
Open Information
Extraction using
Wikipedia

Soraya Nikousokhan

Department of Computer Science

Albert-Ludwigs-University Freiburg, Germany

Nov.2013

1

Overview

• Motivation

• Wikipedia-based Open Extractor

• Architecture of WOE

• Preprocessor

• Matcher

• Learning Extractors

• Extraction with parser features

• Extraction with Shallow Features

• Performance Analysis

• Shallow or Deep Parsing

• Conclusion

2

Motivation

• IE systems extract semantic relations from
natural language text

• Use supervised learning
• availability of training data

• Can not scale to the web

• Open IE systems aim to handle the unbounded
number of relations
• self-supervised learning

• Automatic heuristics generate labeled data

• How well can these open systems perform?

3

Wikipedia-based Open Extractor

• Improves dramatically on text runner’s precision
and recall.

• A self-supervised learning

• heuristic matches between Wikipedia infobox attribute

values and corresponding sentences

• Operate in two modes:
• Restricted to POS

• Dependency parse features

 4

Open Information Extractor

• A function from a document d, to a set of
triples,{<arg1,rel,arg2>}, where the args are
noun phrases and “rel” indicating a semantic
relation between the two noun phrases

• The extractor should produce one triple for
every relation stated explicitly in the text

5

Open Information Extractor
Example

• Article: “Stanford university”

• Infobox: <estabilished,1891>

• Sentence: ” the university was founded in 1891
by… ”

• The triple would be:

• <arg1,rel,arg2>

• <Stanford university,estabilished,1891>

6

Architecture of WOE

7

Preprocessor

• Sentence Splitting

• Transform each Wikipedia article into HTML

• Splits into sentences by OpenNLP

• NLP annotation

• OpenNLP to supply POS tags and NP-chunk
annotations

• Stanford Parser to create a dependency parse

• Compiling synonyms

• The preprocessor build a set of synonyms

• Uses Wikipedia redirection pages and backward links 8

Matcher

• Constructs training data for the learner
component

• Given a Wikipedia page with an infobox

• the matcher iterates through all infobox attributes

• looking for sentence that contains references to both

the subject of the article and the attribute value

• These noun phrases will be annotated in the training

set.

9

Matcher

• Matching primary entities

 Use heuristics :

• Full match

• Partial match: “Amherst ” matches “Amherst, Mass”

• Patterns of “the<type>”: “City” for ” Ithaca”

• The most frequent pronoun: ” he” for the page on
“Albert Einstein”

• Matching sentence

• The matcher seeks a unique sentence to match the
attribute value

10

Learning Extractors

• Extraction with parser features

• WOE𝑃𝑎𝑟𝑠𝑒 using features from dependency-parse
trees.

• It uses a pattern learner to classify whether the
shortest dependency path between two noun phrase
indicate a semantic relation

• Extraction with shallow features

• WOE𝑃𝑂𝑆 limited to shallow features like POS tags

• Trains a conditional random field(CRF) to output
certain text between noun phrases when the text
denotes such a relation.

11

Extraction with Parser Features
Shortest Dependency Path as Relation

“Dan was not born in Berkeley.”

• The Stanford parser dependencies are:
 nsubjpass(born-4, Dan-1)

 auxpass(born-4, was-2)

 neg(born-4, not-3)

 root(ROOT-0, born-4)

 prep_in(born-4, Berkeley-6)

12

Extraction with Parser Features
Shortest Dependency Path as Relation
 • “Dan was not born in Berkeley.”

• CorePath:

• ExpandPath:

13

Extraction with Parser Features
Building a Database of Patterns

 • Learner generates a corePath between the tokens
denoting the subject and the infobox attribute
value.

• To improve learning performance:
• Generalized–corePaths: eliminate irrelevant relations
• Lexical words in corePaths are replaced with their POS tags
• Extraction pattern

• WOE builds a database (named DB𝒑) of 15,333
distinct patterns

• Each pattern p associated with a frequency

14

Extraction with Parser Features
Learning a Pattern Classifier

• 𝑊𝑂𝐸𝑝𝑎𝑟𝑠𝑒 checks whether the generalized-corePath
from a test triple is present in 𝐷𝐵𝑝 and computes the

normalized logarithmic frequency as the probability:

• 𝒇𝒑 :associated frequency of the pattern

• 𝒇𝒎𝒂𝒙: maximal frequency of patterns in 𝐷𝐵𝑝

• 𝒇𝒎𝒊𝒏:controlling threshold, minimal frequency of a valid
pattern

15

Extraction with Parser Features
Learning a Pattern Classifier

• Example:

• “Dan was not born in Berkeley ”

• Dan as arg1 , Berkeley as arg2

• Computes corePath

• Abstracts to

• Queries 𝐷𝐵𝑝to retrieve the frequency 𝑓𝑝=29112 and

assigns probability of 0.95(𝑓𝑚 ∶ 50.259)

• 𝑊𝑂𝐸𝑝𝑎𝑟𝑠𝑒 traverses the triple’s expandPath to out put
the final expression

16

Extraction with Shallow Features

• High speed can be crucial when processing web-scale
corpora

• Shallow features like POS-tags

• Use the same matching sentence set behind 𝑫𝑩𝑷 to

generate positive examples

• Negative examples are generated from random noun-
phrase pairs

• generalized-corePaths which are not in 𝑫𝑩𝑷

• Learning algorithm and selection features as textrunner
• A two-order CRF chain model is trained with Mallet package

17

Experiments

• Three corpora for experiments:
• WSJ from Penn Treebank

• Wikipedia

• Web

• Randomly selected 300 sentences for each

• Examined by two people to label all reasonable triples

• Submitted to Amazon Mechanical Turk for verification

• Each triple examined by 5 Turkers

• Positive when more than 3 Turkers marked them as
positive

18

Overall Performance Analysis

 How do these systems perform against each other?

 How does performance vary w.r.t sentence length?

 How does extraction speed vary w.r.t sentence length?

19

Overall Performance Comparison

• 𝑊𝑂𝐸𝑝𝑜𝑠 is better
than TextRunner on
precision

• Better training dataset

• 𝑊𝑂𝐸𝑝𝑎𝑟𝑠𝑒 is the
best on recall

• Parser features
20

Extraction Performance vs.
Sentence Length

• Long sentence have
long-distance
relations

• Difficult for shallow
feature

21

Extraction Speed vs. Sentence
Length

• 𝑊𝑂𝐸𝑝𝑎𝑟𝑠𝑒’s
extraction time
grows quadratically

• Reliance on parsing

22

Shallow or Deep Parsing

• Shallow features like POS tags enable fast extraction
over large-scale corpora

• Deep features are derived from parse trees
• training better extractors

• Abstracted dependency path features are highly
informative

• In Web, many sentences contain complicated long-
distance relations

• Parser features are more powerful

23

 Conclusion

• WOE a new approach that uses self-supervised learning
over unlexicalized features, based on heuristic match
between Wikipedia infoboxes and corresponding text

• Runs in two modes
• 𝑾𝑶𝑬𝒑𝒐𝒔: a CRF extractor trained with shallow features like POS

tags

• 𝑾𝑶𝑬𝒑𝒂𝒓𝒔𝒆 ∶ a pattern classifier learned from dependency path
patterns

• In comparison with textrunner
• 𝑾𝑶𝑬𝒑𝒐𝒔 runs at the same speed, but achieves an F-measure

which is between 9% and 23% greater

• 𝑾𝑶𝑬𝒑𝒂𝒓𝒔𝒆 achieves an F-measure which is between %51 and
70%, but runs about 30X times slower due to it reliance on
parsing.

24

Reference

• Open Information Extraction using Wikipedia. ,Fei Wu ,Daniel
S. Weld, University of Washington .

25

