
Efficient Route Planning
SS 2012

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 9, Wednesday July 4th, 2012
(Transit Networks, GTFS)

Overview of this lecture

 Organizational
– Your feedback from Exercise Sheet #8 (Transit Node Routing)

 Transit Networks
– In the US, "transit" means "public transportation"

– Transit node routing has nothing to do with this "transit"

– We will see how to model a transit network

– GTFS = General Transit Feed Specification

– Do our algorithms so far work on transit networks?

– Exercise Sheet #9: Parse a transit network from GTFS and
run 1000 queries on it, using basic Dijkstra

2

Feedback on ES#8 (Transit Node Routing)

 Summary / excerpts last checked July 4, 15:05

– Not hard for those with a working CH implementation

– Otherwise most time used for fixing bugs in old code

– Not a good idea to make the exercise sheets depending
upon each other ... sorry, but it's hard to avoid for this stuff

But next sheets will be something completely new!

– Why store transit nodes in a hash set?

3

Results for ES#8 (Transit Node Routing)

 Summary

– Average time to compute access nodes:

~ 1ms for both datasets

That would be ~ 1 hour for the whole of BaWü

– Average number of access nodes

6 for Saarland, 36 for BaWü

– Average query time

~ 10 µs with C++, 2-3 times slower with Java

Note: the query times you measured benefit from the
fact that all the relevant values are already in the cache

4

Transit Networks

 What kind of data have we got?

– Stations (train stations, bus stops, etc.)

– Lines (trains, buses, trams, etc.)

– The schedule of these lines, that is, on which days do
they serve which stations at which times

– How to model these as a directed graph?

So that "from A to B" queries become shorted path
queries on such a graph, just like for road networks

5

Time-dependent model 1/2

 The first thing that comes to mind

– Each station is a node

– There is an arc between two nodes u and v, if there is a
vehicle (train, bus, tram, ...) going non-stop from u to v

– However, that arc can only be used at certain times, and
the time it takes to travel across the arc depends on the
vehicle commuting at that time

– We can model this via a cost function for each arc (u, v)

costu,v(t) = the time to get from u at time t ... to v

– Note: for road networks that function was a constant

6

Time-dependent model 2/2

 Example

– Stations A and B with two lines L1 and L2

– L1 takes 1 hour from A to B (non-stop) and departs
from A at 10:00, 14:00 and 18:00

– L2 takes 1.5 hours from A to B (non-stop) and departs
from A at 13:00 and 16:00

7

Time-dependent Dijkstra 1/2

 How to compute shortest paths on such a graph?

– A simple variant of Dijkstra's algorithm does it

– Tentative distances at the nodes are now times of day

We will store absolute times (like 10:20) and call
them t[u] for node u, but we could also store times
relative to the start time (like 40 minutes)

– Start with t[s] = start time and all other t[u] = ∞

– When relaxing an arc (u, v) we compute c = cu,v(t[u]) and
take t[v] = t[u] + c if that improves on the previous t[v]

– As for ordinary Dijkstra process the node u with the
smallest t[u] next, and stop when this is the target node

8

Time-dependent Dijkstra 2/2

 Example

9

Time-expanded model 1/3

 A node = a particular time at a particular station

– Only at times, where something (= an arrival or a
departure) is happening

– For example, Freiburg Hbf @ 10:57

– There is an arc between two nodes A@t1 and B@t2 if
there is a vehicle departing from A at time t1 and
arriving at B at time t2, without stops inbetween

– The cost of the arc is simply the travel time t2 – t1

– There is also an arc from A@t1 to that node A@t2 with
the smallest t2 after t1 ... we call these waiting arcs

10

Time-expanded model 2/3

11

 Example

Time-expanded model 3/3

 How do we compute shortest paths in this model?

– It's an ordinary directed graph with (static) non-
negative arc costs, so we can use ordinary Dijkstra

– Problem: We do not have a target node, we only have
a target station

– Solution: Run Dijsktra until any node from the target
station is settled (which will be the first one reached)

12

Time-expanded vs. time-dependent

 So far, not much difference

– Given a query A@t  B, consider the sequence of arcs
relaxed by a (time-dependent) Dijkstra on the time-
dependent graph

– The Dijkstra on the time-expanded graph relaxes the
same arcs in the same order

plus some additional waiting arcs to some additional
nodes and the arcs leaving from these nodes

– Intuitively, the time-dependent Dijkstra considers
waiting and normal arcs in one (time-dependent) arc

– The big advantage of the time-expanded model is that
we have an ordinary directed graph and can thus use all
our previous algorithms on it

13

Advanced modelling issues

 For example, what about ...

– Transfer buffers

We need a minimal amount of time to transfer
between two vehicles  next slide

– Service days

Different schedules on different weekdays, holidays,
etc.  later slide

– Multi-criteria cost functions

Maybe we can get from A@t to B in 3 hours with 0
transfers, or in 2 hours with 2 transfers

Which one is better depends on user preference, so
we should compute both  next lecture

14

Transfer buffers 1/6

 Time-expanded model

– This is non-trivial, because we need to distinguish between

staying on a vehicle at a station (no transfer buffer)

changing the vehicle (non-zero transfer buffer)

15

Transfer buffers 2/6

 Time-expanded model ... Solution

– Split up each node from before into an arrival node and a
departure node, and add an arc between the two

we can also model layover time that way now!

– For each arrival node A@t, add a new transfer node A@t'
where t' = t + ∆ ... where ∆ is the transfer buffer

– For each departure node A@t have an arc from the transfer
node A@t' with the largest t' that is ≤ t

– Have the waiting arcs between transfer nodes only

– Departure at the source is now from a departure node, and
arrival at the target is at an arrival node

16

Transfer buffers 3/6

17

 Time-expanded model ... Example

Transfer buffers 4/6

 Time-dependent model ... Solution 1

– We also have to distinguish here between staying on a
vehicle and changing the vehicle at a station

– It looks like we can do this by simply remembering for each
node, along with the tentative arrival time t[u], the id ℓ of
the vehicle with which we arrive at u

– Then we can build the transfer buffer into the cost function

costu,v(t, ℓ) = time to reach v, if we are at u at time t sitting
in vehicle ℓ

– Unfortunately, it can happen then that Dijkstra's algorithm
misses some shortest paths

18

Transfer buffers 5/6

 Time-dependent model ... Problem with Solution 1

19

Transfer buffers 6/6

 Time-dependent model ... Solution 2

– When we can arrive at a station at two different times
t1 and t2 with different vehicles, and |t2 – t1| is ≤ the
transfer buffer, pursue both possibilities

– Then we need to do a multi-label Dijkstra (maintains
sets of labels per node) ... see next lecture

 Time-dependent model ... Solution 3

– Have separate arrival and departure nodes, too

– One arrival and one departure node per "line" suffices

less nice, since no longer only one node per station

but often a good compromise in practice

20

GTFS

 General Transit Feed Specification

– Standard format established by Google in 2005

– The story how it started: http://tinyurl.com/6yczek2

– See the references to the GTFS specification

– Relatively complex, because there are so many
pecularities, special cases, etc. for transit networks

– For a simple graph model, it is easy though

21

GTFS

 Basic concepts

– stop = what we call a station

e.g. Freiburg Hbf or Siegesdenkmal

– trip = journey of a particular vehicle at a particular time

e.g. the journey of Bus 10 from Bärenweg at 17:56 to
Siegesdenkmal at 18:07

– route = trips that have a common description (our "line")

e.g. all journeys of Bus 10 over the day

– service days = days of the week when a trip is available

e.g. on weekdays (Mo-Fr) or on the weekend (Sa-Su)

22

GTFS

 The files you need for Exercise Sheet #9

– stop_times.txt : the actual schedule information, what
eventually becomes the arcs in the transit graph

– frequencies.txt : some lines repeat in exactly the same
way over the same day, then you have the first trip in
stop_times.txt, and how it repeats in frequencies.txt

– calendar.txt : service day patterns, and which days of the
week belong to it

– trips.txt : tells us which trips commute on which service
days (via the patterns from calendar.txt)

– All files are in CSV format = a table with one record per
line, columns separated by a comma, headings in first line

23

Implementation Advice 1/7

 You need a simple CSV Parser

– We have written one for you in both C++ and Java

because we are so incredibly nice

– You find it in the SVN folder for this lecture

– Very simple and easy-to-use interface

openFile(csvFileName) ... open the CSV file

readNextLine() ... read next line from file

getItem(i) ... get column i of line just read

24

Implementation Advice 2/7

 Graph class

– If you have a graph class with members

Array<Array<Arc>> adjacenctArcs;
Array<Node> nodes;

you can use that for the (time-expanded) transit
network as well

– That way, you can run your algorithms with little or no
modifications on the transit network as well

– You might want to add some additional info to the Node
class (like the station to which a node belongs) and to
the Arc class (like the name of the GTFS route)

25

Implementation Advice 3/7

 For the graph on a given weekday, do as follows:

– First parse calendar.txt and remember (in a hash set)
those service ids which contain the given weekday

– Then parse trips.txt and remember (in a hash set) those
trip ids with a valid service id from the hash set above

– Then parse stops.txt and create a mapping from the
GTFS stop id strings to consecutive numerical stop ids

– Then parse frequencies.txt and store (in a hash map) the
repetitions for each trip id ... not needed for Exercise!

– Then parse stop_times.txt and for each block of lines in
the file with the same trip id, add the corresponding
nodes and arcs to your graph ... see following slides

26

Implementation Advice 4/7

 Blocks with the same trip id in stop_times.txt

– For the last step, it is very convenient to have all lines with
the same trip id together in one block, and within this
block have them sorted by stop_sequence

– The GTFS standard does not demand this ... but you can
easily achieve this with a command-line sort

sort –t, -k1,1r –k5,5n stop_times.txt > new_file.txt

– If you have frequency information for the trip id of a line
from stop_times.txt, don't forget to repeat accordingly

Note: some GTFS feeds write all times explicitly in
stop_times.txt and do not have frequencies.txt at all

In particular, this is so for the GTFS feed from ExSh#9

27

Implementation Advice 5/7

 Arrival, departure, transfer nodes ... Step 1a

– While parsing stop_times.txt create the following arcs

between arrival and departure nodes ("traveling arcs")

from arrival nodes to transfer nodes ("alighting arcs")

– Create the corresponding nodes at the same time

– Note: you can use entirely new nodes for each trip ... there
is no need to share nodes between different trips

28

Implementation Advice 6/7

 Arrival, departure, transfer nodes ... Step 1b

– While parsing stop_times.txt, also maintain for each station
the list of arrival and transfer nodes of that station, with their
time and type (arrival or transfer)

Array<Array<Node>> nodesPerStation;

– In GTFS the station ids are strings, but better convert them
to consecutive station ids during the parsing of stops.txt ...
remember the correspondence like this:

HashMap<string, int> stationIdsByGtfsName;

– It remains to add the following arcs:

from transfer nodes to departure nodes ("boarding arcs")

from one transfer node to the next ("waiting arcs")

29

Implementation Advice 7/7

 Arrival, departure, transfer nodes ... Step 2

– For each station: sort the nodes by time, and for equal times,
sort the transfer nodes before the departure nodes, with ties
between nodes of the same kind broken arbitrarily

– Then for each transfer node x
in the sorted sequence

add an arc to the next
transfer node in the sequence

add an arc to each departure
node that comes after x
without another transfer node
inbetween (none, if next node
after x is a transfer node)

30

Some simple optimizations (not needed for Exercise)

 Less transfer nodes

– If a station has several
departure nodes at the
same time, it suffices to
add a single transfer node
for all of them

 Contract departure nodes

– This decreases the number
of arcs that were incident
to the departure nodes by
a factor of 3/2

31

Road vs. Transit Networks

 Assume the time-expanded model

– Then we can run all our algorithms so far also for transit
networks ... and they will correctly compute shortest paths

– But will the speed-up over ordinary Dijsktra be the same?

– We will look at that in the next lecture ...

32

References

 Transit network models

Timetable information: Models and Algorithms

Müller-Hannemann, Schulz, Wagner, Zaroliagis, ATMOS 2007

http://www.springerlink.com/content/x54715k627860283/

 GTFS

– https://developers.google.com/transit/gtfs/

– http://www.gtfs-data-exchange.com/

33

34

