Efficient Route Planning SS 2012

Lecture 7, Wednesday June 13th, 2012 (Contraction Hierarchies, Part 2 of 2)

> Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

REIBURG

Overview of this lecture

- Organizational
 - Feedback and results from Exercise Sheet 6 (CH, part 1)
- Contraction Hierarchies, Part 2 of 2
 - Query algorithm + example again
 - Correctness proof
 - Good node orderings
 - Exercise Sheet 7: implement a basic version of CH
 - Query algorithm (easy)
 - Simple node ordering (not hard either)
 - Use it to run 1000 queries and report results on the Wiki
 - Again: not much code, but you have to understand what you are doing

Your Feedback on Ex. Sheet 6 (CH, part 1)

Summary / excerpts last checked June 13, 14:59

- Was quite doable for most, difficultywise and timewise
- Not much code, but many opportunities for mistakes
- Graphic example in the lecture was helpful
- Unit test for contractNode was most of the work
- Thanks to the tutor for the great comments + answers

JRG

ZE

- Best contraction times indeed just a few μs per node
 - Note: $10\mu s$ / node $\rightarrow 10s$ / 1M nodes $\rightarrow 24s$ for BaWü
- Number of shortcuts for 1000 random nodes
 - ~ 800 require 1, > 100 require 3, ~ 70 require 0
 - Note: 3 is much more frequent than 2 ... why?
- Edge differences (ED) for these 1000 random nodes
 - Only ~ 10 have an ED of -2 (which is good)
 - Most have an ED of -1 or 0 or 1
- These results suggests that picking nodes in a random order would add many more shortcuts than optimally possible

■ Given G^{*} = (V, E^{*}) and a source s and a target t

- Define the upwards graph $G^*\uparrow = (V, \{(u, v) \in E^* : v > u\})$
- Define the downwards graph $G^{*\downarrow} = (V, \{(u, v) \in E^* : v < u\})$
- Do a full Dijkstra computation from s **forwards** in G*1
- Do a full Dijkstra computation from t **backwards** in $G^* \downarrow$
- Let I be the set of nodes settled in **both** Dijkstras
- Take dist(s, t) = min {dist(s, v) + dist(v, t) : $v \in I$ }
- Is this correct and if yes why? ... slides 8 13
- In the implementation, we need not construct $G^{*\uparrow}$ and $G^{*\downarrow}$ explicitly, we can just work on G^* ... slides 17 + 18
- In symm. graphs backw. on $G^*\downarrow$ = forw. on $G^*\uparrow$... slide 7

BURG

IN I

Symmetric graphs

■ For symmetric graphs we only need G*1

- Recall the definitions:
 - Upwards graph $G^*\uparrow = (V, \{(u, v) \in E^* : v > u\})$
 - Downwards graph $G^* \downarrow = (V, \{(u, v) \in E^* : v < u\})$
- A backwards search on an arbitary graph G is equivalent to a forward search on G with all arcs reversed
- For symmetric graphs, G with all arcs reversed is = G
- $G^*\downarrow$ with all arcs reversed is exactly $G^*\uparrow$
- Hence a backwards search on $G^*\downarrow$ is exactly the same as a forward search on $G^*\uparrow$

First, the terminology from last lecture again

- Let $u_1, ..., u_n$ be an **arbitrary** order of the nodes
 - we will see that the proof works for any order
- Let $G = G_0$ be the initial graph
- Let G_i be the graph obtained from G_{i-1} by contracting u_i that is, **without** u_i and adjacent arcs and **with** shortcuts
 - in particular therefore, G_i has n i nodes
- In the end, let G* be the original graph with all nodes and arcs and all shortcuts from any of the G₁, G₂, ...

CH — Correctness Proof 2/6

- Contraction preserves shortest paths
 - Lemma 1: For all i = 1, ..., n we have for all s, t \in G_i dist_{Gi}(s, t) = dist_{Gi-1}(s, t)
 - Corollary: hence by induction also $dist_{Gi}(s, t) = dist_{G}(s, t)$
- Proof of Lemma 1 ... it's pretty straightforward
 - Consider a SP from s to t in G_i
 - If this SP contains **no** shortcut that was added when u_i was contracted, we have the same path also in G_{i-1}
 - If it does contains a shortcut u, w added then, it means we have the path u, v, w in G_{i-1} with the same cost
 - This proves $dist_{Gi-1}(s, t) \leq dist_{Gi}(s, t)$
 - An analogous arguments proves $dist_{Gi}(s, t) \leq dist_{Gi-1}(s, t)$

- Let v be the largest node (wrt the node ordering) on the SP from s to t in the original graph G
- Consider the **prefix maxima** on the path from s to v, that is, the nodes $v_0 < v_1 < ... < v_k$ such that the SP is

 $s = v_0 \rightarrow * v_1 \rightarrow * v_2 \rightarrow * \dots \rightarrow * v_k = v$

where the subpaths $v_{i-1} \rightarrow v_i$ use only nodes $< v_{i-1}$

CH — Correctness Proof 4/6

T

Source

Proof of Lemma 2, example of prefix maxima

- From last slide: $s = v_0 \rightarrow * v_1 \rightarrow * v_2 \rightarrow * ... \rightarrow * v_k = v$

where $v_{i-1} < v_i$ and $v_{i-1} \rightarrow * v_i$ uses only nodes $< v_{i-1}$

Proof of Lemma 2 (continued)

- From last slide: $s = v_0 \rightarrow * v_1 \rightarrow * v_2 \rightarrow * ... \rightarrow * v_k = v$
- We prove that for each i = 1, ..., k the arc v_{i-1}, v_i exists in G* and its cost is exactly $dist_G(v_{i-1}, v_i)$
- Consider the graph G' just before v_i is contracted
- Since $v_i < v_{i+1}$, both v_i and v_{i+1} are in that graph
- By Lemma 1, we have $dist_{G'}(v_i, v_{i+1}) = dist_G(v_i, v_{i+1})$
- The SP from v_i to v_{i+1} in G' can only use nodes $\geq v_i$
- If that SP would have more than one arc, and the first arc would be v_i , w ... then w would have been our v_{i+1}
- Hence the SP from v_i to v_{i+1} consist only of a single arc, and the cost of that arc is $dist_{G'}(v_i, v_{i+1}) = dist_G(v_i, v_{i+1})$

We are almost done

- We have now proven that $dist_{G^*\uparrow}(s, v) = dist_G(s, v)$ where v was the largest node on the SP from s to t
- We can prove analogously that $dist_{G^*\downarrow}(v, t) = dist_G(v, t)$
- Hence the SP cost will be amongst $\{dist_s[v] + dist_t[v] : v \in I\}$
- By Lemma 1, $dist_{G^*}(s, t) = dist_G(s, t)$, that is, the cost of no shortest path decreases by adding shortcuts
- Hence the query algorithm will compute exactly $dist_G(s, t)$

- Maintain the nodes in a priority queue, in the order of how **attractive** it is to contract the respective node next
- Intuitively: the less shortcuts we have to add, the better
- For each node, maintain the **edge difference** (ED):
 - S = the number of shortcuts that would have to be added if that node were contracted
 - E = the number of arcs incident to that node
 - Then the edge difference is simply ED = S E
- Note: when we contract a node, the edge difference of any node (not only the neighbours) may get affected

How to maintain the ED for each node?

- Initially compute the ED for each node (linear time)
- Straightforward approach: recompute for all nodes after
 each single contraction → quadratic running time ... no good
- Lazy update heuristic: update EDs "on demand" as follows:
 - Before contracting node with currently smallest ED, recompute its ED and see if it is still the smallest
 - If not pick next smallest one, recompute its ED and see if that is the smallest now; if not, continue in same way ...
- Neighbours only heuristic: after each contraction, recompute
 EDs, but only for the neighbours of the contracted node
- Periodic update heuristic: Full recomputation every x rounds

Node ordering 3/3

Other criteria

- Spatial diversity is also important, here is an example:

- Spatial diversity heuristic: for each node maintain a count of the number of neighbours that have already been contracted, and **add** this to the ED
- Note: the more neighbours have already been contracted, the later this node will be contracted

Precomputation

- Add arcs to the original graph, do **not** make a copy
- Ignore arcs of already contracted nodes using arc flags
- To compute the edge difference of a node, extend your contractNode method as follows:
 - add an argument bool computeEdgeDifferenceOnly
 - default is false; if true do the Dijkstras as usual, but in the end don't change anything in the graph, but just return the edge difference
- To know which node to pick next, maintain all nodes in a priority queue, with key = edge difference

Query algorithm

- After the precomputation, set arc flags of all arcs u, v with u
 v to true and all others to false
- For the query algorithm, simply use Dijkstra with the considerArcFlags option (wrt the arc flags above)
 - one such Dijktra from the source, one from the target
 - compute dist(s, t) = min{dist_s[u] + dist_t[u]} by a simple scan over the dist arrays from these two Dijkstras
 - as in the precomputation, avoid an Θ(#nodes) reset of the dist arrays, but use the visitedNodes array instead
 - Note: no need to change any arc flags at query time!

In the precomputation

- When we contract a node v and add a shortcut u, w
 - then at that time dist(u, w) > cost(u, v) + cost(v, w)
 - Along with this shortcut, store the node v
 - Note: this is exactly one node per shortcut
- In the query algorithm
 - first compute the SP in the upwards graph by backtracing parent pointers as usual (in each Dijkstra, both from the node on the SP with highest order)
 - then, while the paths contains a shortcut u, w replace it by u, v, w using the v stored above

References

UNI FREIBURG

 The CH paper again (for your convenience)
 Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks
 Geisberger, Sanders, Schultes, Delling, WEA 2008
 http://algo2.iti.uka.de/schultes/hwy/contract.pdf