Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2012 / 2013

Vorlesung 12, Dienstag, 22. Januar 2013

(Graphen, Breiten/Tiefensuche, Zusammenhangskomponenten)

Prof. Dr. Hannah Bast
Lehrstuhl für Algorithmen und Datenstrukturen
Institut für Informatik
Universität Freiburg

Blick über die Vorlesung heute

Organisatorisches

Ihre Erfahrungen mit dem Ü11 (a,b-Bäume)

Graphen

- Neben Feldern, Listen und Bäumen die häufigste Datenstruktur (Bäume sind eine spezielle Art von Graph)
- Darstellung im Rechner
- Breitensuche (Breadth First Search = BFS)
- Tiefensuche (Depth First Search = DFS)
- Zusammenhangskomponenten eines Graphen
- Übungsblatt 12: Berechnung der größten Zusammenhangskomponente in einem Straßengraphen mittels BFS oder DFS

Erfahrungen mit dem Ü11 (a,b-Bäume)

- Zusammenfassung / Auszüge Stand 22. Januar 16:15
 - Vorlesung gut erklärt und Übungsblatt gut machbar
 - Man konnte sehr viel aus der Vorlesung übernehmen
 - Die meiste Arbeit war, es schön aufzuschreiben
 - Programmieraufgaben sind aber trotzdem interessanter
 - Manchmal etwas langatmig, wenn versucht wird, die anderthalb Stunden voll zu kriegen ... versuche ich nicht
 - Mehr Werbung wozu das alles gut ist, wie bei der MST

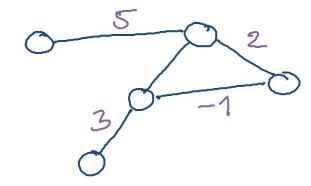
Graphen 1/6

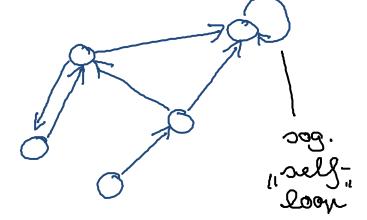
Definition:

- Ein Graph G besteht aus einer Menge V von Knoten ...
 - Englisch: vertices (daher V) oder nodes
- und einer Menge E von Kanten
 - English: edges (daher E) oder arcs
- Eine Kante e verbindet jeweils zwei Knoten u und v
 - ungerichtete Kante: e = {u, v} (Menge)
 - gerichtete Kante: e = (u, v) (Tupel)
- Gewichteter Graph
 - Eine reelle Zahl pro Kante, das sogenannte Gewicht der Kante, je nach Anwendung auch Länge oder Kosten der Kante genannt

Graphen 2/6

Beispiele





ungenickteher Grant mut Kanstengemickten

genichteher Graph Colne Kontengenichte)

Graphen

3/6

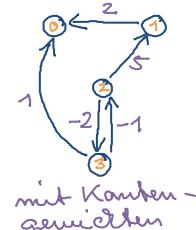
UNI FREIBURG

- Wie repräsentiert man Graphen im Rechner
 - Da gibt es zwei klassischen Arten

Adjazenzmatrix ... Platzverbrauch $\Theta(|V|^2)$

Adjazenzlisten bzw. **–felder** ... Platzverbrauch $\Theta(|V| + |E|)$

geniotteter Graph:



Adjazenz-

Adjarenzlesten:

Graphen 4/6

- Errigonigognad 3
- Grade in einem Graphen G = (V, E)
 - Falls gerichtet
 - Eingangsgrad von einem Knoten u
 - = Anzahl eingehender Kanten = $|(v,u) : (v,u) \in E|$
 - Ausgangsgrad von einem Knoten u
 - = Anzahl ausgehender Kanten = $|(u,v) : (u,v) \in E|$
 - Falls ungerichtet
 - Grad von einem Knoten u
 - = Anzahl adjazenter Kanten = $|\{u,v\} : \{u,v\} \in E|$

Graphen 5/6

- Pfade in einem Graphen G = (V, E)
 - Ein Pfad in G ist eine Folge $u_1, u_2, u_3, ..., u_l \in V$ mit
 - (u_1,u_2) , (u_2,u_3) , ..., $(u_{l-1},u_l) \in E$ [gerichteter Graph]
 - $\{u_1, u_2\}, \{u_2, u_3\}, ..., \{u_{l-1}, u_l\} \in E$ [ungerichteter Graph]
 - Die Länge des Pfades (auch: Kosten des Pfades)
 - ohne Kantengewichte: Anzahl der Kanten
 - mit Kantengewichte: Summe der Gewichte auf dem Pfad
 - Der kürzeste Pfad (engl. shortest path) zwischen zwei
 Knoten u und v ist der Pfad u, ..., v mit der kürzesten Länge
 - Der **Durchmesser** eines Graphen ist der längste kürzeste
 Pfad = max_{u,v}{Länge von P : P ist ein kürzester Pfad zwischen u und v}

Graphen 6/6

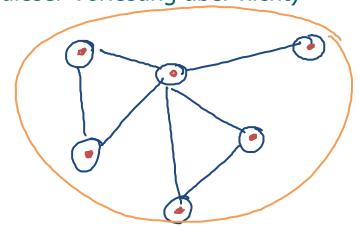
UNI FREIBURG

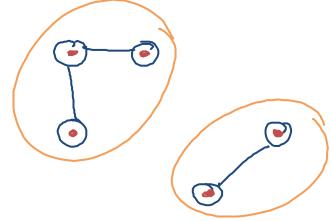
■ Beispiel Pfade

Zusammenhangskomponenten

- Für einen **ungerichteten** Graphen G = (V,E)
 - Die Zusammenhangskomponenten bilden eine Partition von V, also $V = V_1$ u ... u V_k
 - Zwei Knoten u und v sind in derselben Zusammenhangskomponente, wenn es einen Pfad zwischen u und v gibt

(Für **gerichtete** Graphen ist die Definition komplizierter, man spricht dann von **starken** Zusammenhangskomponenten, das machen wir in dieser Vorlesung aber nicht)





Graphexploration

die erreiabor van 5 sind

Informale Definition

- Gegeben ein Graph G = (V, E) und ein Startknoten $s \in V$, besuche "systematisch" alle Knoten von V
- Breitensuche = in der Reihenfolge der "Entfernung" von s
 - Englisch: breadth first search = BFS
- Tiefensuche = erstmal "möglichst weit weg" von s
 - Englisch: depth first search = DFS
- Das ist kein "Problem" an sich, taucht aber oft als Teil /
 Subroutine von anderen Algorithmen auf
 - Zum Beispiel in der Übungsaufgabe, zur Berechnung der Zusammenhangskomponenten

Breitensuche (BFS) 1/2

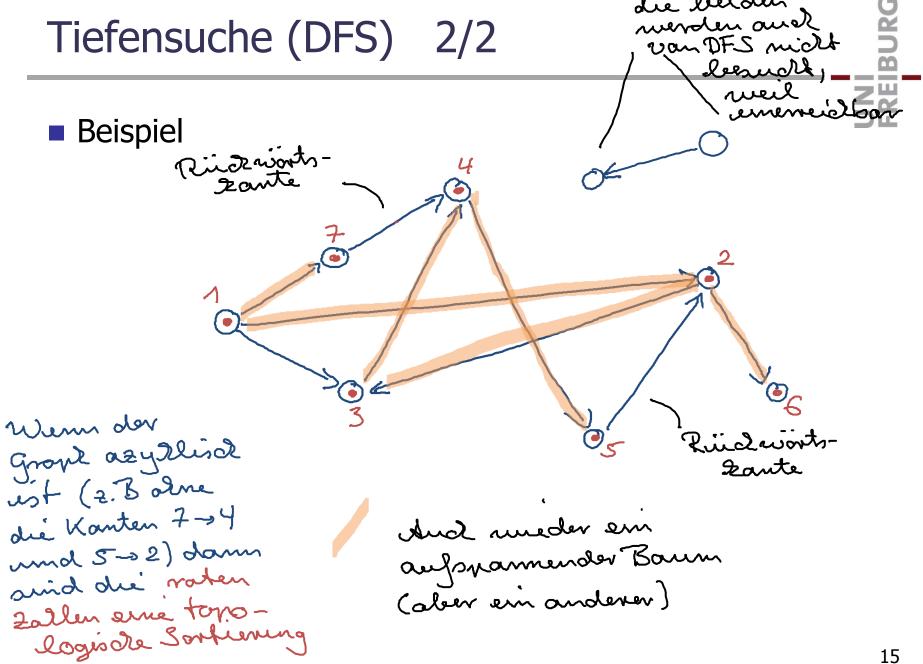
Idee

- Markierung für jeden Knoten, zu Beginn alle unmarkiert
- Beginne mit einem Startknoten und markiere ihn (Level 0)
- Finde alle Knoten die zum Startknoten benachbart und noch nicht markiert sind und markiere sie (Level 1)
- Finde alle Knoten, die zu einem Level-1 Knoten benachbart und noch nicht markiert sind und markiere sie (Level 2)
- Usw. bis ein Level keine benachbarten Knoten mehr hat, die noch nicht markiert sind
- Das markiert insbesondere alle Knoten, die in derselben
 Zusammenhangskomponente sind wie der Startknoten

die beiden Sur surd vod Laisensur Breitensuche (BFS) 1/2 Vorniorts Dante Quertante Beispiel Rindworts Dante LEVEL O (START) LEVEL 1 Diese Konten bulden einen sogenannten aufspannenden Baum (spanning tree) = Baum LEVEL 2 LEVEL 3 der alle erreierboren Knoben entralt 13

Idee

- Markierung für jeden Knoten, zu Beginn alle unmarkiert
- Beginne mit einem Startknoten und markiere ihn
- Gehe in irgendeiner Reihenfolge die zum Startknoten benachbarten Knoten durch und tue Folgendes:
 Falls der Knoten noch nicht markiert ist, markiere ihn und starte rekursiv eine Tiefensuche von dort aus
- Das sucht zuerst "in die Tiefe" (vom Startknoten aus)
- Auch DFS markiert schließlich alle Knoten, die in derselben
 Zusammenhangskomponenten liegen wie der Startknoten
- Auf azyklischen Graphen liefert DFS topologische Sortierung
 Das ist eine Nummerierung der Knoten, so dass jede Kante von einem Knoten mit kleinerer Nummer zu einem mit größerer Nummer geht



UNI FREIBURG

Komplexität von BFS und DFS

■ Für beide Verfahren gilt:

- Konstante Arbeit für jeden Knoten und jede Kante
- Die Laufzeit ist also genau O(|V'| + |E'|)
 wobei V' und E' gerade die Menge aller Knoten und Kanten in der ZK sind, in der der Startknoten liegt
- Das kann man also (bis auf einen konstanten Faktor) nicht besser machen

Literatur / Links

UNI FREIBURG

- Graphen
 - In Mehlhorn/Sanders:
 - 8 Graph Representation
 - In Wikipediahttp://en.wikipedia.org/wiki/Graph (mathematics)
- Graphexploration und Zusammenhangskomponenten
 - In Mehlhorn/Sanders:
 - 9 Graph Traversal
 - In Wikipedia

http://en.wikipedia.org/wiki/Breadth-first_search

http://en.wikipedia.org/wiki/Depth-first_search

http://en.wikipedia.org/wiki/Connected_component