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Overview of this lecture

 Organizational
– Your feedback from Exercise Sheet #8 (Transit Node Routing)

 Transit Networks
– In the US, "transit" means "public transportation"

– Transit node routing has nothing to do with this "transit"

– We will see how to model a transit network

– GTFS = General Transit Feed Specification

– Do our algorithms so far work on transit networks?

– Exercise Sheet #9:  Parse a transit network from GTFS and 
run 1000 queries on it, using basic Dijkstra
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Feedback on ES#8 (Transit Node Routing)

 Summary / excerpts          last checked July 4, 15:05

– Not hard for those with a working CH implementation

– Otherwise most time used for fixing bugs in old code

– Not a good idea to make the exercise sheets depending 
upon each other ... sorry, but it's hard to avoid for this stuff

But next sheets will be something completely new!

– Why store transit nodes in a hash set?
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Results for ES#8 (Transit Node Routing)

 Summary

– Average time to compute access nodes:

~ 1ms for both datasets

That would be ~ 1 hour for the whole of BaWü

– Average number of access nodes

6 for Saarland, 36 for BaWü  

– Average query time

~ 10 µs with C++, 2-3 times slower with Java

Note: the query times you measured benefit from the 
fact that all the relevant values are already in the cache
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Transit Networks

 What kind of data have we got?

– Stations (train stations, bus stops, etc.)

– Lines (trains, buses, trams, etc.)

– The schedule of these lines, that is, on which days do 
they serve which stations at which times

– How to model these as a directed graph?

So that "from A to B" queries become shorted path 
queries on such a graph, just like for road networks
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Time-dependent model   1/2

 The first thing that comes to mind

– Each station is a node

– There is an arc between two nodes u and v, if there is a 
vehicle (train, bus, tram, ...) going non-stop from u to v

– However, that arc can only be used at certain times, and 
the time it takes to travel across the arc depends on the 
vehicle commuting at that time

– We can model this via a cost function for each arc (u, v)

costu,v(t) = the time to get from u at time t ... to v

– Note: for road networks that function was a constant
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Time-dependent model   2/2

 Example

– Stations A and B with two lines L1 and L2

– L1 takes 1 hour from A to B (non-stop) and departs
from A at 10:00, 14:00 and 18:00

– L2 takes 1.5 hours from A to B (non-stop) and departs 
from A at 13:00 and 16:00
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Time-dependent Dijkstra   1/2

 How to compute shortest paths on such a graph?

– A simple variant of Dijkstra's algorithm does it

– Tentative distances at the nodes are now times of day

We will store absolute times (like 10:20) and call 
them t[u] for node u, but we could also store times 
relative to the start time (like 40 minutes)

– Start with t[s] = start time and all other t[u] = ∞

– When relaxing an arc (u, v) we compute c = cu,v(t[u]) and 
take t[v] = t[u] + c if that improves on the previous t[v] 

– As for ordinary Dijkstra process the node u with the 
smallest t[u] next, and stop when this is the target node 
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Time-dependent Dijkstra   2/2

 Example
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Time-expanded model   1/3

 A node = a particular time at a particular station

– Only at times, where something (= an arrival or a 
departure) is happening

– For example, Freiburg Hbf @ 10:57

– There is an arc between two nodes A@t1 and B@t2 if 
there is a vehicle departing from A at time t1 and 
arriving at B at time t2, without stops inbetween

– The cost of the arc is simply the travel time t2 – t1

– There is also an arc from A@t1 to that node A@t2 with 
the smallest t2 after t1 ... we call these waiting arcs
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Time-expanded model   2/3
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 Example



Time-expanded model   3/3

 How do we compute shortest paths in this model?

– It's an ordinary directed graph with (static) non-
negative arc costs, so we can use ordinary Dijkstra

– Problem: We do not have a target node, we only have 
a target station

– Solution: Run Dijsktra until any node from the target 
station is settled (which will be the first one reached)
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Time-expanded vs. time-dependent

 So far, not much difference

– Given a query A@t  B, consider the sequence of arcs 
relaxed by a (time-dependent) Dijkstra on the time-
dependent graph

– The Dijkstra on the time-expanded graph relaxes the 
same arcs in the same order

plus some additional waiting arcs to some additional 
nodes and the arcs leaving from these nodes

– Intuitively, the time-dependent Dijkstra considers 
waiting and normal arcs in one (time-dependent) arc

– The big advantage of the time-expanded model is that 
we have an ordinary directed graph and can thus use all
our previous algorithms on it
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Advanced modelling issues

 For example, what about ...

– Transfer buffers

We need a minimal amount of time to transfer 
between two vehicles  next slide

– Service days

Different schedules on different weekdays, holidays, 
etc.  later slide

– Multi-criteria cost functions

Maybe we can get from A@t to B in 3 hours with 0 
transfers, or in 2 hours with 2 transfers

Which one is better depends on user preference, so 
we should compute both  next lecture
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Transfer buffers   1/6

 Time-expanded model

– This is non-trivial, because we need to distinguish between

staying on a vehicle at a station (no transfer buffer)

changing the vehicle (non-zero transfer buffer)
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Transfer buffers   2/6   

 Time-expanded model ... Solution

– Split up each node from before into an arrival node and a 
departure node, and add an arc between the two

we can also model layover time that way now!

– For each arrival node A@t, add a new transfer node A@t' 
where t' = t + ∆ ... where ∆ is the transfer buffer

– For each departure node A@t have an arc from the transfer 
node A@t' with the largest t' that is ≤ t

– Have the waiting arcs between transfer nodes only

– Departure at the source is now from a departure node, and 
arrival at the target is at an arrival node
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Transfer buffers   3/6 
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 Time-expanded model ... Example



Transfer buffers   4/6

 Time-dependent model ... Solution 1

– We also have to distinguish here between staying on a 
vehicle and changing the vehicle at a station

– It looks like we can do this by simply remembering for each 
node, along with the tentative arrival time t[u], the id ℓ of 
the vehicle with which we arrive at u

– Then we can build the transfer buffer into the cost function

costu,v(t, ℓ) = time to reach v, if we are at u at time t sitting           
in vehicle ℓ

– Unfortunately, it can happen then that Dijkstra's algorithm 
misses some shortest paths
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Transfer buffers   5/6

 Time-dependent model ... Problem with Solution 1
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Transfer buffers   6/6

 Time-dependent model ... Solution 2

– When we can arrive at a station at two different times
t1 and t2 with different vehicles, and |t2 – t1| is ≤ the 
transfer buffer, pursue both possibilities

– Then we need to do a multi-label Dijkstra (maintains 
sets of labels per node) ... see next lecture

 Time-dependent model ... Solution 3

– Have separate arrival and departure nodes, too

– One arrival and one departure node per "line" suffices

less nice, since no longer only one node per station

but often a good compromise in practice
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GTFS

 General Transit Feed Specification

– Standard format established by Google in 2005

– The story how it started: http://tinyurl.com/6yczek2

– See the references to the GTFS specification

– Relatively complex, because there are so many 
pecularities, special cases, etc. for transit networks

– For a simple graph model, it is easy though
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GTFS

 Basic concepts

– stop = what we call a station

e.g. Freiburg Hbf or Siegesdenkmal

– trip = journey of a particular vehicle at a particular time

e.g. the journey of Bus 10 from Bärenweg at 17:56 to 
Siegesdenkmal at 18:07

– route = trips that have a common description (our "line")

e.g. all journeys of Bus 10 over the day

– service days = days of the week when a trip is available

e.g. on weekdays (Mo-Fr) or on the weekend (Sa-Su)
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GTFS

 The files you need for Exercise Sheet #9

– stop_times.txt :  the actual schedule information, what 
eventually becomes the arcs in the transit graph

– frequencies.txt : some lines repeat in exactly the same 
way over the same day, then you have the first trip in 
stop_times.txt, and how it repeats in frequencies.txt

– calendar.txt : service day patterns, and which days of the 
week belong to it

– trips.txt : tells us which trips commute on which service 
days (via the patterns from calendar.txt)

– All files are in CSV format = a table with one record per 
line, columns separated by a comma, headings in first line
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Implementation Advice   1/7

 You need a simple CSV Parser

– We have written one for you in both C++ and Java

because we are so incredibly nice

– You find it in the SVN folder for this lecture

– Very simple and easy-to-use interface

openFile(csvFileName) ... open the CSV file

readNextLine() ... read next line from file

getItem(i) ... get column i of line just read
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Implementation Advice   2/7

 Graph class

– If you have a graph class with members

Array<Array<Arc>> adjacenctArcs;
Array<Node> nodes;

you can use that for the (time-expanded) transit 
network as well

– That way, you can run your algorithms with little or no 
modifications on the transit network as well 

– You might want to add some additional info to the Node
class (like the station to which a node belongs) and to 
the Arc class (like the name of the GTFS route)
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Implementation Advice   3/7

 For the graph on a given weekday, do as follows:

– First parse calendar.txt and remember (in a hash set) 
those service ids which contain the given weekday

– Then parse trips.txt and remember (in a hash set) those 
trip ids with a valid service id from the hash set above

– Then parse stops.txt and create a mapping from the 
GTFS stop id strings to consecutive numerical stop ids

– Then parse frequencies.txt and store (in a hash map) the 
repetitions for each trip id ... not needed for Exercise!

– Then parse stop_times.txt and for each block of lines in 
the file with the same trip id, add the corresponding 
nodes and arcs to your graph ... see following slides
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Implementation Advice   4/7

 Blocks with the same trip id in stop_times.txt

– For the last step, it is very convenient to have all lines with 
the same trip id together in one block, and within this 
block have them sorted by stop_sequence

– The GTFS standard does not demand this ... but you can 
easily achieve this with a command-line sort

sort –t, -k1,1r –k5,5n stop_times.txt > new_file.txt 

– If you have frequency information for the trip id of a line 
from stop_times.txt, don't forget to repeat accordingly

Note: some GTFS feeds write all times explicitly in 
stop_times.txt and do not have frequencies.txt at all

In particular, this is so for the GTFS feed from ExSh#9
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Implementation Advice   5/7

 Arrival, departure, transfer nodes ... Step 1a

– While parsing stop_times.txt create the following arcs

between arrival and departure nodes ("traveling arcs")

from arrival nodes to transfer nodes ("alighting arcs")

– Create the corresponding nodes at the same time

– Note: you can use entirely new nodes for each trip ... there 
is no need to share nodes between different trips
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Implementation Advice   6/7

 Arrival, departure, transfer nodes ... Step 1b

– While parsing stop_times.txt, also maintain for each station 
the list of arrival and transfer nodes of that station, with their 
time and type (arrival or transfer)

Array<Array<Node>> nodesPerStation;

– In GTFS the station ids are strings, but better convert them 
to consecutive station ids during the parsing of stops.txt ... 
remember the correspondence like this:

HashMap<string, int> stationIdsByGtfsName;

– It remains to add the following arcs:

from transfer nodes to departure nodes ("boarding arcs")

from one transfer node to the next ("waiting arcs")
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Implementation Advice   7/7

 Arrival, departure, transfer nodes ... Step 2

– For each station: sort the nodes by time, and for equal times, 
sort the transfer nodes before the departure nodes, with ties 
between nodes of the same kind broken arbitrarily

– Then for each transfer node x
in the sorted sequence

add an arc to the next
transfer node in the sequence

add an arc to each departure
node that comes after x
without another transfer node
inbetween (none, if next node
after x is a transfer node)
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Some simple optimizations (not needed for Exercise)

 Less transfer nodes

– If a station has several 
departure nodes at the 
same time, it suffices to 
add a single transfer node 
for all of them

 Contract departure nodes

– This decreases the number 
of arcs that were incident 
to the departure nodes by 
a factor of 3/2

31



Road vs. Transit Networks

 Assume the time-expanded model

– Then we can run all our algorithms so far also for transit 
networks ... and they will correctly compute shortest paths

– But will the speed-up over ordinary Dijsktra be the same?

– We will look at that in the next lecture ...
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