
Efficient Route Planning
SS 2012

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 10, Wednesday July 11th, 2012
(Multi-criteria costs, Multi-label Dijkstra)

Overview of this lecture

 Organizational
– Your results from Ex. Sheet #9 (Transit Networks, GTFS)

– This is the third to last lecture

– Update on the exam date: Monday, August 20 … ok?

 Multi-criteria costs
– How to model  Pareto sets

– How to compute shortest paths  Multi-label Dijkstra

– How do our algorithms so far perform on transit networks?

 Exercise sheet
– Half theoretical this time

– Coding part is just a single method this time

2

Feedback on ES#9 (Transit Networks, GTFS)

 Summary / excerpts last checked July 11, 14:24

– Not always clear how pick node at source station

– Manhattan dataset had connectivity problems

for a random query, prob. of existing SP was < 20%

3

Results for ES#9 (Transit Networks, GTFS)

 Summary

– Manhattan graph has 0.8M nodes and 1.4M arcs

And that is only a small part of one city!

Compare to BaWü: 1.3M nodes and 2.6M arcs

– Dijkstra query times around 10 – 100 milliseconds

Dijkstra query times for BaWü where 10 times larger

But that was only for queries with a connection at all

Unfortunately, bad connectivity in Manhattan data

No shortest path at all for over 80% of all queries

– Reason: walking between stations crucial for this dataset

400644,,FT WASHINGTON AV - W 181 ST,,40.850636,-73.938484,,,0,
400631,,FT WASHINGTON AV - W 181 ST,,40.851204,-73.93808,,,0,

4

Multi-criteria cost functions 1/5

 So far our costs were always scalar numbers

– ... namely the travel time

– But there are many other criteria a user might want to
optimize, too:

price (both road and transit networks)

beauty of the trip (both road and transit networks)

minimize walking between stations (transit only)

minimize number of transfers (transit only)

– For the sake of explanation let us look at two criteria
costs for the rest of the lecture: travel time and penalty

(the penalty grows with more walking and more transfers)

5

Multi-criteria cost functions 2/5

 More than one solution

– With two (or more) criteria, there is now the possibility
of more than one optimal solution

3 hours with 0 transfers is incomparable to

2 hours with 1 transfer

– However, some solutions are strictly better than others:

2 hours with 1 transfer is better than

3 hours with 2 transfers

6

Multi-criteria cost functions 3/5

 Formally

– Costs are pairs (x, y) of scalars

– We write (x, y) ≤ (x', y') if and only if x ≤ x' and y ≤ y'

– We write (x, y) = (x', y') if and only if x = x' and y = y'

– We write (x, y) < (x', y') iff (x, y) ≤ (x', y') and (x, y) ≠ (x', y')

– We say that (x, y) and (x', y') are incomparable

if neither (x, y) ≤ (x', y') nor (x', y') ≤ (x, y)

 Example for such cost pairs

– If the second component is simply #transfers, an arc from an
arrival node at time 8:00 to a transfer node at time 8:05 would
have cost (0:05, 1), and all other arcs would have costs (…, 0)

7

Multi-criteria cost functions 4/5

 Lemma 1

– For each set of costs C there exists a subset C' of C such that

for each c1, c2 ϵ C' with c1 ≠ c2, c1 is incomparable to c2

for each c ϵ C, there exists a c' ϵ C' with c' ≤ c

– Proof: as long as C contains c1, c2 with c1 ≤ c2, remove c2

 For a given query

– ... let C be the set of costs of all possible paths

– Then we want to compute a subset C' like above, called the
set of optimal solutions or the Pareto set of C

– As usual, we discuss only how to obtain the costs, and it will
be easy to see in the end how to get paths with these costs

8

Multi-criteria cost functions 5/5

 For a given C, is this subset C' unique?

– Let C1 and C2 be two subsets of C according to Lemma 1

9

Multi-label Dijkstra 1/5

 How to compute these sets of solutions

– Again, a variant of Dijkstra's algorithm does it

– Consider ordinary Dijkstra, and think of the tentative costs
at the nodes as labels (contain a single scalar, namely the
tentative cost)

– Initially there is only one label at the source, holding 0

– All (not yet settled) labels are in a priority queue, according
to some order on the set of possible labels

– When processing the smallest label from the PQ, we settle
it, and relax the outgoing arcs of the node to which the
label belongs, creating new labels at the adjacent nodes

– At ech node keep only the best label

10

Multi-label Dijkstra 2/5

 We can do the exact same thing

– ... with sets of labels at each node, example:

11

Multi-label Dijkstra 3/5

 In which order should we process the labels?

– Let us denote that order by <PQ

because it's the order in which we pick nodes from the PQ

– Then <PQ must be a refinement of < that is:

(x, y) < (x', y')  (x, y) <PQ (x', y')

– Why does that work + why is it required? ... see next slide

– Examples for <PQ for two-criteria costs:

(x, y) <PQ (x', y') iff x < x' or (x = x' and y < y') [time first]

(x, y) <PQ (x', y') iff y < y' or (y = y' and x < x') [penalty first]

(x, y) <PQ (x', y') iff x + y < x' + y' [sum]

12

Multi-label Dijkstra 4/5

 Correctness proof (sketch)

– For a given source node s, consider the union C of the sets of
optimal costs from s at all nodes

– As in our correctness proof for ordinary Dijkstra (Lecture 2),
consider the PQ order on C and assume we have no equals:

(x1, y1) <PQ (x2, y2) <PQ (x3, y3) <PQ …

– Consider an arbitrary cost (x, y) from C at a node u, and let v
be the predecessor of u of a shortest path to u with that cost

– Let (x', y') be the cost of the path until v; note (x', y') < (x, y)

– If the PQ order is a refinement of the label order, then (x', y')
was processed earlier, and by way of induction everything was
correct up to this point

13

Multi-label Dijkstra 5/5

 How about on a time-dependent graph?

– Then we have a similar problem as with the transfer buffers

– That is, labels computed along prefixes of shortest paths do
not necessarily belong to shortest paths

– Now it does not even suffice to keep all labels, where the
time differs only by the transfer buffer:

14

Road vs. Transit Networks

 All our routing algorithms so far

– ... in principle compute shortest paths on arbitrary graphs

– However, we just verified their efficiency on road networks

 Transit networks in the time-expanded model

– ... are also just graphs (with static arc costs)

– How do our algorithms so far perform on these graphs

– This will be discussed on the remaining slides

our discussion will be relatively high-level and informal

15

Dijkstra's algorithms

 Performance on time-expanded transit networks

– One iteration takes ~ 1 µsec / node, as usual

– Transit networks are bigger than road networds

Recall: Manhattan alone almost as large as BaWü

– Like for road networks: when travel time from source to
target is T, we settle everything within time radius T

– When T is large or ∞ we search the whole graph ... this
happens more often than in road networks, for example:

bad connectivity by bus / train

overnight connections

16

A* algorithm with straightline heuristic

 Performance on time-expanded transit networks

– Experiments show little improvement over Dijkstra ... why?

– Consider Bus 10 from Bärenweg to Siegesdenkmal

– Takes 10 minutes, straightline distance is ≈ 2.5 km

– Let's say the maximum speed is 100 km/h (trains!)

– That gives a lower bound of 1.5 minutes

17

A* algorithm with landmark heuristic

 Performance on time-expanded transit networks

– Also here, little improvement over Dijkstra ... why?

18

Arc flags 1/2

 Performance on time-expanded transit networks

– Goal direction works well, good query times ... why?

19

Arc flags 2/2

 Performance on time-expanded transit networks

– But precomputation cost (for the much larger transit
graph is enormous)  calls for hierarchical version

– But hierarchical version does not work ... why?

20

Transit-node routing

 Performance on time-expanded transit networks

– We can also find small sets of transit / access nodes

– But how do we compute them efficiently?

the geometric precomputation is inefficient for the same
reasons as just explained for arc flags ... previous slide

the CH precomputation is also inefficient ... next slide

– Also, local queries are not necessarily cheap in transit
networks

– Due to the "15 hours to the next village problem" from the
previous slide

21

Contraction Hierarchies 1/5

 Performance on time-expanded transit networks

– Certain nodes can be contracted very well

– We have already mentioned that the departure nodes
can be contracted trivially, and this even saves us arcs

– It seems like (at least some) arrival nodes can also be
contracted without loss

22

Contraction Hierarchies 2/5

 Performance on time-expanded transit networks

– But when we start to contract transfer nodes, the degree
explodes:

23

Contraction Hierarchies 3/5

 Performance on time-expanded transit networks

– Here is one surprising explanation why we need to add so
many shortcuts in transit networks but not in road networks

– Note that in transit networks (with cost = travel time),
whenever we contract a node (with in and out degree > 0),
we always need to add all the potentially necessary shortcuts

– In road networks this is not the case, why this difference?

24

Contraction Hierarchies 4/5

 Performance on time-expanded transit networks

– The reason is that (when cost = travel time), in a time-
expanded transit network every path is a shortest path

– What? This can't be true.

– But it is true:

25

Contraction Hierarchies 5/5

 Performance on time-expanded transit networks

– For multi-criteria costs the situation becomes even worse

– We have seen that in that case, a part P' of a shortest path
from S to T might be a non-optimal path itself, and this P'
can be arbitrarily far away from both S and T

– How are we supposed to figure out that we need P' (when
contracting a node on P') with local Dijkstra computations

but this is at the heart of contraction hierarchies

26

Summary until here

 None of our algorithms so far

– that is: Dijkstra, A*, arc flags, contraction hierarchies,
and transit node routing

– ... is practical for large transit networks

– And matters seem to become hopeless when realistic
features like transfer buffers and multi-criteria cost
function come into play

– And fully-realistic models pose even more challenges:

service days, vehicle restrictions, finding a suitable source
and target station, walking between stations, ...

27

References

 Road Networks vs. Transit Networks

Car or Public Transport — Two Worlds

Hannah Bast, Efficient Algorithms 2009, LNCS 5760

http://www.springerlink.com/content/y46257m66372x730/

 Multi-label Dijkstra

Optimal paths in graphs with […] multidimensional weights

Ronald Prescott Loui, CACM 26(9), 1983

http://portal.acm.org/citation.cfm?doid=358172.358406

28

29

