contraction Hierarchies (CHs)
 - Yet another (clever) algorithm for fast route planning
 - Basic idea: far away from source / target only use "important" roads (think of highways)
 - This lecture: outline + the central "contraction" procedure
 - Next lecture: missing details, so that you know how to build a route planner based on CH
 - Exercise Sheet 6: implement the central contraction method (that will be the basic building block of the CH pre-processing)
Summary / excerpts

- Fun exercise / interesting to see how web apps work
- Nice to see our algorithms in action / that it really works
- Server side was relatively straightforward
 - though some used the opportunity for further improvements
- Client side was not hard, but quite a lot of new stuff
 - code provided was (of course) very useful
 - though one said it made thing too easy
- Typical time investment 4-6 hours / student
Let's have a look at a few demos

- One with comparison to Google API
 - Observation: both routes reasonable, but often different
 - Reason: Google seems to penalize certain turns
- One on Baden-Württemberg (not Baden-Württenberg)
 - Observation: Query time independent of $\text{dist}(s, t)$
 - Reason: Heuristic function computed for all nodes
Bidirectional Dijkstra 1/4

- Basic idea
 - "Simultaneously" search from both source and target
 - Stop when the search spaces "meet"
 - This reduces the search space only by a factor of ~ 2
 - However: bi-directional search is an important ingredient in many of the more sophisticated algorithms ... like CH
Bidirectional Dijkstra 2/4

- **Implementation**
 - **Interleave** the two Dijkstra computations as follows
 - in each step, one iteration from the Dijkstra where the smallest key in the PQ is smaller
 - alternatively, maintain a joint priority queue, where each item in the PQ knows to which Dijkstra it belongs
 - **Stop** when settling a node from one Dijkstra that is already settled in the other Dijkstra
 - that node is not necessarily on the SP ...
 - The cost of the shortest path is then
 \[
 \min \{ \text{dist}_s[u] + \text{dist}_t[u] : \text{for all } u \text{ visited in both Dijkstras} \} \]
Counterexample

- ... where the first node that is settled in both searches does not lie on the shortest path
Correctness proof

- Let $D = \text{dist}(s, t)$, the cost of the SP from s to t
- Let u be the first node settled in both Dijkstras
- If both dist labels of u are exactly $D/2$, we are done
- If not, one of the dist labels must be $> D/2$
- Hence all nodes with $\text{dist} \leq D/2$ have already been settled
- Let v_s and v_t on a shortest path from s to t such that
 \[\text{dist}(s, v_s) \leq D/2 \quad \text{and} \quad \text{dist}(v_t, t) \leq D/2 \]
- Then v_s has already been settled in the Dijkstra from s, and the relaxation has set $\text{dist}_s[v_t] = \text{dist}(s, v_t)$
- Same for v_t, hence $\text{dist}_s[v_t] + \text{dist}_t[v_t] = \text{dist}(s,t)$
Hierarchical Approaches 1/4

- Basic intuition
 - "Far away" from the source and target, consider only "important" roads ... the further away, the more important
 - Let's look at the shortest path of some random queries on Google Maps, typically:
 - close to source and target: mainly white (residential) roads
 - a bit further away: mainly yellow (national) roads
 - even further away: mainly orange (motorway) roads
 - But also note that this is not always true
Hierarchical Approaches 2/4

- This intuition leads to the following heuristic
 - Indeed consider the types / colors from the road, with an order between them, e.g. white < yellow < orange
 - Have a radius for each color > white: \(r_{\text{yellow}}, r_{\text{orange}} \)
 - Run a bi-directional Dijkstra, with the following constraints
 - at distance \(\geq r_{\text{yellow}} \) from source and target, consider only roads of type \(\geq \text{yellow} \)
 - at distance \(\geq r_{\text{orange}} \) from source and target, consider only roads of type \(\geq \text{orange} \)
 - **Note:** this does not necessarily find the shortest path
 - Still, heuristics of this kind were employed in navigation devices for a long time ... since no better algo's were known
Hierarchical Approaches 3/4

- **Highway Hierarchies (HHs)**
 - **Compute** a level for each **arc**
 - Along with a **radius** for each level: \(r_1, r_2, r_3, \ldots \)
 - Similarly as for the heuristic, run bi-directional Dijkstra
 - constraint now: at distance \(\geq r_i \) from the source and target, consider only arcs of level \(\geq i \)
 - This was first made precise in an ESA 2005 paper by Schultes and Sanders (KIT, Karlsruhe) ... see references
 - **Note:** the basic idea is simple, but the (implementation) details are quite intricate, in particular:
 - hard to get the implementation error-free in practice
Hierarchical Approaches 4/4

- **Contraction Hierarchies (CHs)**
 - **Compute** a level for each node
 - At query time again do a bidirectional Dijkstra
 - in the Dijkstra from the source consider only arcs u,v where $\text{level}(v) > \text{level}(u)$... so called **upwards** graph
 - in the Dijkstra from the target, consider only arcs v,u with $\text{level}(v) > \text{level}(u)$... so called **downwards** graph
 - Intuitively, this is like a "continuous" version of highway hierarchies ... and significantly easier to implement
 - We will look at CH in more detail now ...
Contraction of a single node

- This is the basic building block of the CH precomputation
- **Idea:** take out a node, and add all necessary arcs such that all SP distances in the remaining graphs are preserved
- Formally, a node \(v \) is **contracted** as follows
 - Let \(\{u_1, \ldots, u_l\} \) be the incoming arcs, i.e. \((u_i, v) \in E\)
 - Let \(\{w_1, \ldots, w_k\} \) be the outgoing arcs, i.e. \((v, w_j) \in E\)
 - For each pair \(\{u_i, w_j\} \), if \((u_i, v, w_j)\) is the **only** shortest path from \(u_i \) to \(w_j \), add the **shortcut** arc \((u_i, w_j)\)
 - Then **remove** \(v \) and its adjacent arcs from the graph
Example for contraction of a single node

- Shortcut must be added
- Shortcut not absolutely necessary, but OK to add it... see later slide
Contraction of all nodes in the graph

- Let u_1, \ldots, u_n be an arbitrary order of the nodes
- We will see that CH is correct for any order, but more efficient for some orders than for others ... next lecture
- Let $G = G_0$ be the initial graph
- Let G_i be the graph obtained from G_{i-1} by contracting u_i that is, without u_i and adjacent arcs and with shortcuts
 - in particular therefore, G_i has $n - i$ nodes
- In the end, let $G^* = \text{the original graph with all nodes and arcs and all shortcuts}$ from any of the G_1, G_2, \ldots
- In the implementation, we can work on one and the same graph data structure throughout the algorithm ... later slide
Example for contraction of all nodes in a graph
Given $G^* = (V, E^*)$ and a source s and a target t

- Define the upwards graph $G^* \uparrow = (V, \{(u, v) \in E^* : v > u\})$
- Define the downwards graph $G^* \downarrow = (V, \{(u, v) \in E^* : v < u\})$
- Do a full Dijkstra computation from s \textbf{forwards} in $G^* \uparrow$
- Do a full Dijkstra computation from t \textbf{backwards} in $G^* \downarrow$
- Let I be the set of nodes settled in \textbf{both} Dijkstras
- Take $\text{dist}(s, t) = \min \{\text{dist}(s, v) + \text{dist}(v, t) : v \in I\}$
- Is this correct and if yes why? ... next lecture
- In the implementation, we need not construct $G^* \uparrow$ and $G^* \downarrow$ explicitly, we can just work on G^* ... next lecture
- In symm. graphs backw. on $G^* \downarrow = \text{forw.}$ on $G^* \uparrow$... next lecture
Example query on our example graph from before
How to determine when a shortcut is needed?

- **Recall:** when contracting node v, we need to insert the shortcut arc (u, w), if and only if $(u, v) \in E$ and $(v, w) \in E$ and (u, v, w) is the only shortest path from u to w
- As before, $\{u_i\} =$ incoming arcs and $\{w_j\} =$ outgoing arcs
- Perform a Dijkstra **for each** u_i in the graph **without** v
- Let $D_{ij} = \text{cost}(u_i, v) + \text{cost}(v, w_j)$... cost of path via v
- In the Dijkstra from u_i
 - ... stop when node with cost $> \max_j D_{ij}$ is settled
 - ... add shortcut (u_i, w_j) if and only if $\text{dist}[w_j] > D_{ij}$
Correctness of this routine

- Assume there is a SP from u_i to w_j that does not pass through v
 - then the cost of that SP is $\leq D_{ij}$ and the Dijkstra from u_i just described will not stop before it has found it
 - then $\text{dist}[w_j] \leq D_{ij}$ and indeed no shortcut is added
- Beware: there might be a SP through v with cost $< D_{ij}$
 - that looks like a problem, because this might be shorter than the SP in the graph without v
 - and we might not add a shortcut although we should
 - But such a path will then contain (u_i', v, w_j')
 - And this will be taken care of by the Dijkstra from u_i'
Heuristic improvement

- For each Dijkstra computation (from each of the u_i), put a limit on the size of the search space (#nodes settled)
 - With this heuristic, we may fail to find a shortest path from u_i to w_j that does not use v, and thus insert the shortcut (u_i, w_j) unnecessarily
 - But unnecessary shortcuts do not harm correctness, only performance (if there are too many of them)
 - So there is a trade-off: if the heuristic saves a lot of time in the precomputation at the cost of only a few unnecessary shortcuts, than it is worth it
- Various additional heuristics in the paper ... see references
How to add shortcuts / remove contracted nodes?

- If you implemented the adjacency lists with an `Array<Array<Arc>>`, adding arcs is straightforward.
- But make sure that either your Dijkstra implementation does not have a problem with the same arc existing twice ... or that you avoid adding an already existing arc.
- Removing nodes / arcs from the graph is more cumbersome, but luckily there is no need to do that.
- Instead, you can just ignore the respective nodes / arcs.
- In the precomputation, when contracting u_i, simply ignore all nodes $u_1,\ldots u_{i-1}$ and their adjacent arcs.
- You can use `Arc::arcFlag` for that ... see code suggestion.
The Dijkstra searches for each contraction
- ... should take only very little time (<< 1 millisecond)
 - for the full CH algorithm, we have to do one per node
- To achieve that, pay attention to the following
 - make sure that the Dijkstra search spaces are small
 ... see the three slides on "Shortcuts"
 - requires two trivial extensions of DijsktrasAlgorithm class
 ... see code design suggestion linked on Wiki
 - avoid resetting the dist value for every node ... this
 would take $\Theta(n)$ time for each (tiny) Dijkstra
 - instead only reset the dist values of nodes that were
 visited in the previous Dijkstra (visitedNodes array)
References

- **Highway Hierarchies**
 - Engineering Highway Hierarchies
 - Highway Hierarchies Hasten Exact Shortest Path Queries
 Dominik Schultes and Peter Sanders, ESA 2005 & 2006
 http://algo2.iti.uka.de/schultes/hwy/esa06HwyHierarchies.pdf
 http://algo2.iti.uka.de/schultes/hwy/esaHwyHierarchies.pdf

- **Contraction Hierarchies**
 - Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks
 Geisberger, Sanders, Schultes, Delling, WEA 2008
 http://algo2.iti.uka.de/schultes/hwy/contract.pdf