Efficient Route Planning SS 2012

Lecture 8, Wednesday July 27th, 2012 (Transit Node Routing)

> Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

Overview of this lecture

Organizational

- Feedback and results for Exercise Sheet 7 (CH, part 2)
- Transit Node Routing (TNR)
 - Last algorithm (in this course) for routing on **road** networks
 - One of the (algorithmically) fastest one to date
 - Very simple idea + very simple query algorithm
 - Various possibilities for the pre-computation ... we will look at one based on Contraction Hierarchies
 - Historically TNR came two years before CH
 - Exercise Sheet 8: Implement a part of TNR

Z

Feedback on Ex. Sheet 7 (CH, Part 2)

- Summary / excerpts last checked June 27, 10:38
 - The way how and why Contraction Hierarchies works became much clearer in the last lecture
 - Again, not a lot of code
 - Easy to make lots of small mistakes
 - which don't show in the unit tests on small examples
 - which cause the number of shortcuts to explode in the end
 - Many could not fix all those mistakes ... frustrating

LNI FREI

Results for Ex. Sheet 7 (CH, Part 2)

Summary

- Very fast precomputation: ~ 1 minute even on BaWü
- Number of shortcuts ~ 2 million for BaWü
 - that's about the order of the number of arcs in the original graph, which is ok
- Query times around 1 millisecond
- All in all, clearly the best algorithm so far
- BUT: also the hardest to implement
 - not a lot of code, but small mistakes can make everything fail ... and are hard to find (because they don't show in simple test cases)

Z Z Z Z Z Transit Node Routing 1/6

The underlying very simple observation

- When you go from your home to somewhere far away:
 - then the initial portion of your route will be one of a few standard routes
- Let's look at a few examples on Google Maps
- How can we use this to speed up shortest path queries?

Transit Node Routing 2/6

We want to have the following

- For each pair of nodes u and v a "far-away" criterion
 Far(u, v) that yields true or false
 - Intuitively, if Far(u, v) = true then u and v are "far away"
- For each node u sets X(u) and Y(u) of access nodes such that
 - For all v with Far(u, v) = true \rightarrow exists x \in X(u) on SP(u,v)
 - For all w with $Far(w, u) = true \rightarrow exists y \in Y(u) \text{ on } SP(w, u)$
 - Intuitively: when you go from u to somewhere "far away", you will pass through one of the X(u) ... and same for Y(u) when you go to u from somewhere "far away"
- Note: for symmetric graphs, going from and going to is the same and X(u) = Y(u)

N

UNI FREIBURG

Precomputation — Basic idea

- Compute "something" such that Far(u, v) can be evaluated quickly for given u and v
- Compute and store the X(u) and Y(u) for each node u, as well as dist(u, x) for each x $\in X(u)$ and dist(y, u) for each y $\in Y(u)$

• These are $\Sigma_u (|X(u)| + |Y(u)|)$ nodes and distances

- Compute and store the unions $X = U_u X(u)$ and $Y = U_u Y(u)$ and the dist(x, y) for all pairs x and y with x $\in X$ and y $\in Y$
 - These are $|X| \cdot |Y|$ distances
 - Our goal will be that both |X| and |Y| are on the order of √n and not n, so that |X| · |Y| = O(n)

Processing a query from s to t — Details

- If Far(s, t) = false, compute dist(s, t) with another algorithm, for example ordinary Dijkstra; otherwise:
- Fetch the set X(s) and the dist(s, x) for all $x \in X(s)$
- Fetch the set Y(t) and the dist(y, t) for all $y \in Y(t)$
- Fetch the d(x, y) for all x, y with $x \in X(s)$ and $y \in Y(t)$
- Compute the minimum dist(s, x) + dist(x, y) + dist(y, t) over all x, y with $x \in X(s)$ and $y \in Y(t)$
 - this is the minimum over $|X(s)| \cdot |Y(t)|$ terms
 - in practice |X(s)| and |Y(t)| can be made as small as
 5 on average ... this gives extremely fast query times

Efficiency

- Goal 1: Far(u, v) should be very cheap to evaluate, and if
 Far(u, v) = false then SP(u, v) should be very cheap to compute
 - Then we can easily determine whether we have to resort to the fallback algorithm, and if so, it will be very cheap
- Goal 2: X(u) and Y(u) should be \leq a small C for (almost) all u
 - Then the X(u) and Y(u) and the distances to / from them can be stored in ~ C · n space, and queries can be processed in time C²
- Goal 3: $|X = U_u X(u)|$ and $|Y = U_v Y(v)|$ are $O(\sqrt{n})$
 - then the pairwise distances dist(x, y) with x ∈ X and Y ∈ Y can be stored in O(n) space

ZW

Geometric Precomputation 3/3

Resource requirements

- Small sets of access and transit nodes
- But precomputation time comparable to that for arc flags (we need a Dijkstra for each boundary node of each cell)
- There are various tricks to make this faster
- And we can also make it hierarchical ... see later slide
- See the references for details
- But let's now look at a precomputation based on CH

REI

Basic idea

- Do the CH precomputation on the given graph
- Let X = Y be the set of nodes with ordering number above a certain threshold T (we want $|X| = |Y| \sim \sqrt{n}$)
- For each node u in the graph do a forward search in the upward graph, and for each settled node v compute the first node x ∈ X on SP(u, v) if any; let X(u) be the union of all these x
- Similarly, compute Y(v) for each node v in the graph via a backward search in the downward graph

N

"Far-away" criterion

- Along with the computation of X(u) ... see picture on slide 15
 - Compute the maximal geometric distance Radius(u) of a node v where SP(u, v) does not contain a node from X(u)
- Define Far(u, v) = true if and only if the geometric distance from u to v is > Radius(u)
- We can also do the same for Y(v) and thus possibly further improve our "far-away" criterion
- For more refined "far-away" criteria, see papers in references
 - Note: the "far-away" criterion is called locality criterion there with exactly the opposite meaning ... quite confusing

N III

Precomputation

 Just do the CH precomputation and pick as transit nodes the T nodes contracted last ... it's really that simple

Access nodes

- For symmetric graph, X(u) = Y(u), that is we only need to compute **one** set of access nodes per set
- For each u, you need to find the transit nodes on all shortest paths starting at u (in the upwards graph)
- For each settled label, just **backtrack** the parent pointers
- Beware: no need to backtrack further from a node which you have already seen before in the backtracking ... complexity should be #arcs in the SP tree

REI

Simplification for Ex. Sheet 8

- For a fully functional TNR you would need to precompute and store **all** X(u) and **all** dist(u, x), x $\in X(u)$ to them
- Similarly you would need to precompute and store all dist(t₁, t₂) for all pairs of transit nodes t₁ and t₂
- For BaWü you would probably run into memory problems
- Instead do the following at query time, for given $\ensuremath{\mathsf{s}}$ and $\ensuremath{\mathsf{t}}$
 - compute X(s) and all dist(s, x), $x \in X(s)$
 - compute X(t) and all $dist(x, t), x \in X(t)$
 - compute all dist(x_1 , x_2) where $x_1 \in X(s)$ and $x_2 \in X(t)$
- But ignore the time for these three items when you benchmark the query time

TNR can be made hierarchical, too

- Here is an explanation for two levels of transit nodes
- For each node, precompute and store the distances to the "closest" level-1 transit nodes (that is, the first level-1 transit nodes on paths to anywhere else)
- For each level-1 transit node, precompute and store the distances to the "closest" level-2 transit nodes
- Precompute and store the distances between all pairs of level-2 transit nodes
- For a query from s to t, now try all combination of (s, x₁, x₂, y₂, y₁, t), where x₁ and y₁ are the level-1 access nodes of s and t, respectively, and x₂ and y₂ are the level-2 access nodes of the respective x₁ and y₁

N N N

Why does this make sense?

- We need the pairwise distances only for the level-2 transit nodes
- Therefore we can have more level-1 transit nodes and hence a better locality criterion = local searches needed only when s and t are very close together
- But we have to try out more combinations at query time
- Can be generalized to an arbitrary number of levels
- Experiments suggest 5 levels for the road network of a whole continent (Western Europe or the US)
- See the references for details

ZW

References

UNI FREIBURG

Transit Node Routing, original paper Ultrafast Shortest-Path Queries Via Transit Nodes Bast, Funke, Matijevic, DIMACS Shortest Path Challenge http://www.mpi-inf.mpg.de/~bast/papers/transit-dimacs.pdf Transit Node Routing, based on HH and CH PhD thesis from Dominik Schultes (HH), Chapter 6 http://algo2.iti.kit.edu/schultes/hwy/schultes_diss.pdf Master thesis from Robert Geisberger (CH), Section 4.2 http://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf Transit Node Routing, article in Science Magazine Fast Routing in Road Networks with Transit Nodes http://www.sciencemag.org/content/316/5824/566.short