Efficient Route Planning
SS 2012

Lecture 7, Wednesday June 13th, 2012
(Contraction Hierarchies, Part 2 of 2)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

m Organizational
— Feedback and results from Exercise Sheet 6 (CH, part 1)

m Contraction Hierarchies, Part 2 of 2
— Query algorithm + example again
— Correctness proof
— Good node orderings
— Exercise Sheet 7: implement a basic version of CH
» Query algorithm (easy)
» Simple node ordering (not hard either)
» Use it to run 1000 queries and report results on the Wiki

» Again: not much code, but you have to understand what
you are doing

Your Feedback on Ex. Sheet 6 (CH, part 1)

m Summary / excerpts last checked June 13, 14:59
— Was quite doable for most, difficultywise and timewise
— Not much code, but many opportunities for mistakes
— Graphic example in the lecture was helpful
— Unit test for contractNode was most of the work
— Thanks to the tutor for the great comments + answers

Your node contraction results C\

\Y4 v
o o O '
= Summary S~ —

— Best contraction times indeed just a few ps per node

» Note: 10ups / node — 10s / 1M nodes — 24s for BaWu
— Number of shortcuts for 1000 random nodes

» ~ 800 require 1, > 100 require 3, ~ 70 require O

» Note: 3 is much more frequent than 2 ... why?
— Edge differences (ED) for these 1000 random nodes

+ Only ~ 10 have an ED of -2 (which is good)

» Most havean ED of -1 or O or 1

— These results suggests that picking nodes in a random order
would add many more shortcuts than optimally possible

CH — Query algorithm 1/2 (from last lecture)

m Given G* = (V, E*) and a source s and a target t
— Define the upwards graph G*1 = (V, {(u, v) € E* : v > u})
— Define the downwards graph G*! = (V, {(u, v) e E* : v < u})
— Do a full Dijkstra computation from s forwards in G*1
— Do a full Dijkstra computation from t backwards in G*1
— Let I be the set of nodes settled in both Dijkstras
— Take dist(s, t) = min {dist(s, v) + dist(v, t) : ve I}
— Is this correct and if yes why? ... slides 8 — 13

— In the implementation, we need not construct G*T and G*!
explicitly, we can just work on G* ... slides 17 + 18

— In symm. graphs backw. on G*! = forw. on G*1 ... slide 7

BURG

CH — Query algorithm 2/2 (from last lecture)

m Example query on the graph from last lecture

Symmetric graphs

m For symmetric graphs we only need G*1

— Recall the definitions:
Upwards graph G*T = (V, {(u, v) e E* : v > u})
» Downwards graph G*! = (V, {(u, v) e E* : v < u})

— A backwards search on an arbitary graph G is equivalent to

a forward search on G with all arcs reversed
— For symmetric graphs, G with all arcs reversed is = G

— G*1 with all arcs reversed is exactly G*1

— Hence a backwards search on G*! is exactly the same as a
forward search on G*1

CH — Correctness Proof 1/6

m First, the terminology from last lecture again

— Let uy, ..., U, be an arbitrary order of the nodes
we will see that the proof works for any order
— Let G = G, be the initial graph

— Let G; be the graph obtained from G;_; by contracting u,
that is, without u; and adjacent arcs and with shortcuts

in particular therefore, G; has n — i nodes

— In the end, let G* be the original graph with all nodes and
arcs and all shortcuts from any of the Gy, G,, ...

CH — Correctness Proof 2/6 K}_“/Pw
T AV
\/

m Contraction preserves shortest paths

— Lemma 1: For alli =1, ..., n we have for all s, t € G,
diStGi(S, t) = diStGi-l(S’ t)

— Corollary: hence by induction also distg(s, t) = distg(s, t)
m Proof of Lemma 1 ... it's pretty straightforward

— Consider a SP from s to t in G;

— If this SP contains no shortcut that was added when u;
was contracted, we have the same path also in G;_4

— If it does contains a shortcut u, w added then, it means
we have the path u, v, w in G;_; with the same cost

— This proves dist;;(s, t) = distg(s, t)
— An analogous arguments proves distg(s, t) = distg(s, t)

m Proof of Lemma 2 _>.7-

— Let v be the largest node (wrt the node ordering) on the
SP from s to t in the original graph G

— Consider the prefix maxima on the path from s to v,
that is, the nodes vy < vy < ... < v, such that the SP is

S=Vg =¥ vy ¥y, 2F [oXy =V

where the subpaths v;_; =* v, use only nodes < v,

10

CH — Correctness Proof 4/6

m Proof of Lemma 2, example of prefix maxima
— From last slide: s =vy —=* v, 2% v, 2% . 2%y =V

where v;_; < v;and v, ; =* v, uses only nodes < v,

o
T\
.‘

227

- —

11

CH — Correctness Proof 5/6

m Proof of Lemma 2 (continued)
— From last slide: s = v, =* v, =% v, =% [2%y =V

— We prove that for each i = 1, ..., k the arc v;_y, v; exists
in G* and its cost is exactly distg(v,., v;)

— Consider the graph G' just before v; is contracted

— Since v; < v,, 4, both v, and v;; are in that graph

— By Lemma 1, we have distg(v;, vi,.1) = distg(vi, Virq)
— The SP from v; to v;, { in G' can only use nodes = v;

— If that SP would have more than one arc, and the first
arc would be v;, w ... then w would have been our v, 4

— Hence the SP from v; to v;, ; consist only of a single arc,
and the cost of that arc is distz(v;, vi,,) = distg(vi, Vi, 1)

12

CH — Correctness Proof 6/6

m We are almost done
— We have now proven that distg«;(s, v) = distg(s, v)
where v was the largest node on the SP from sto t
— We can prove analogously that distgx« (v, t) = distg(v, t)
— Hence the SP cost will be amongst {dist[v] + dist[v] : v € [}

— By Lemma 1, distg«(s, t) = distg(s, t), that is, the cost of
no shortest path decreases by adding shortcuts

— Hence the query algorithm will compute exactly dists(s, t)

13

8

Node ordering 1/3 sewer . &
l-v-L

m General approach #=rgh=>= .

— Maintain the nodes in a priority queue, in the order of
how attractive it is to contract the respective node next

— Intuitively: the less shortcuts we have to add, the better
— For each node, maintain the edge difference (ED):

» S = the number of shortcuts that would have to be
added if that node were contracted

» E = the number of arcs incident to that node
» Then the edge difference is simply ED =S - E

— Note: when we contract a node, the edge difference of
any node (not only the neighbours) may get affected

14

Node ordering 2/3

m How to maintain the ED for each node?

— Initially compute the ED for each node (linear time)

— Straightforward approach: recompute for all nodes after
each single contraction — quadratic running time ... no good

— Lazy update heuristic: update EDs "on demand" as follows:

» Before contracting node with currently smallest ED,
recompute its ED and see if it is still the smallest

» If not pick next smallest one, recompute its ED and see if
that is the smallest now; if not, continue in same way ...

— Neighbours only heuristic: after each contraction, recompute
EDs, but only for the neighbours of the contracted node

— Periodic update heuristic: Full recomputation every x rounds

15

Node ordering 3/3

m Other criteria

— Spatial diversity is also important, here is an example:

— Spatial diversity heuristic: for each node maintain a
count of the number of neighbours that have already
been contracted, and add this to the ED

— Note: the more neighbours have already been
contracted, the later this node will be contracted

16

Implementation Advice 1/2

m Precomputation

— Add arcs to the original graph, do not make a copy
— Ignore arcs of already contracted nodes using arc flags

— To compute the edge difference of a node, extend your
contractNode method as follows:

» add an argument bool computeEdgeDifferenceOnly

» default is false; if true do the Dijkstras as usual, but

in the end don't change anything in the graph, but
just return the edge difference

— To know which node to pick next, maintain all nodes in a
priority queue, with key = edge difference

17

Implementation Advice 2/2

m Query algorithm

— After the precomputation, set arc flags of all arcs u, v with u
> v to true and all others to false

— For the query algorithm, simply use Dijkstra with the
considerArcFlags option (wrt the arc flags above)

one such Dijktra from the source, one from the target

compute dist(s, t) = min{dist,[u] + dist[u]} by a simple
scan over the dist arrays from these two Dijkstras

» as in the precomputation, avoid an O(#nodes) reset of
the dist arrays, but use the visitedNodes array instead

Note: no need to change any arc flags at query time!

18

COmputing the actual path (not needed for Ex. Sheet)

m In the precomputation

— When we contract a node v and add a shortcut u, w
then at that time dist(u, w) > cost(u, v) + cost(v, w)
» Along with this shortcut, store the node v
Note: this is exactly one node per shortcut
— In the query algorithm
» first compute the SP in the upwards graph by
backtracing parent pointers as usual (in each Dijkstra,
both from the node on the SP with highest order)

» then, while the paths contains a shortcut u, w replace
it by u, v, w using the v stored above

19

References

m The CH paper again (for your convenience)

Contraction Hierarchies: Faster and Simpler Hierarchical
Routing in Road Networks

Geisberger, Sanders, Schultes, Delling, WEA 2008
http://algo2.iti.uka.de/schultes/hwy/contract.pdf

20

21

