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Motivation 

• IE systems  extract semantic relations from 
natural language text 

• Use supervised learning  
•  availability of training data 

• Can not scale to the web 

• Open IE systems aim to handle the unbounded 
number of relations  
• self-supervised learning 

• Automatic heuristics generate labeled data 

• How well can these open systems perform? 
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Wikipedia-based Open Extractor 

• Improves dramatically on text runner’s precision 
and recall. 

• A self-supervised learning  

• heuristic matches between Wikipedia infobox attribute 

values and corresponding sentences  

• Operate in two modes: 
• Restricted to POS 

• Dependency parse features 
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Open Information Extractor 

•  A function from a document d, to a set of 
triples,{<arg1,rel,arg2>}, where the args are 
noun phrases and “rel”  indicating a semantic 
relation between the two noun phrases 

 

• The extractor should produce one triple for 
every relation stated explicitly in the text 
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Open Information Extractor 
Example 

 

• Article: “Stanford university” 

• Infobox: <estabilished,1891> 

• Sentence: ” the university was founded in 1891 
by… ” 

• The triple would be: 

• <arg1,rel,arg2>  

• <Stanford university,estabilished,1891> 
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Architecture of WOE 
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Preprocessor 

• Sentence Splitting 

• Transform each Wikipedia article into HTML  

• Splits into sentences by OpenNLP 

• NLP annotation 

• OpenNLP to supply POS tags and NP-chunk 
annotations 

• Stanford Parser to create a dependency parse 

• Compiling synonyms 

• The preprocessor build a set of synonyms 

• Uses Wikipedia redirection pages and backward links  8 



Matcher 

• Constructs training data for the learner 
component 

• Given a Wikipedia page with an infobox 

• the matcher iterates through all infobox attributes 

•  looking for sentence that contains references to both 

the subject of the article and the attribute value  

• These noun phrases will be annotated in the training 

set. 
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Matcher 

• Matching primary entities 

      Use heuristics : 

• Full match  

• Partial match: “Amherst ” matches “Amherst, Mass”  

• Patterns of “the<type>”: “City” for ” Ithaca”  

• The most frequent pronoun: ” he” for the page on 
“Albert Einstein” 

• Matching sentence 

• The matcher seeks a unique sentence to match the 
attribute value  
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Learning Extractors 

• Extraction with parser features 

• WOE𝑃𝑎𝑟𝑠𝑒 using features from dependency-parse 
trees. 

• It uses a pattern learner to classify whether the 
shortest dependency path between two noun phrase 
indicate a semantic relation  

• Extraction with shallow features  

• WOE𝑃𝑂𝑆 limited to shallow features like POS tags 

• Trains a conditional random field(CRF) to output 
certain text between noun phrases when the text 
denotes such a relation. 
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Extraction with Parser Features 
Shortest Dependency Path as Relation 
  
“Dan was not born in Berkeley.” 

• The Stanford parser dependencies are: 
 nsubjpass(born-4, Dan-1)  

 auxpass(born-4, was-2) 

 neg(born-4, not-3) 

 root(ROOT-0, born-4)  

 prep_in(born-4, Berkeley-6) 
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Extraction with Parser Features 
Shortest Dependency Path as Relation 
 • “Dan was not born in Berkeley.” 

• CorePath: 
 

 

• ExpandPath: 
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Extraction with Parser Features 
Building a Database of Patterns 

 • Learner generates a corePath between the tokens 
denoting the subject and the infobox attribute 
value. 

• To improve learning performance: 
• Generalized–corePaths: eliminate irrelevant relations 
• Lexical words in corePaths are replaced with their POS tags 
• Extraction pattern 

 

• WOE builds a database (named DB𝒑) of 15,333 
distinct patterns  

• Each pattern p associated with a frequency  
 

  

 
14 



Extraction with Parser Features 
Learning a Pattern Classifier 

 

• 𝑊𝑂𝐸𝑝𝑎𝑟𝑠𝑒  checks whether the generalized-corePath 
from a test triple is present in 𝐷𝐵𝑝 and computes the 

normalized logarithmic frequency as the probability: 

• 𝒇𝒑 :associated frequency of the pattern 

• 𝒇𝒎𝒂𝒙: maximal frequency of  patterns in 𝐷𝐵𝑝 

• 𝒇𝒎𝒊𝒏:controlling  threshold, minimal frequency of a valid 
pattern  
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Extraction with Parser Features 
Learning a Pattern Classifier 

• Example: 

• “Dan was not born in Berkeley ” 

• Dan as arg1 , Berkeley as arg2  

• Computes corePath 

• Abstracts to  

• Queries  𝐷𝐵𝑝to retrieve the frequency 𝑓𝑝=29112 and 

assigns probability of 0.95(𝑓𝑚 ∶ 50.259) 

•  𝑊𝑂𝐸𝑝𝑎𝑟𝑠𝑒 traverses the triple’s expandPath to out put 
the final expression 
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Extraction with Shallow Features 

• High speed can be crucial when processing web-scale 
corpora 

• Shallow features like POS-tags 

• Use the same matching sentence set behind 𝑫𝑩𝑷  to 

generate positive examples 

• Negative examples are generated from random noun-
phrase pairs  

• generalized-corePaths which are not in 𝑫𝑩𝑷  

• Learning algorithm and selection features as textrunner  
• A two-order CRF chain model is trained with Mallet package   
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Experiments 

• Three corpora for experiments: 
• WSJ from Penn Treebank 

• Wikipedia 

• Web 

• Randomly selected 300 sentences for each 

• Examined by two people to label all reasonable triples 

• Submitted to Amazon Mechanical Turk for verification 

• Each triple examined by 5 Turkers  

• Positive when more than 3 Turkers marked them as 
positive  
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Overall Performance Analysis 

 How do these systems perform against each other? 

 How does performance vary w.r.t sentence length? 

 How does extraction speed vary w.r.t sentence length? 
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Overall Performance Comparison 

 

• 𝑊𝑂𝐸𝑝𝑜𝑠 is better 
than TextRunner on 
precision  

• Better training dataset  

 

• 𝑊𝑂𝐸𝑝𝑎𝑟𝑠𝑒 is the 
best on recall 

• Parser features 
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Extraction Performance vs. 
Sentence Length 

 

• Long sentence have 
long-distance 
relations 

• Difficult for shallow 
feature 
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Extraction Speed vs. Sentence 
Length 

 

• 𝑊𝑂𝐸𝑝𝑎𝑟𝑠𝑒’s 
extraction time 
grows quadratically 

• Reliance on parsing 
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Shallow or Deep Parsing 

• Shallow features like POS tags enable fast extraction 
over large-scale corpora  

• Deep features are derived from parse trees  
• training better extractors 

• Abstracted dependency path features are highly 
informative   

• In Web, many sentences  contain complicated long-
distance relations 

• Parser features are more powerful  
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 Conclusion 

• WOE  a new approach that uses self-supervised learning 
over unlexicalized  features, based on heuristic match 
between Wikipedia infoboxes and corresponding text 

• Runs in two modes  
• 𝑾𝑶𝑬𝒑𝒐𝒔: a CRF extractor trained with shallow features like POS 

tags 

• 𝑾𝑶𝑬𝒑𝒂𝒓𝒔𝒆 ∶ a pattern classifier learned from dependency path 
patterns 

• In comparison with textrunner 
•   𝑾𝑶𝑬𝒑𝒐𝒔 runs at the same speed, but achieves an F-measure 

which is between 9% and 23% greater  

• 𝑾𝑶𝑬𝒑𝒂𝒓𝒔𝒆 achieves an F-measure which is between %51 and 
70%, but runs about 30X times slower due to it reliance on 
parsing. 
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